中央研究院 (2022)。臺灣魚類資料庫,生物多樣性研究中心魚類生態與進化研
究室。
中央研究院 (2023)。台灣海鮮選擇指南,第六版。
王耀東 (2004)。冷凍金線鰱魚漿生產煉製品之適性研究。碩士論文。國立臺灣海洋大學,基隆市。
李秋蓉 (2016)。花蓮縣定置漁業與鰹魚加工產業的發展—以新城鄉七星潭灣為
例。碩士論文,國立東華大學,花蓮縣。
邱思魁 (2020)。魚貝類肌肉死後及貯藏中的變化。海大漁推,50,1-25。
孫泰恒 (1991)。水產製造,徐氏基金會。
孫朝棟 (1999)。水產加工技術,華香園出版社。
孫朝棟 (2012)。魚漿加工技術,華香園出版社。
財團法人豐年社 (1996)。水產加工,61-62,豐年社。
陳榮輝,江仁淳,林泗潭,林清宗,孫寶年,陳澤祥 (1991)。水產食品製造,
華香園出版社。
葉于菱 (2021)。泰國正鰹進口需求結構分析。碩士論文。國立臺灣海洋大學,基隆市。
對外漁業合作發展協會 (2021)。2020 年遠洋鰹鮪圍網漁業漁獲統計年報,上網
日期:2024/04/15。
漁業署 (2017)。漁業統計年報,台灣經濟研究院生物科技產業研究中心,上網
日期:2024/01/15。
漁業署 (2022) 。漁業統計年報, 漁業生產量統計相關報表,上網日期:
2024/03/07。
衛生福利部 (2013)。國民健康署,上網日期:2024/03/20。
謝文斌,蘇平齡 (2016)。食品加工含實習總複習,復文圖書有限公司。
嚴國維,蘇楠傑,呂學榮 (2020)。氣候變遷對中西太平洋島國正鰹漁場及漁獲
量潛能影響。水產研究,28 (1),1-13。
An, H., Peters, M. Y., & Seymour, T. A. (1996). Roles of endogenous enzymes in
surimi gelation. Trends in Food Science & Technology, 7(10), 321-327.
Bailey, A. J. (1982). Food proteins. Applied Science Publishers, 111-162.
Benjakul, S., Chantarasuwan, C., & Visessanguan, W. (2003). Effect of medium
temperature setting on gelling characteristics of surimi from some tropical fish.
Food Chemistry, 82(4), 567-574.
Benjakul, S., Seymour, T. A., Morrissey, M. T., & An, H. (1997). Physicochemical
changes in pacific whiting muscle proteins during iced storage. Food Science,
62(4), 729-733.
Benjakul, S., Visessanguan, W., Thongkaew, C., & Tanaka, M. (2005). Effect of
frozen storage on chemical and gel-forming properties of fish commonly used
for surimi production in thailand. Food Hydrocolloids, 19(2), 197-207.
Bertram, H. C., Kristensen, M., & Andersen, H. J. (2004). Functionality of
myofibrillar proteins as affected by pH, ionic strength and heat treatment–a
low-field NMR study. Meat Science, 68(2), 249-256.
Buda, U., Priyadarshini, M. B., Majumdar, R., Mahanand, S., Patel, A., & Mehta, N.
(2021). Quality characteristics of fortified silver carp surimi with soluble
dietary fiber: Effect of apple pectin and konjac glucomannan. International
Journal of Biological Macromolecules, 175, 123-130.
Cao, H., Jiao, X., Fan, D., Huang, J., Zhao, J., Yan, B., Zhou, W., Zhang, W., Ye, W.,
& Zhang, H. (2019). Catalytic effect of transglutaminase mediated by
myofibrillar protein crosslinking under microwave irradiation. Food Chemistry,
284, 45-52.
Chaijan, M., Benjakul, S., Visessanguan, W., & Faustman, C. (2004). Characteristics
and gel properties of muscles from sardine (Sardinella gibbosa) and mackerel
(Rastrelliger kanagurta) caught in thailand. Food Research International,
37(10), 1021-1030.
