

Chapter 16

Disruption of Healthy Tissue by the Adaptive Immune Response

吳彰哲 (Chang-Jer Wu)

Department of Food Science
National Taiwan Ocean University

Every autoimmune disease resembles a type II, III, or IV hypersensitivity reaction

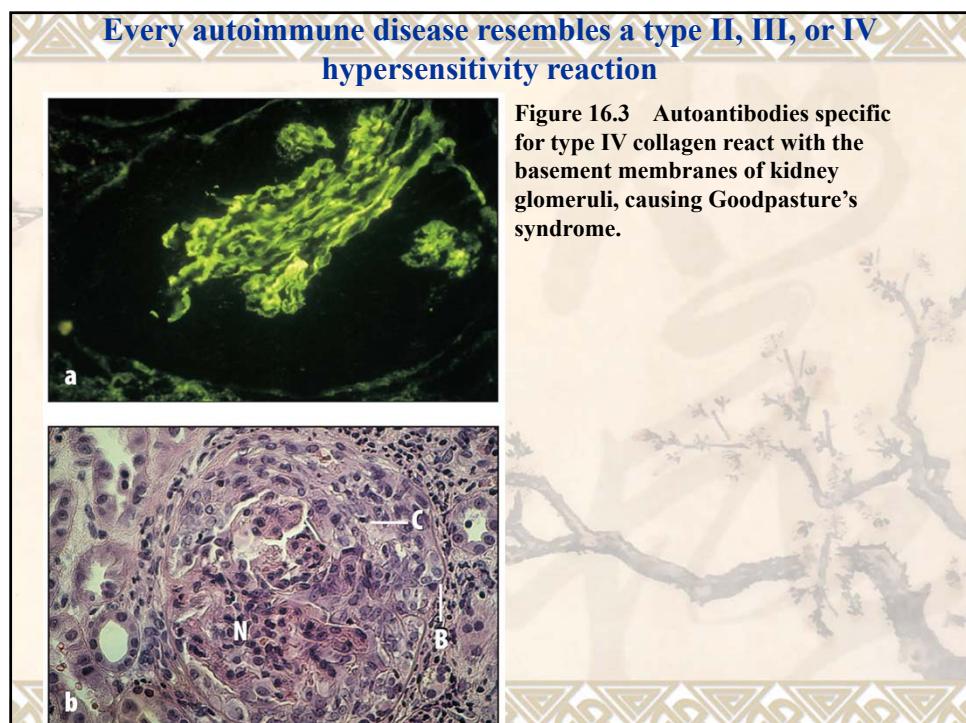
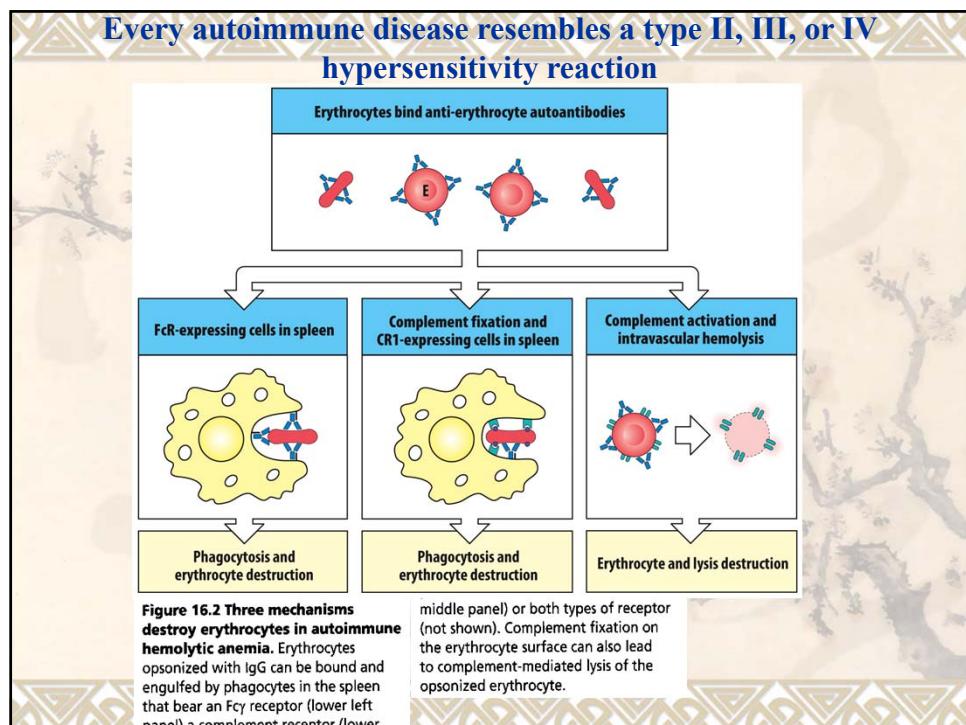
Autoimmune disease	Autoantigen	Consequence
Antibody against cell-surface or matrix antigens (type II)		
Autoimmune hemolytic anemia	Rh blood group antigens, I antigen	Destruction of red blood cells by complement and phagocytes, anemia
Autoimmune thrombocytopenia purpura	Platelet integrin gp1b:IIa	Abnormal bleeding
Goodpasture's syndrome	Non-collagenous domain of basement membrane collagen type IV	Glomerulonephritis, pulmonary hemorrhage
Pemphigus vulgaris	Epidermal cadherin	Blistering of skin
Pemphigus foliaceus	Desmoglein	Mild blistering of skin
Acute rheumatic fever	Streptococcal cell wall antigens. Antibodies cross-react with cardiac muscle	Arthritis, myocarditis, late scarring of heart valves
Graves' disease	Thyroid-stimulating hormone receptor	Hyperthyroidism
Myasthenia gravis	Acetylcholine receptor	Progressive weakness
Type 2 diabetes (insulin-resistant diabetes)	Insulin receptor (antagonist)	Hyperglycemia, ketoacidosis
Hypoglycemia	Insulin receptor (agonist)	Hypoglycemia

Figure 16.1 A selection of autoimmune diseases, the symptoms they cause, and the autoantigens associated with the immune response. The autoimmune diseases are classified as types II, III, and IV because their tissue-damaging effects are like those of hypersensitivity reactions types II, III, and IV, respectively (see Chapter 14). snRNP, small nuclear ribonucleoprotein; scRNP, small cytoplasmic ribonucleoprotein.

Every autoimmune disease resembles a type II, III, or IV hypersensitivity reaction

Autoimmune disease	Autoantigen	Consequence
Immune-complex disease (type III)		
Subacute bacterial endocarditis	Bacterial antigen	Glomerulonephritis
Mixed essential cryoglobulinemia	Rheumatoid factor IgG complexes (with or without hepatitis C antigens)	Systemic vasculitis
Systemic lupus erythematosus	DNA, histones, ribosomes, snRNP, scRNP	Glomerulonephritis, vasculitis, arthritis

Figure 16.1 A selection of autoimmune diseases, the symptoms they cause, and the autoantigens associated with the immune response. The autoimmune diseases are classified as types II, III, and IV because their tissue-damaging



effects are like those of hypersensitivity reactions types II, III, and IV, respectively (see Chapter 14). snRNP, small nuclear ribonucleoprotein; scRNP, small cytoplasmic ribonucleoprotein.

Every autoimmune disease resembles a type II, III, or IV hypersensitivity reaction

Autoimmune disease	Autoantigen	Consequence
T cell-mediated disease (type IV)		
Type 1 diabetes (insulin-dependent diabetes mellitus)	Pancreatic β -cell antigen	β -cell destruction
Rheumatoid arthritis	Unknown synovial joint antigen	Joint inflammation and destruction
Multiple sclerosis	Myelin basic protein, proteolipid protein	Brain degeneration. Paralysis

Figure 16.1 A selection of autoimmune diseases, the symptoms they cause, and the autoantigens associated with the immune response. The autoimmune diseases are classified as types II, III, and IV because their tissue-damaging

effects are like those of hypersensitivity reactions types II, III, and IV, respectively (see Chapter 14). snRNP, small nuclear ribonucleoprotein; scRNP, small cytoplasmic ribonucleoprotein.