Chaijan, M., Panpipat, W., & Benjakul, S. (2010). Physicochemical and gelling
properties of short-bodied mackerel (Rastrelliger brachysoma) protein isolate
prepared using alkaline-aided process. Food and Bioproducts Processing,
88(2-3), 174-180.
Chen, H. (2002). Decoloration and gel‐forming ability of horse mackerel mince by
air‐flotation washing. Food Science, 67(8), 2970-2975.
Chung, K., & Lee, C. (1991). Water binding and ingredient dispersion pattern effects
on surimi gel texture. Food Science, 56(5), 1263-1266.
Couso, I., Alvarez, C., Solas, M. T., Barba, C., & Tejada, M. (1998). Morphology of
starch in surimi gels. Zeitschrift für Lebensmitteluntersuchung und-Forschung
A, 206, 38-43.
38
Gao, X., Xie, Y., Yin, T., Hu, Y., You, J., Xiong, S., & Liu, R. (2021). Effect of high
intensity ultrasound on gelation properties of silver carp surimi with different
salt contents. Ultrasonics Sonochemistry, 70, 105326.
Guo, Z., Li, Z., Wang, J., & Zheng, B. (2019). Gelation properties and thermal gelling
mechanism of golden threadfin bream myosin containing CaCl2 induced by
high-pressure processing. Food Hydrocolloids, 95, 43-52.
Haard, N. F., Simpson, B. K., & Pan, B. S. (1994). Sarcoplasmic proteins and other
nitrogenous compounds. Seafood Proteins, 13-39.
Hamzah, N., Sarbon, N., & Amin, A. (2015). Physical properties of cobia
(Rachycentron canadum) surimi: effect of washing cycle at different salt
concentrations. Food Science and Technology, 52, 4773-4784.
Hassan, M., Balange, A., Senapati, S., & Martin Xavier, K. (2017). Effect of different
washing cycles on the quality of Pangasius hypophthalmus surimi. Fish.
Technology, 54(1), 51-59
HH, C. (1997). Color and gel-forming properties of horse mackerel (Trachurus
japonicus) related to washing condition. Food Science., 62, 985-991.
Hosseini-Shekarabi, S., Hosseini, S., Soltani, M., Kamali, A., & Valinassab, T. (2015).
Effect of heat treatment on the properties of surimi gel from black mouth
croaker (Atrobucca nibe). International Food Research Journal, 22(1), 363.
Jia, D., You, J., Hu, Y., Liu, R., & Xiong, S. (2015). Effect of CaCl2 on denaturation
and aggregation of silver carp myosin during setting. Food Chemistry, 185,
212-218.
Jia, R., Jiang, Q., Kanda, M., Tokiwa, J., Nakazawa, N., Osako, K., & Okazaki, E.
(2019). Effects of heating processes on changes in ice crystal formation, water
holding capacity, and physical properties of surimi gels during frozen storage.
Food Hydrocolloids, 90, 254-265.
Jin, S.-K., Kim, I.-S., Kim, S.-J., Jeong, K.-J., Choi, Y.-J., & Hur, S.-J. (2007). Effect
of muscle type and washing times on physico-chemical characteristics and
qualities of surimi. Food Engineering, 81(3), 618-623.
Julavittayanukul, O., Benjakul, S., & Visessanguan, W. (2006). Effect of phosphate
compounds on gel-forming ability of surimi from bigeye snapper (Priacanthus
tayenus). Food Hydrocolloids, 20(8), 1153-1163.
Kamath, G., Lanier, T., Foegeding, E., & Hamann, D. (1992). Nondisulfide covalent
39
cross-linking of myosin heavy chain in “setting” of alaska pollock and atlantic
croaker surimi. Food Biochemistry, 16(3), 151-172.
Kumazawa, Y., Seguro, K., Takamura, M., & Motoki, M. (1993). Formation of
ε‐(γ‐glutamyl) lysine cross‐link in cured horse mackerel meat induced by
drying. Food Science, 58(5), 1062-1064.
Larrea-Wachtendorff, D., Tabilo-Munizaga, G., Moreno-Osorio, L., Villalobos-
Carvajal, R., & Pérez-Won, M. (2015). Protein changes caused by high
hydrostatic pressure (HHP): a study using differential scanning calorimetry
(DSC) and fourier transform infrared (FTIR) spectroscopy. Food Engineering
Reviews, 7, 222-230.