Every autoimmune disease resembles a type II, III, or IV hypersensitivity reaction

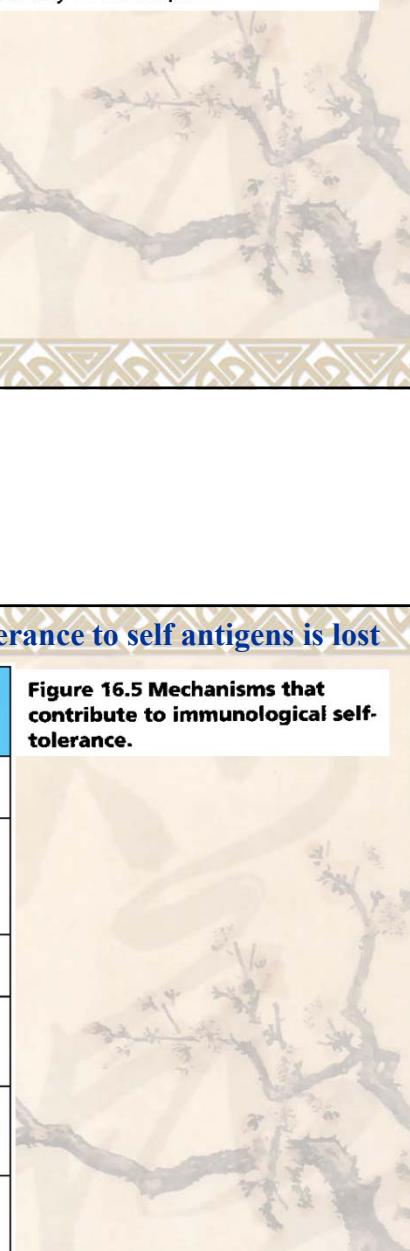


Figure 16.4 The characteristic facial rash of systemic lupus erythematosus. Historically, this butterfly-shaped rash was first used to define and diagnose the disease. Now that the disease is defined immunologically, it is recognized that a proportion of patients who have the disease do not get the rash. Photograph courtesy of M. Walport.

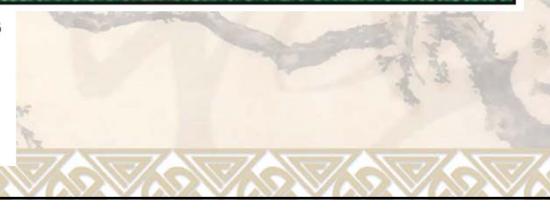
Autoimmune diseases arise when tolerance to self antigens is lost

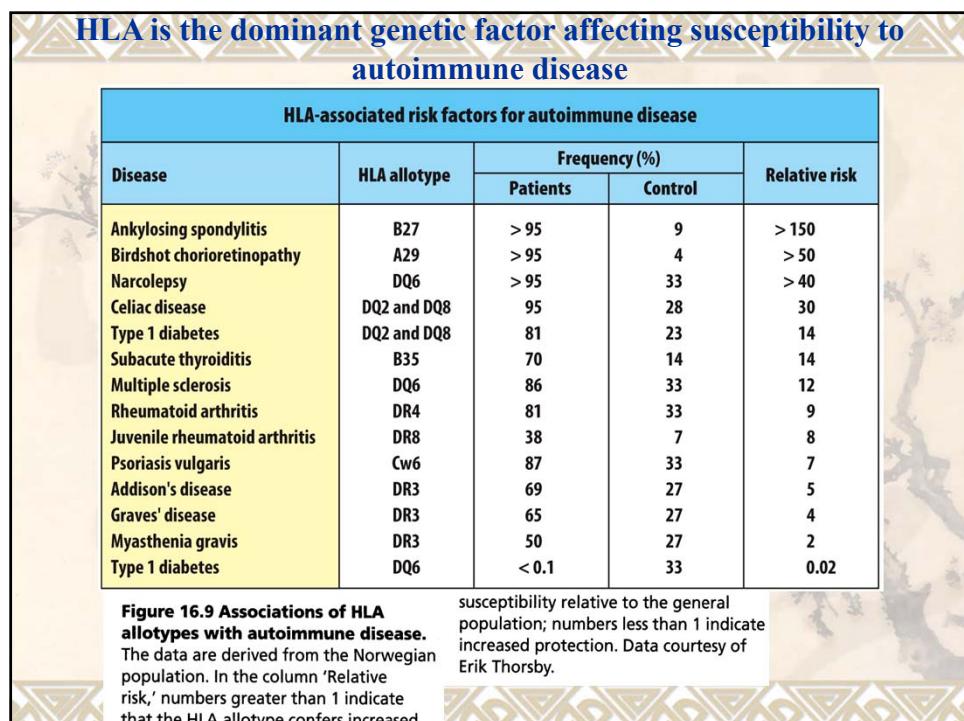
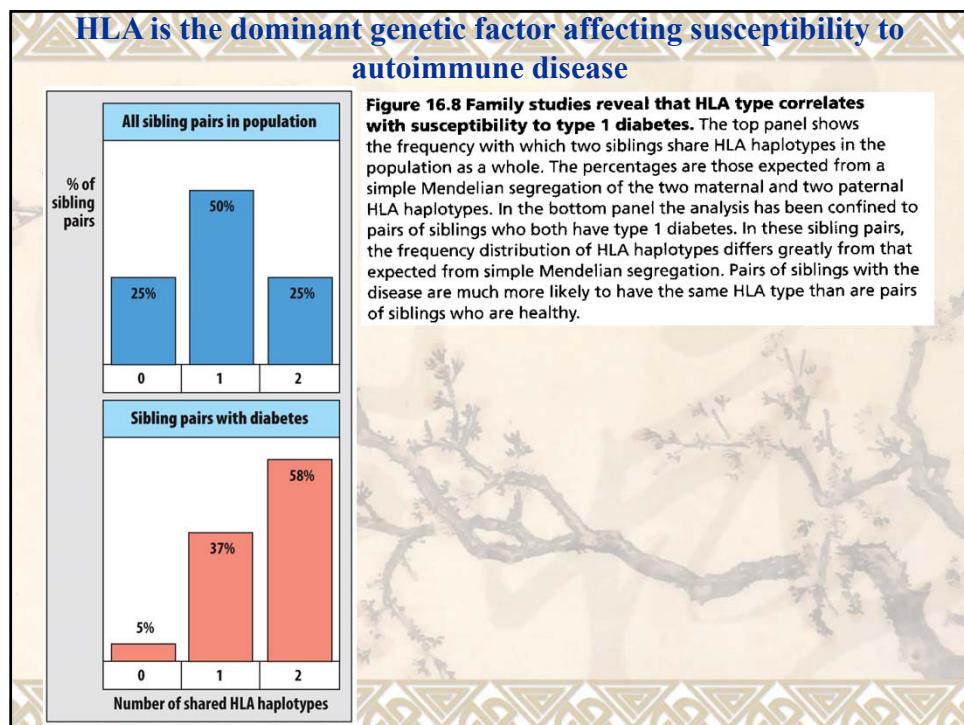
Mechanisms that contribute to immunological self-tolerance
Negative selection of B cells in the bone marrow
Expression of tissue-specific proteins in the thymus so that they participate in negative selection of T cells
Negative selection of T cells in the thymus
Exclusion of lymphocytes from certain peripheral tissues: brain, eye, testis
Induction of anergy in autoreactive B and T cells that reach the peripheral circulation
Suppression of autoimmune responses by regulatory T cells

Figure 16.5 Mechanisms that contribute to immunological self-tolerance.

Autoimmune diseases arise when tolerance to self antigens is lost

APECED patients suffer a variety of autoimmune diseases and candidiasis	
Symptom	Frequency in Finnish patients (%)
Endocrine glands	
Hypoparathyroidism	85
Adrenal failure	72
Ovarian failure	60
Insulin-dependent diabetes mellitus	18
Testicular atrophy	14
Parietal cell atrophy	13
Hypothyroidism	6
Other tissues	
Candidiasis	100
Dental enamel hypoplasia	77
Nail dystrophy	52
Tympanic membrane calcification	33
Alopecia	27
Keratopathy	22
Vitiligo	13
Hepatitis	13
Intestinal malabsorption	10


Figure 16.6 Patients with deficiency of the autoimmune regulator protein AIRE suffer symptoms that are characteristic of a wide range of autoimmune diseases. This condition is called autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) or inherited autoimmune polyglandular disease (APD).

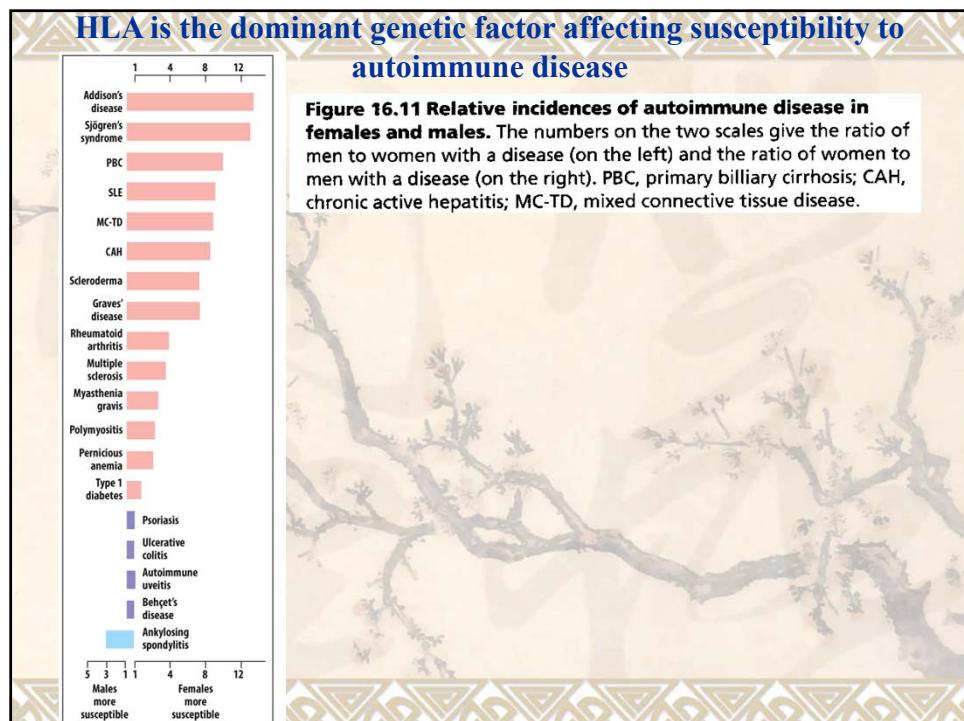
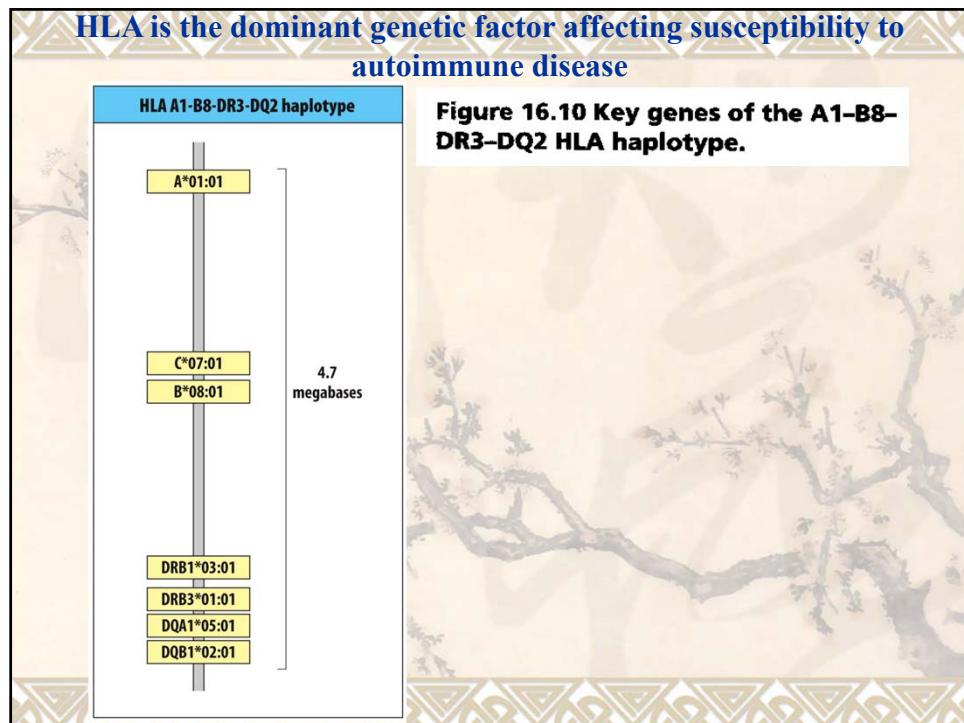
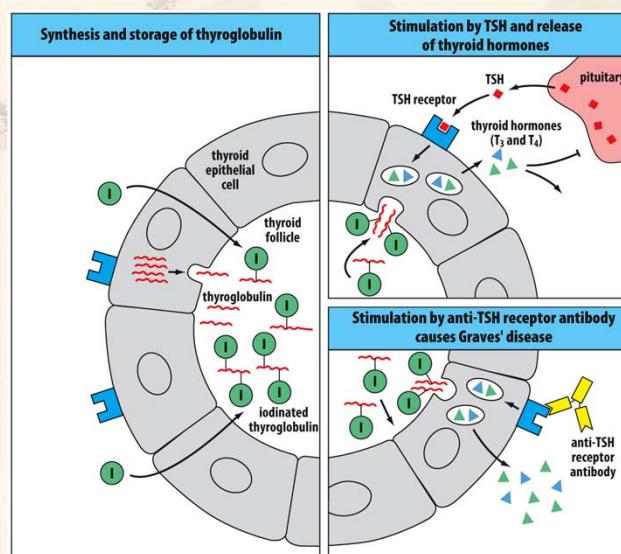
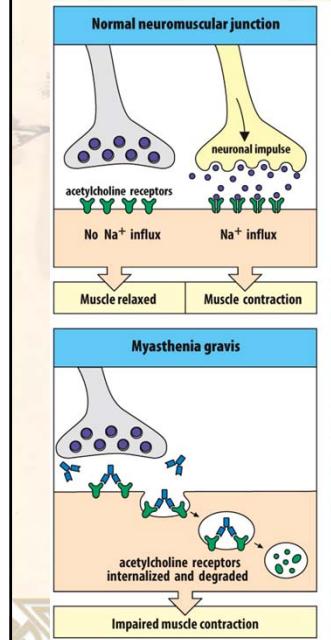


Autoimmune diseases arise when tolerance to self antigens is lost

Figure 16.7 Dystrophic fingernails in a patient with APECED. Such visible symptoms of the disease can help in the diagnosis of children with APECED. Photograph courtesy of Mark S. Anderson.


Binding of antibodies to cell-surface receptors causes several autoimmune diseases

Diseases mediated by antibodies against cell-surface receptors				
Syndrome	Antigen	Antibody	Consequence	Target cell
Graves' disease	Thyroid-stimulating hormone receptor	Agonist	Hyperthyroidism	Thyroid epithelial cell
Myasthenia gravis	Acetylcholine receptor	Antagonist	Progressive muscle weakness	Muscle
Insulin-resistant diabetes	Insulin receptor	Antagonist	Hyperglycemia, ketoacidosis	All cells
Hypoglycemia	Insulin receptor	Agonist	Hypoglycemia	All cells

Figure 16.12 Diseases mediated by antibodies against cell-surface receptors. Antibodies act as agonists when they stimulate a receptor on binding it, and as antagonists when they block a receptor's function on binding it.