Lee, C. (1994). Surimi processing from lean fish. Seafoods: Chemistry, Processing
Technology and Quality, 263-287.
Lee, C. M. (1984). Surimi process technology. Food Technology (Chicago), 38(11),
69-80.
Lin, T. M., & Park, J. W. (1998). Solubility of salmon myosin as affected by
conformational changes at various ionic strengths and pH. Food Science, 63(2),
215-218.
Liu, X., Feng, D., Ji, L., Zhang, T., Xue, Y., & Xue, C. (2018). Effects of microwave
heating on the gelation properties of heat-induced alaska pollock (Theragra
chalcogramma) surimi. Food Science and Technology International, 24(6),
497-506.
Lund, M. N., Lametsch, R., Hviid, M. S., Jensen, O. N., & Skibsted, L. H. (2007).
High-oxygen packaging atmosphere influences protein oxidation and
tenderness of porcine longissimus dorsi during chill storage. Meat Science,
77(3), 295-303.
Ma, X.-S., Yi, S.-M., Yu, Y.-M., Li, J.-R., & Chen, J.-R. (2015). Changes in gel
properties and water properties of Nemipterus virgatus surimi gel induced by
high-pressure processing. LWT-Food Science and Technology, 61(2), 377-384.
Mahaliyana, A., Jinadasa, B., Liyanage, N., Jayasinghe, G., & Jayamanne, S. (2015).
Nutritional composition of skipjack tuna (Katsuwonus pelamis) caught from
the oceanic waters around sri lankae. American Journal of Food and Nutrition,
3(4), 106-111.
Moon, J. H., Yoon, W. B., & Park, J. W. (2017). Assessing the textural properties of
40
pacific whiting and alaska pollock surimi gels prepared with carrot under
various heating rates. Food Bioscience, 20, 12-18.
Morrissey, M. T., & Tan, S. M. (2000). World resources for surimi. Food Science and
Technology-New York-Marcel Dekker , 1-22.
Morrissey, M. T., Hartley, P. S., & An, H. (1996). Proteolytic activity in pacific
whiting and effects of surimi processing. Aquatic Food Product Technology,
4(4), 5-18.
Mugo, R., Saitoh, S. I., Nihira, A., & Kuroyama, T. (2010). Habitat characteristics of
skipjack tuna (Katsuwonus pelamis) in the western north pacific: a remote
sensing perspective. Fisheries Oceanography, 19(5), 382-396.
Nguyen, V.-T., Park, J. W., Liqiong, N., Nakazawa, N., Osako, K., & Okazaki, E.
(2020). Textural properties of heat-induced gels prepared using different
grades of alaska pollock surimi under ohmic heating. Food Science and
Technology Research, 26(2), 205-214.
Niwa, E. (1975). Role of hydrophobic bonding in gelation of fish flesh paste. Bulletin
of the Japanese Society of Scientific Fisheries.
Niwa, E., Inuzuka, K., Nowsad, A. A., Liu, D., & Kanoh, S. (1995). Contribution of
SS bonds to the elasticity of actomyosin gel in which coexisting
transglutaminase was inactivated. Fisheries Science, 61(3), 438-440.
Okada, M. (1985). Ingredients on gel texture in proceedings of the international
symposium on engineered seafood including surimi. National Fisheries
Institute, 515-530.
Organization, W. H. (2003). Diet, nutrition, and the prevention of chronic diseases:
report of a joint WHO/FAO expert consultation, 916, 49. World Health
Organization.
Panpipat, W., Chaijan, M., & Benjakul, S. (2010). Gel properties of croaker–mackerel
surimi blend. Food Chemistry, 122(4), 1122-1128.
Panpipat, W., Thongkam, P., Boonmalee, S., Ç avdar, H. K., & Chaijan, M. (2023).
Surimi production from tropical mackerel: a simple washing strategy for better
utilization of dark-fleshed fish resources. Resources, 12(10), 126.
Park, J. W., Lin, T. M., & Yongsawatdigul, J. (1997). New developments in
manufacturing of surimi and surimi seafood. Food Reviews International,
13(4), 577-610.