Before blood transfusion, donors and recipients are matched for ABO and the Rhesus D antigens

Figure 16.13 Autoantibodies against the TSH receptor cause overproduction of thyroid hormones and Graves' disease. Thyroid epithelial cells make thyroglobulin, a glycoprotein that is stored in follicles formed by the spherical arrangement of thyroid cells. Iodide (green circles) is taken up and used to iodinate and cross-link tyrosine residues of thyroglobulin (left half of the figure). When thyroid hormones are needed. Thyroid-stimulating hormone (TSH) from the pituitary gland binds to the TSH receptor on thyroid cells, inducing the endocytosis and breakdown of iodinated thyroglobulin, with release of the thyroid hormones tri-iodothyronine (T₃) and thyroxine (T₄). As well as regulating metabolism, T₃ and T₄ signal the pituitary to stop releasing TSH (upper right panel). In Graves' disease, autoantibodies bind to the TSH receptor of thyroid cells, mimicking TSH and inducing the continuous synthesis and release of thyroid hormones. In patients with Graves' disease, the production of thyroid hormones becomes independent of the presence of TSH and of the body's requirements for thyroid hormones (lower right panel).

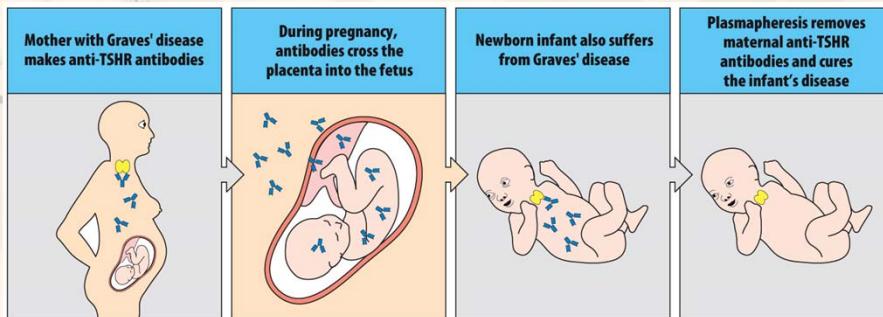

Binding of antibodies to cell-surface receptors causes several autoimmune diseases

Figure 16.14 Autoantibodies against the acetylcholine receptor cause myasthenia gravis. In a healthy neuromuscular junction, signals generated in nerves cause the release of acetylcholine, which binds to the acetylcholine receptors of the muscle cells, causing an inflow of sodium ions that indirectly causes muscle contraction (upper panel). In patients with myasthenia gravis, autoantibodies specific for the acetylcholine receptor reduce the number of receptors on the muscle-cell surface by binding to the receptors and causing their endocytosis and degradation (lower panel). Consequently, the efficiency of the neuromuscular junction is reduced, which is manifested as muscle weakening.

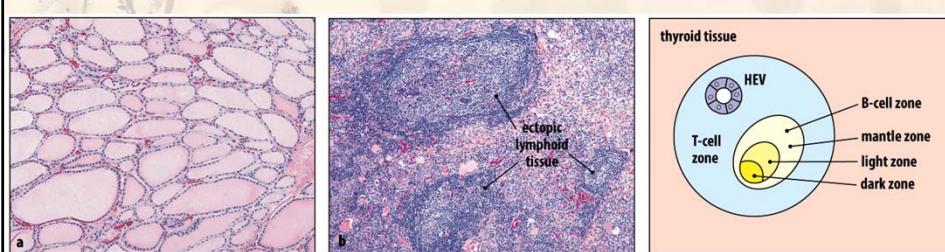
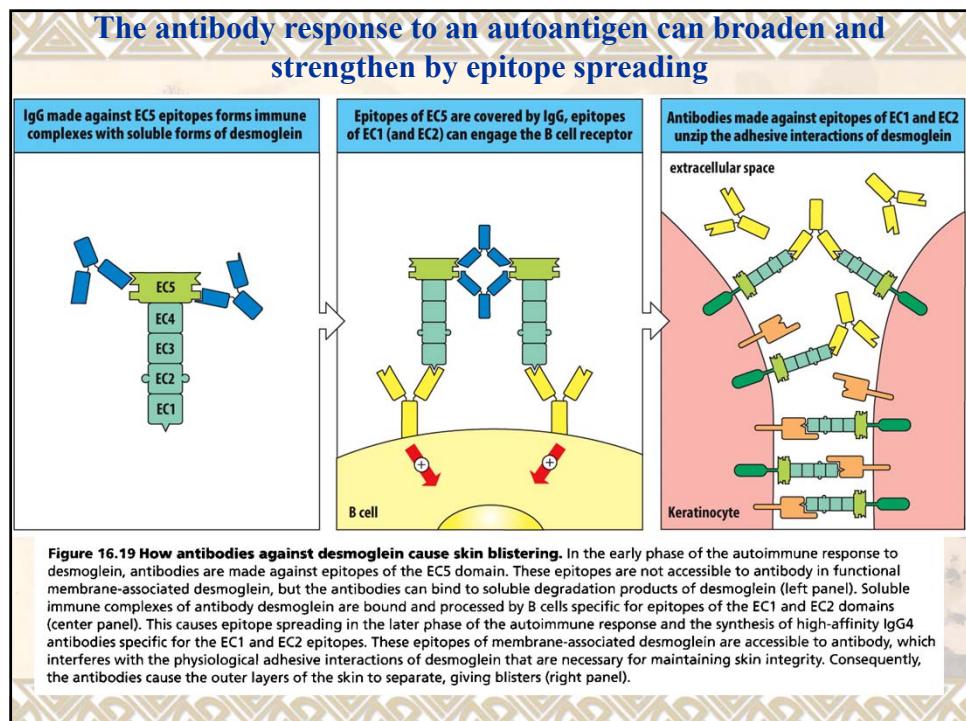
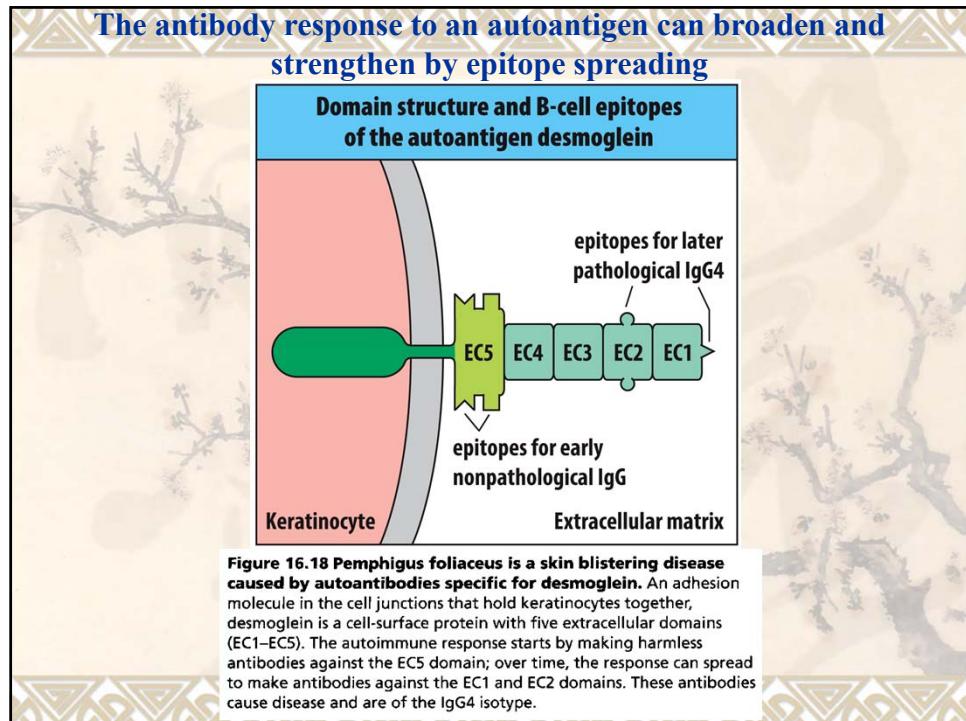

Binding of antibodies to cell-surface receptors causes several autoimmune diseases

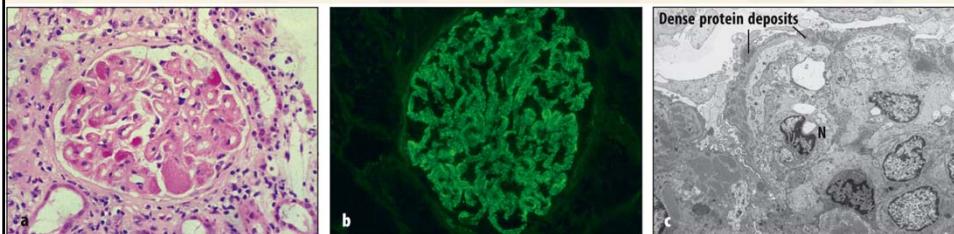
Figure 16.15 Temporary symptoms of antibody-mediated autoimmune diseases can be passed from affected mothers to their newborn babies. The mother has Graves' disease and Graves' ophthalmopathy, which causes her eyes to bulge. IgG autoantibodies against the thyroid-stimulating hormone

receptor (TSHR) pass from the mother to the fetus *in utero* and passively give the baby a temporary Graves' disease that disappears with the degradation of maternal IgG in the infant's circulation.

Organized lymphoid tissue sometimes forms at sites inflamed by autoimmune disease

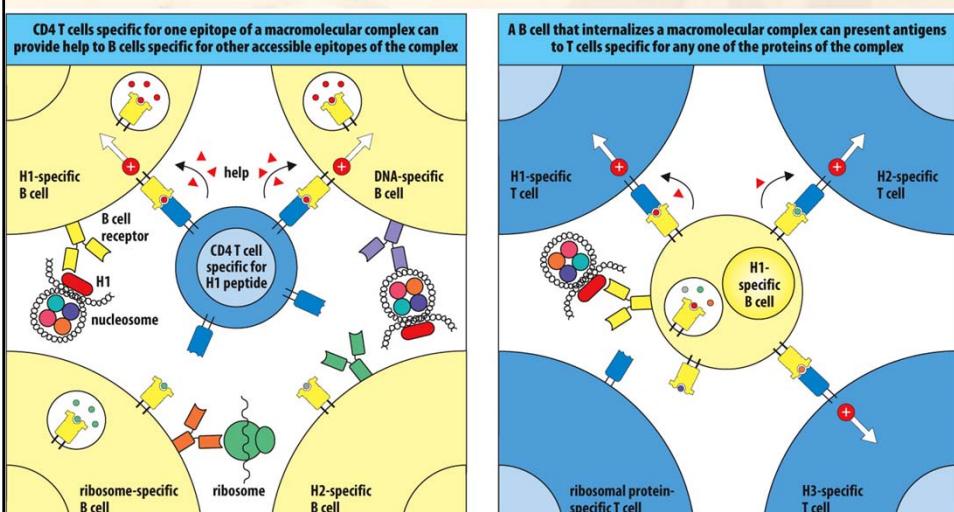


Figure 16.16 Hashimoto's thyroiditis. In a healthy thyroid gland, the epithelial cells form spherical follicles containing thyroglobulin (panel a). In patients with Hashimoto's thyroiditis the thyroid gland becomes infiltrated with lymphocytes, which destroy the normal architecture of the thyroid gland and can become organized into structures resembling secondary lymphoid tissue (panel b), as shown in the schematic diagram at the right.
Micrographs courtesy of Yasodha Natkunam.

Organized lymphoid tissue sometimes forms at sites inflamed by autoimmune disease


Autoimmune diseases of endocrine glands

Thyroid gland	Hashimoto's thyroiditis Graves' disease Subacute thyroiditis Idiopathic hypothyroidism
Islets of Langerhans (pancreas)	Type 1 diabetes (insulin-dependent diabetes, juvenile-onset diabetes) Type 2 diabetes (insulin-resistant diabetes, adult-onset diabetes)
Adrenal gland	Addison's disease

Figure 16.17 Autoimmune diseases of endocrine glands.



Intermolecular epitope spreading occurs in systemic autoimmune disease

Figure 16.20 Deposition of immune complexes in the kidney glomeruli in systemic lupus erythematosus (SLE). Panel a shows a section through a glomerulus of a patient with SLE. Deposition of immune complexes causes thickening of the basement membrane. In panel b a similar kidney section is stained with fluorescent anti-immunoglobulin antibodies, revealing the presence of immunoglobulin in the basement membrane deposits. Panel c is an electron micrograph of part of a glomerulus. Dense protein deposits are seen between the glomerular basement membrane and the renal epithelial cells. Neutrophils (N) are also present, attracted by the deposited immune complexes. Photographs courtesy of H.T. Cook and M. Kashgarian.

Intermolecular epitope spreading occurs in systemic autoimmune disease

Figure 16.21 In systemic lupus erythematosus (SLE) the immune response is broadened in a antigen-specific manner.

Intravenous immunoglobulin is a therapy for autoimmune diseases

Uses of intravenous immunoglobulin in autoimmune disease		
Benefit	Disease	Symptoms
Definitely beneficial	Graves' ophthalmopathy	Bulging eyes
	Immune thrombocytopenia	Loss of platelets, bleeding, poor blood clotting
Probably beneficial	Dermatomyositis and polymyositis	Muscle weakness, skin rash
	Autoimmune uveitis	Inflamed eye, blurred vision
Possibly beneficial	Severe rheumatoid arthritis	Joint erosion, pain, loss of mobility
	Type 1 diabetes	Loss of insulin production, severe metabolic disorder
	Systemic lupus erythematosus	Joint pain and swelling, butterfly rash, fatigue
	Post-transfusion purpura	Loss of platelets after a blood transfusion
	Autoimmune neutropenia	Loss of neutrophils, increased susceptibility to infection
	Autoimmune hemolytic anemia	Loss of red blood cells, fatigue
	Autoimmune hemophilia	Bleeding into tissues and joints

Figure 16.22 Intravenous immunoglobulin as a treatment for autoimmune disease. Although there is an extensive literature describing the use of intravenous immunoglobulin as a treatment for autoimmune disease, definitive clinical trials are few and thus the treatment is officially approved for only a few conditions. It is, however,

often prescribed 'off label.' Shown here is a summary of autoimmune diseases for which intravenous immunoglobulin treatment is definitely beneficial, probably beneficial, and possibly beneficial.

Intravenous immunoglobulin is a therapy for autoimmune diseases

Functions of intravenous immunoglobulin

- Saturates Fc receptors and inhibits Fc receptor-mediated phagocytosis
- Saturates FcRn, inhibits recycling of IgG, increases clearance of IgG and reduces its half-life in the blood
- Upregulates expression of inhibitory FcγRIIB and further inhibits phagocytosis
- Contains anti-idiotypic antibodies that neutralize autoantibodies made by the patient
- Suppresses immunoglobulin production including production of autoantibodies
- Contains helpful autoantibodies, for example anti-BAFF, that prevent B-cell survival
- Downregulates antigen presentation
- Attenuates complement activation

Figure 16.23 The immunomodulatory effects of intravenous immunoglobulin.

Monoclonal antibodies that target TNF- α and B cells are used to treat rheumatoid arthritis