41
Priyadarshini, B., Xavier, K. M., Nayak, B. B., Dhanapal, K., & Balange, A. K.
(2017). Instrumental quality attributes of single washed surimi gels of tilapia:
Effect of different washing media. LWT-Food Science and Technology, 86,
385-392.
Quan, T. H., & Benjakul, S. (2017). Comparative study on the effect of duck and hen
egg albumens on proteolysis and gel property of sardine surimi. International
Journal of Food Properties, 20(3), 2786-2797.
Quinn, J., Raymond, D., & Harwalkar, V. (1980). Differential scanning calorimetry of
meat proteins as affected by processing treatment. Food Science, 45(5), 1146-
1149.
Sikorski, Z. E., Kołakowska, A., & Burt, J. R. (2020). Postharvest biochemical and
microbial changes. Seafood, 55-75. CRC Press.
Skaara, T., & Regenstein, J. (1990). The structure and properties of myofibrillar
proteins in beef, poultry, and fish. Muscle Foods, 1(4), 269-291.
Somjid, P., Panpipat, W., Cheong, L.-Z., & Chaijan, M. (2021). Reduced washing
cycle for sustainable mackerel (Rastrelliger kanagurta) surimi production:
Evaluation of bio-physico-chemical, rheological, and gel-forming properties.
Foods, 10(11), 2717.
Spinelli, J., & JA, D. (1982). Fish proteins: Their modification and potential uses in
the food industry.
Suzuki, T. (1981). Fish and krill protein processing technology. Applied Science
Publisher.
Thongkam, P., Chaijan, M., Cheong, L.-Z., & Panpipat, W. (2023). Impact of washing
with antioxidant-infused soda–saline solution on gel functionality of mackerel
(Auxis thazard) surimi. Foods, 12(17), 3178.
Thorarinsdottir, K. A., Arason, S., Geirsdottir, M., Bogason, S. G., & Kristbergsson, K.
(2002). Changes in myofibrillar proteins during processing of salted cod
(Gadus morhua) as determined by electrophoresis and differential scanning
calorimetry. Food Chemistry, 77(3), 377-385.
Venugopal, V., & Shahidi, F. (1996). Structure and composition of fish muscle. Food
Reviews International, 12(2), 175-197.
Wang, G., Liu, M., Cao, L., Yongsawatdigul, J., Xiong, S., & Liu, R. (2018). Effects
of different NaCl concentrations on self-assembly of silver carp myosin. Food
42
Bioscience, 24, 1-8.
Wang, J., Li, Z., Zheng, B., Zhang, Y., & Guo, Z. (2019). Effect of ultra-high pressure
on the structure and gelling properties of low salt golden threadfin bream
(Nemipterus virgatus) myosin. LWT-Food Science and Technology, 100, 381-
390.
Wasinnitiwong, N., Tavakoli, S., Benjakul, S., & Hong, H. (2022). Improving the gel
quality of threadfin bream (Nemipterus spp.) surimi using salted duck egg
white powder. Foods, 11(21), 3350.
Yang, H. (1997). Effects of starch on rheological, microstructural, and color properties
of surimi-starch gels. Unpublished Master Thesis. Oregon State University.
State of Oregon.
Ye, T., Dai, H., Lin, L., & Lu, J. (2019). Employment of κ‐carrageenan and high
pressure processing for quality improvement of reduced NaCl surimi gels.
Food Processing and Preservation, 43(9), 14074.
Zhang, C., He, Y., Zheng, Y., Ai, C., Cao, H., Xiao, J., El-S., H., Chen, L., & Teng, H.
(2023). Effect of carboxymethyl cellulose (CMC) on some physico-chemical
and mechanical properties of unrinsed surimi gels. LWT-Food Science and
Technology, 180, 114653.
Zhang, X., Zhang, Y., Ding, H., Zhang, W., & Dai, Z. (2022). Effect of washing times
on the quality characteristics and protein oxidation of silver carp surimi. Foods,
11(16), 2397.
Zhu, Y., Wang, Y., Li, J., Li, F., Teng, C., & Li, X. (2017). Effects of water-extractable
arabinoxylan on the physicochemical properties and structure of wheat gluten
by thermal treatment. Agricultural and Food Chemistry, 65(23), 4728-4735.