Rheumatic diseases caused by autoimmunity

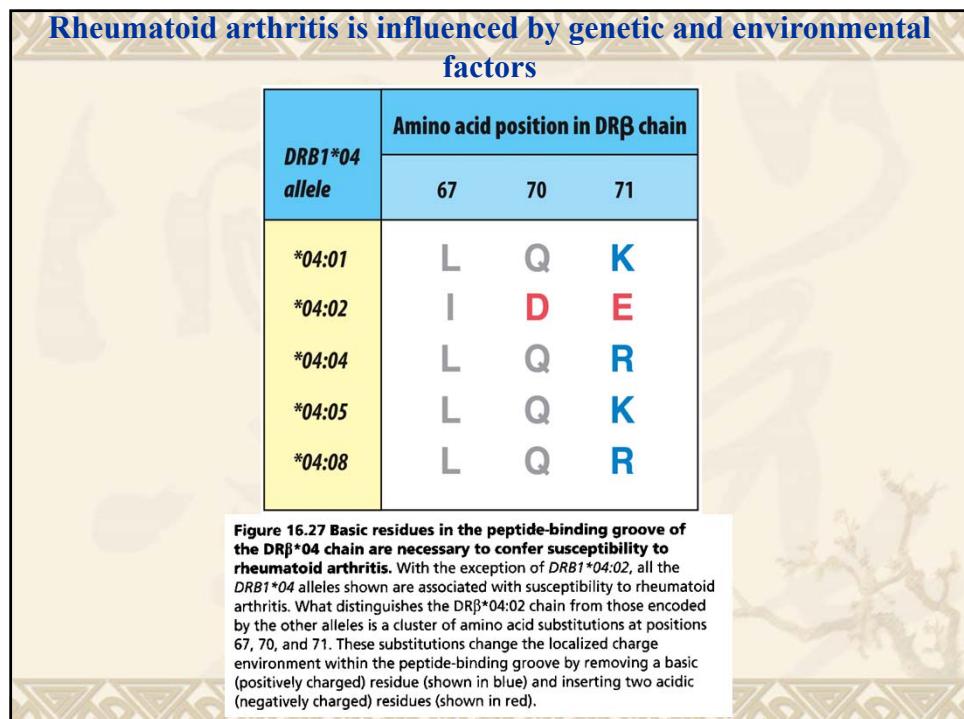
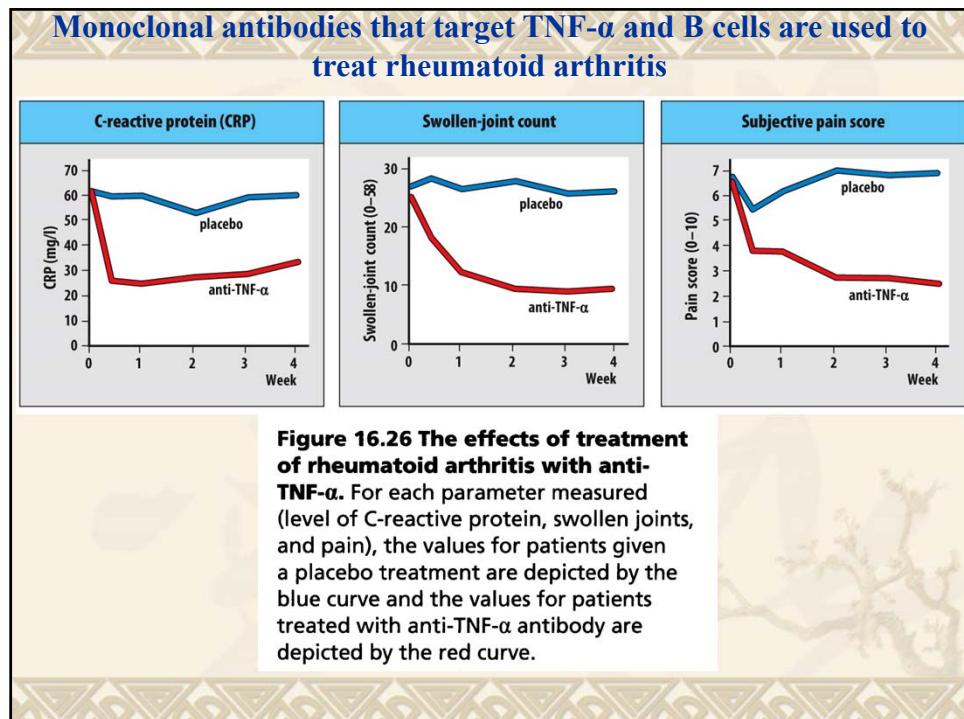


- Systemic lupus erythematosus (SLE)
- Rheumatoid arthritis
- Juvenile arthritis
- Sjögren's syndrome
- Scleroderma (progressive systemic sclerosis)
- Polymyositis–dermatomyositis
- Behçet's disease
- Ankylosing spondylitis
- Reiter's syndrome
- Psoriatic arthritis

Figure 16.24 Rheumatic diseases are autoimmune in nature.

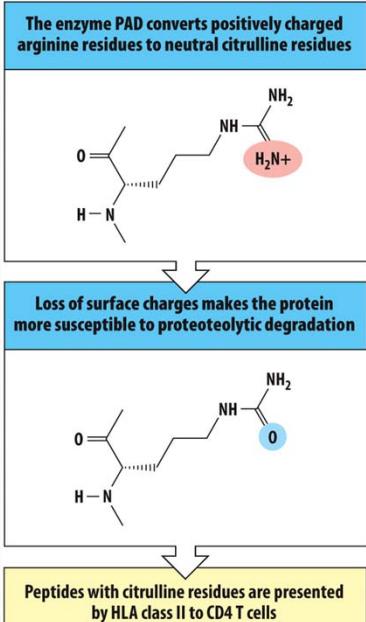
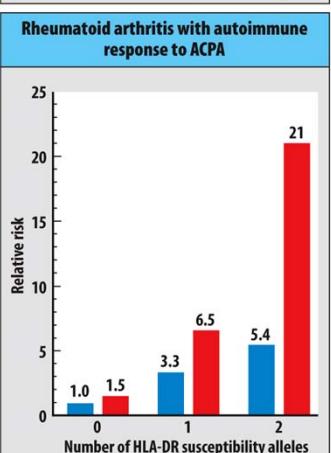
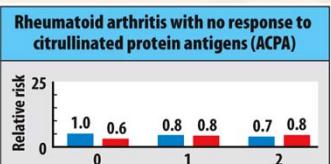
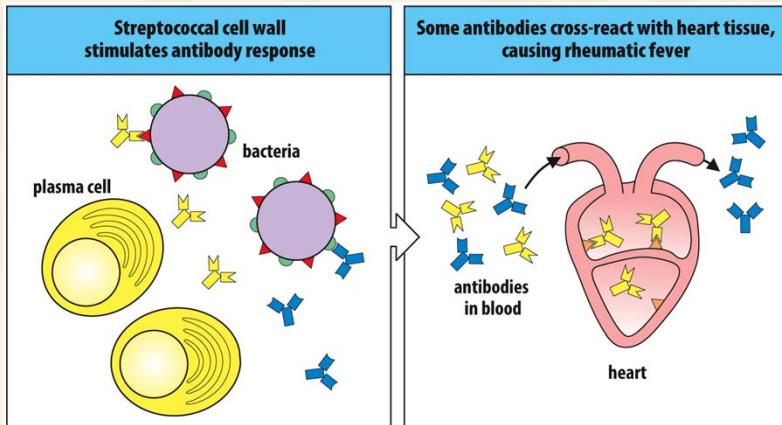

Monoclonal antibodies that target TNF- α and B cells are used to treat rheumatoid arthritis

Figure 16.25 Inflamed joints in the hand of a patient with rheumatoid arthritis. Photograph courtesy of J. Cush.

Rheumatoid arthritis is influenced by genetic and environmental factors


Figure 16.28 The enzyme peptidyl arginine deiminase converts the arginine residues of tissue proteins to citrulline. In tissues stressed by wounds or infection, peptidyl arginine deiminase (PAD) activity is induced. By converting arginine residues to citrulline, PAD destabilizes proteins and makes them more susceptible to degradation. It also introduces novel B-cell and T-cell epitopes into tissue proteins that can stimulate an autoimmune response.

Rheumatoid arthritis is influenced by genetic and environmental factors

Figure 16.29 Patients with rheumatoid arthritis form two distinct groups. Upper panel: the relative risk of developing rheumatoid arthritis in which no autoimmune response to citrullinated protein antigens (ACPA) is made does not correlate with the presence of *HLA-DRB1*04* 'susceptibility' alleles or with smoking. The red columns indicate smokers, the blue columns nonsmokers. The number above each column is the relative risk of disease for that group. Lower panel: in contrast, the relative risk of developing rheumatoid arthritis in which an autoimmune response to ACPA has been made is increased by the presence of *HLA-DRB1*04* susceptibility alleles and by smoking. At highest risk are smokers who have any two *HLA-DRB1*04* susceptibility alleles (see Figure 16.27). These data are from a cohort of Swedish patients with rheumatoid arthritis. Data courtesy of Lars Klareskog.

Autoimmune disease can be an adverse side-effect of an immune response to infection

Figure 16.30 Antibodies against streptococcal cell-wall antigens cross-react with antigens on heart tissue. The immune response to the bacteria produces antibodies against various epitopes of the bacterial cell surface. Some of these antibodies

(yellow) cross-react with the heart, whereas others (blue) do not. An epitope in the heart (orange) is structurally similar, but not identical, to a bacterial epitope (red).

Autoimmune disease can be an adverse side-effect of an immune response to infection

Associations of infection with autoimmunity		
Infection	HLA association	Consequence
<i>Group A Streptococcus</i>	Not known	Rheumatic fever (carditis, polyarthritis)
<i>Chlamydia trachomatis</i>	HLA-B27	Reiter's syndrome (arthritis)
<i>Shigella flexneri</i> , <i>Salmonella typhimurium</i> , <i>Salmonella enteritidis</i> , <i>Yersinia enterocolitica</i> , <i>Campylobacter jejuni</i>	HLA-B27	Reactive arthritis
<i>Borrelia burgdorferi</i>	HLA-DR2, DR4	Chronic arthritis in Lyme disease
<i>Coxsackie A virus</i> , <i>Coxsackie B virus</i> , echoviruses, rubella	HLA-DQ2, HLA-DQ8 DR4	Type 1 diabetes

Figure 16.31 Infections associated with the start of autoimmunity. Lyme disease, a form of arthritis, is caused by *Borrelia* bacteria that are transmitted from rodents to humans by tick bites of the type shown on the opening page of this chapter.

Noninfectious environmental factors affect the development of autoimmune disease

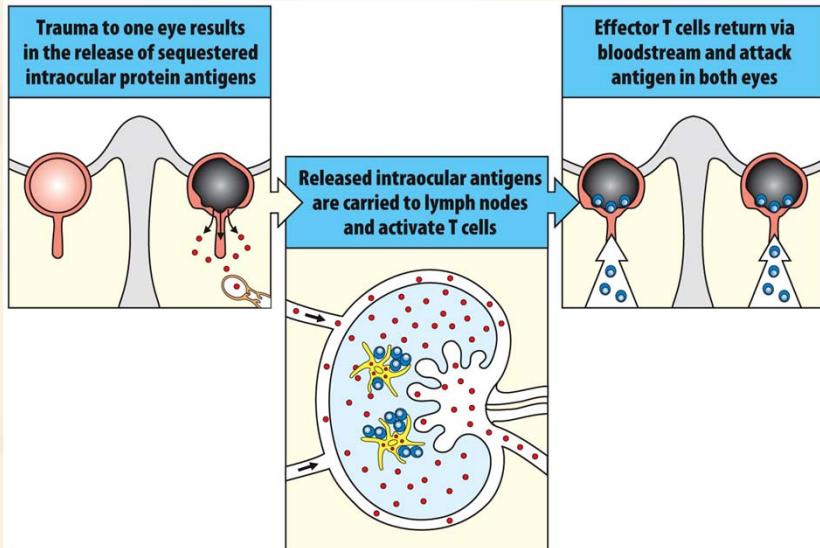


Figure 16.32 Physical trauma to one eye initiates autoimmunity that can destroy vision in both eyes.

Type 1 diabetes is caused by the selective destruction of insulin-producing cells in the pancreas

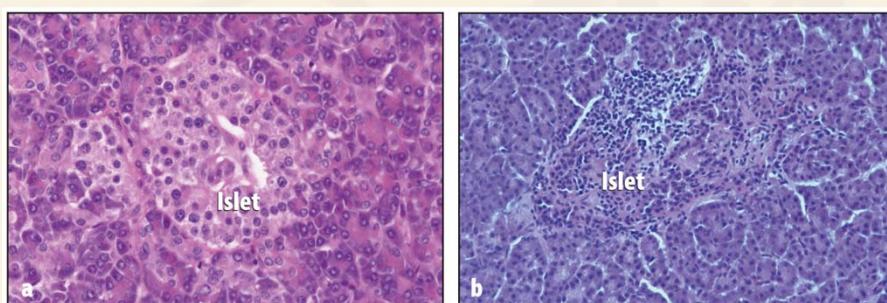
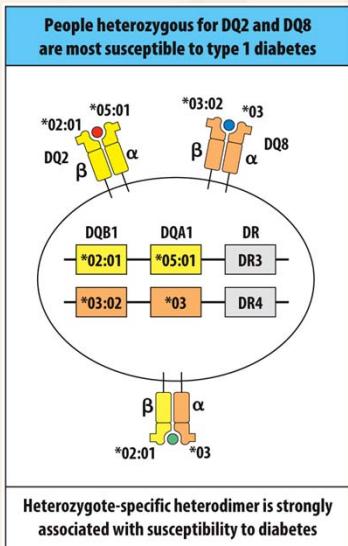



Figure 16.33 Comparison of histological sections of a pancreas from a healthy person and a patient with type 1 diabetes. Panel a is a micrograph of healthy human pancreas, showing a single islet. The islet is the discrete light-staining area in the center of the photograph. It is composed of hormone-producing cells, including the β cells that produce insulin. Panel b

shows a micrograph of an islet from a patient with acute onset of type 1 diabetes. The islet shows insulitis, an infiltration of lymphocytes from the islet periphery toward the center. The lymphocytes are the clusters of cells with darkly staining nuclei. Both tissue sections are stained with hematoxylin and eosin; magnification $\times 250$. Photographs courtesy of G. Klöppel.

Combinations of HLA class II allotypes confer susceptibility and resistance to type 1 diabetes

Figure 16.34 Certain HLA heterozygous individuals are more susceptible to diabetes than homozygous individuals. The person shown here has two HLA haplotypes that are independently associated with susceptibility to type 1 diabetes. The *DR3* haplotype contains *DQ* genes that encode the $DQ\alpha^*05:01$ chain and the $DQ\beta^*02:01$ chain; the *DR4* haplotype contains genes that encode the $DQ\alpha^*03$ chain and the $DQ\beta^*03:02$ chain. The two α chains and two β chains made in this person's cells can associate in different combinations to form four different *DQ* isoforms, of which three (those shown in the figure) are associated with susceptibility to diabetes. The *DQ* heterodimer associated with the highest susceptibility is that comprising the $DQ\alpha^*03$ chain made from the *DR4* haplotype and the $DQ\beta^*02:01$ chain made from the *DR3* haplotype. This heterodimer can be made only in *DR3/DR4* heterozygous individuals, whereas the two heterodimers with weaker disease association are also made in homozygous individuals: heterodimers of the $DQ\alpha^*05:01$ and $DQ\beta^*02:01$ chains (called the *DQ2* molecule) in *DR3* haplotype homozygotes and heterodimers of the $DQ\alpha^*03$ and $DQ\beta^*03:02$ chains (called the *DQ8* molecule) in *DR4* haplotype homozygotes. The heterozygote is therefore more susceptible to disease than either homozygote. As a general rule, heterozygosity gives increased fitness over homozygosity, but in this situation the reverse is true.

Combinations of HLA class II allotypes confer susceptibility and resistance to type 1 diabetes

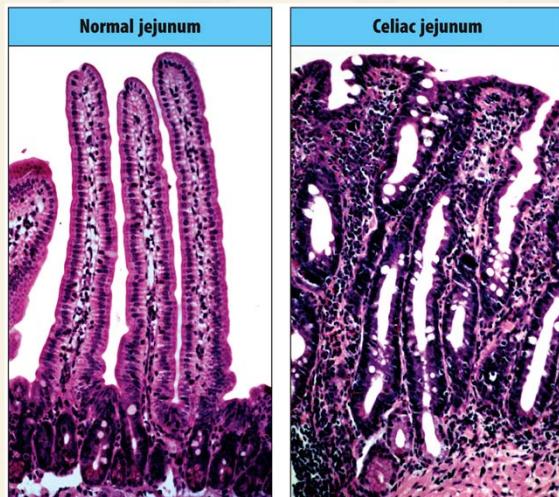

Risk of type 1 diabetes	HLA locus			Amino acid position in $DR\beta$ chain			
	<i>DQB1</i>	<i>DQA1</i>	<i>DRB1</i>	67	71	74	86
Protective	$*03:02$	$*03$	$*04:03$	L R E V			
	$*02:01$	$*05:01$	$*03$	L R E V			
Moderate	$*03:02$	$*03$	$*04:04$	L R A V			
	$*02:01$	$*05:01$	$*03$	L R A V			
High	$*03:02$	$*03$	$*04:05$	L R A G			
	$*02:01$	$*05:01$	$*03$	L R A G			
High	$*03:02$	$*03$	$*04:01$	L K A G			
	$*02:01$	$*05:01$	$*03$	L K A G			

Figure 16.35 HLA-DR4 subtypes modify the susceptibility to type 1 diabetes conferred by the $DQ\alpha^*03:DQ\beta^*02:01$ heterodimer. The leftmost panels show the risk of type 1 diabetes for individuals having the haplotype combinations shown in the adjacent column. All four individuals are heterozygotes for *DR3*

and *DR4* haplotypes and make the $DQ\alpha^*03:DQ\beta^*02:01$ heterodimer. These individuals have different *DRB1**04 alleles, as indicated by the colored boxes. The amino acid substitutions that distinguish the four $DR\beta$ *04 chains are shown on the right. The common amino acid residue at each position is shown in gray; the rarer residue is highlighted in

black. The associated HLA-DR4 subtype modifies the risk of type 1 diabetes conferred by $DQ\alpha^*03:DQ\beta^*02:01$ in qualitative and quantitative ways.

Celiac disease is a hypersensitivity to food that has much in common with autoimmune disease

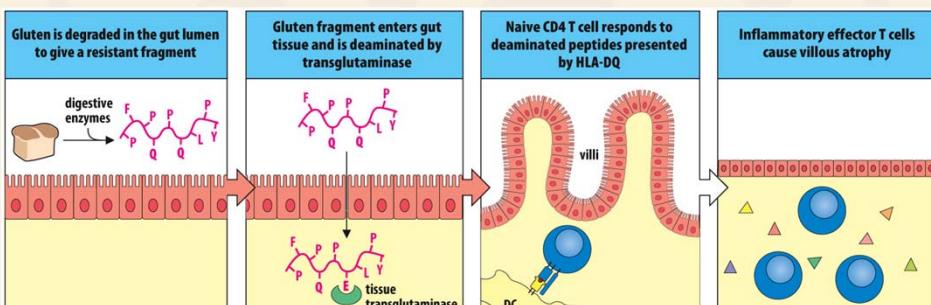
Figure 16.36 Comparison of healthy and celiac intestinal mucosa.

Left: the surface of the normal small intestine is folded into finger-like villi, which provide an extensive surface for nutrient absorption. Right: in celiac disease the inflammation and immune response damage the villi. There is lengthening and increased cell division in the underlying crypts to produce new epithelial cells. There are greater numbers of lymphocytes in the epithelial layer and an increase in effector CD4 T cells, plasma cells, and macrophages in the lamina propria. The damage to the villi reduces the person's ability to utilize food and can cause life-threatening malabsorption and diarrhea. Right photograph courtesy of Allan Mowat.

Celiac disease is a hypersensitivity to food that has much in common with autoimmune disease

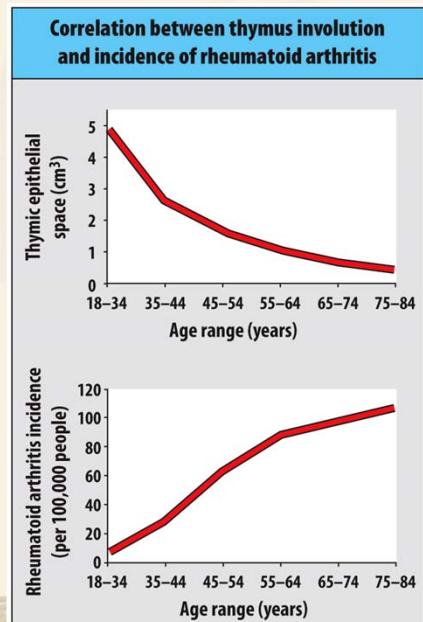
Type of disease	Immune mechanism								
	MHC class II molecules	Auto-antibodies	T _H 1 type immunity	Post-translational modifications	Type I IFN	IL-15	IL-21	NK-cell receptors	Conserved MHC class I molecules
Celiac disease									
Rheumatoid arthritis									
Type 1 diabetes									
Multiple sclerosis					■				
Autoimmune thyroiditis				■	■	■			
Systemic lupus erythematosus				■	■	■	■		
Primary biliary cirrhosis				■	■	■	■		■
Psoriasis or psoriatic arthritis	■	■	■	■	■				■
Inflammatory bowel disease	■	■	■	■	■				■

■ Evidence for involvement
 ■ Unclear evidence for involvement
 ■ No evidence for involvement


Figure 16.37 Shared characteristics of the immune mechanisms causing celiac diseases and autoimmune diseases.

Celiac disease is caused by the selective destruction of intestinal epithelial cells

DQ2		DQ8		Relative risk of celiac disease
DQB1*02	DQA1*05	DQB1*03	DQA1*03	
+	+	+	+	High
++	+			High
		+	+	Medium
+	+			Medium
++				Medium
+				Low
	+			Very low
				Very low


Figure 16.38 Comparison of genotypes and risk for celiac disease. Shown here are how various combinations of two DQ α chains and two DQ β chains give genotypes with a range of relative risk for celiac disease.

Celiac disease is caused by the selective destruction of intestinal epithelial cells

Figure 16.39 The mechanism of celiac disease. In celiac disease, inflammation of the small intestine is caused by a CD4 T-cell response. The T cells are specific for gluten-derived peptides that have been deaminated by tissue transaminase and presented by HLA-DQ8 or HLA-DQ2 molecules. Only part of the peptide epitope is shown. DC, dendritic cell.

Senescence of the thymus and the T-cell population contributes to autoimmunity

Figure 16.40 Correlation between thymus involution and rheumatoid arthritis. With age there is an inverse correlation between the decreasing capacity of the thymus to make new T cells and the increasing incidence of rheumatoid arthritis. Data courtesy of C.M. Weyand and J.J. Goronzy.

Autoinflammatory diseases of innate immunity

Disease	Protein	Dominant (D)/ Recessive (R)	Skin rash	Arthritis	Other
Familial Mediterranean fever	Pyrin	R	+	+	SAA amyloidosis
TNF receptor-associated periodic syndrome	TNF-receptor 1, (CD120a)	D	+	+	SAA amyloidosis
Hyper-IgD syndrome	Mevalonate kinase	R	+	+	Lymph node involvement
Familial cold autoinflammatory syndrome 1	NLRP3 (cryopyrin)	D	+	+	Occular inflammation
Blau syndrome	NOD2	D	+	+	Occular inflammation
Majeed syndrome	Lipin-2	R	+	+	Osteomyelitis
Familial cold autoinflammatory syndrome 2	NLRP12	D	+	+	Early childhood onset
Deficiency of IL-1-receptor agonist	IL-1 receptor agonist	R	+	+	Lymph node involvement
Pyogenic arthritis, pyoderma gangrenosum and acne syndrome	CD2 binding protein 1	D	+	+	Early childhood onset
Early-onset enterocolitis (inflammatory bowel syndrome)	IL-10 receptor α IL-10 receptor β	R	+	-	Early infancy onset
Joint contractures, muscle atrophy, macrocytic anemia and panniculitis-induced lipodystrophy syndrome	Proteasome subunit $\beta 5i$	R	+	+	Chronic

Figure 16.41 Autoinflammatory diseases that have been associated with mutation and variation of genes contributing to innate immunity and inflammation.

Summary

Hypersensitivity reaction	Allergy	Transplantation	Autoimmunity
Type I	Peanut	–	–
Type II	Chronic urticaria	Hyperacute rejection	Autoimmune hemolytic anemia
Type III	Serum sickness	Chronic rejection	Systemic lupus erythematosus
Type IV	Poison ivy	Acute rejection	Type 1 diabetes

Figure 16.42 Comparison of allergy, transplantation, and autoimmunity.
 Allergic diseases, the diseases arising from transplantation, and autoimmune diseases all involve effector mechanisms that correspond to the type II, III, and IV hypersensitivity reactions. Unique to allergic disease is the type I hypersensitivity reaction mediated by IgE.