殷儷容。2003。探討以魚肉為基質之乳酸菌發酵新加工技術。國立臺灣海洋大學食品科學系碩士論文。基隆市。台灣。曾馨誼、許瑞瑱、施坤河。2021 國內保健營養食品產值暨產業概況分析。中華穀類食品工業技術研究所。新北市。臺灣。
蔡文田。2016。生技工廠綠藻渣活化再生為活性碳材料。國立屏東科技大學農學院生物資源班博士論文。屏東縣。臺灣。
衛生福利部國民健康署。2021。三高防治專區,取自https://www.hpa.gov.tw/Pages/List.aspx?nodeid=359 (Available on 22 January 2023 ).
溫家銘。2022。高靜水壓輔助酵素水解乳酸菌發酵鱸魚副產物之二肽基肽酶-IV 抑制胜肽的純化與分子對接分析。國立臺灣海洋大學食品科學系碩士論文。基隆。臺灣。Ai, M.; Tang, T.; Zhou, L.; Ling, Z.; Guo, S.; Jiang, A. Effects of different proteases on the emulsifying capacity, rheological and structure characteristics of preserved egg white hydrolysates. Food Hydrocolloids. 2019, 87, 933-942.
Albuquerque, E. D.; Torres, F. A. G.; Fernandes, A. A. R.; Fernandes, P. M. Combined effects of high hydrostatic pressure and specific fungal cellulase improve coconut husk hydrolysis. Process Biochemistry. 2016, 51, 1767-1775.
Aletti, R.; Cheng-Lai, A. Linagliptin: the newest dipeptidyl peptidase-4 inhibitor for type 2 diabetes mellitus. Cardiology in Review. 2012, 20, 045-051.
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes care. 2005, 28, S37.
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes care. 2014, 37, S81-S90.
American Diabetes Association. Gestational diabetes mellitus. Diabetes care. 2004, 27, S88.
Anggraeni, S. L.; Jayus, J.; Ratnadewi, A. A. I.; Nurhayati, N. Edamame protein hydrolysis using Lactococcus lactis, Lactobacillus bulgaricus and Lactobacillus paracasei produce short peptides with higher antioxidant potential. Biodiversitas Journal of Biological Diversity. 2022, 23.
Anitha, K., Gopi, G.; Girish, K. P.. Molecular docking study on dipeptidyl peptidase-4 inhibitors. International Journal of Research and Development in Pharmacy & Life Sciences. 2013, 2, 602-10.
AOAC, B. A. M. Association of official analytical chemists. Official Methods of Analysis. 1990, 12.
Ashok, A.; Brijesha, N.; Aparna, H. S. Discovery, synthesis, and in vitro evaluation of a novel bioactive peptide for ACE and DPP-IV inhibitory activity. European Journal of Medicinal Chemistry. 2019, 180, 99-110.
Aulifa, D. L.; Adnyana, I. K.; Sukrasno, S.; Levita, J. Inhibitory activity of xanthoangelol isolated from Ashitaba (Angelica keiskei Koidzumi) towards α-glucosidase and dipeptidyl peptidase-IV: in silico and in vitro studies. Heliyon. 2022, 8.
Báez, J.; Fernández‐Fernández, A. M.; Tironi, V., Bollati‐Fogolín, M.; Añón, M. C.; Medrano‐Fernández, A. Identification and characterization of antioxidant peptides obtained from the bioaccessible fraction of α‐lactalbumin hydrolysate. Journal of Food Science. 2021, 86, 4479-4490.
Bamdad, F.; Bark, S.; Kwon, C. H.; Suh, J. W.; Sunwoo, H. Anti-inflammatory and antioxidant properties of peptides released from β-lactoglobulin by high hydrostatic pressure-assisted enzymatic hydrolysis. Molecules. 2017, 22, 949.
Barnett, A. DPP‐4 inhibitors and their potential role in the management of type 2 diabetes. International Journal of Clinical Practice. 2006, 60, 1454-1470.
Bastaki, S. Diabetes mellitus and its treatment. Dubai Diabetes And Endocrinology Journal. 2005, 13, 111-134.
Bier, J. M.; Verbeek, C. J. R.; Lay, M. C. Using synchrotron FTIR spectroscopy to determine secondary structure changes and distribution in thermoplastic protein. Journal of Applied Polymer Science. 2013, 130, 359-369.
Bleakley, S.; Hayes, M. Algal proteins: extraction, application, and challenges concerning production. Foods. 2017, 6, 33.
Bogdanow, B.; Zauber, H.; Selbach, M. Systematic errors in peptide and protein identification and quantification by modified peptides. Molecular & Cellular Proteomics. 2016, 15, 2791-2801.
Boziaris, I. S.; Parlapani, F. F.; DeWitt, C. A. M. High pressure processing at ultra-low temperatures: Inactivation of foodborne bacterial pathogens and quality changes in frozen fish fillets. Innovative Food Science & Emerging Technologies. 2021, 74, 102811.
Bundhun, P. K.; Janoo, G.; Teeluck, A. R.; Huang, F. Adverse drug effects observed with vildagliptin versus pioglitazone or rosiglitazone in the treatment of patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. BMC Pharmacology and Toxicology. 2017, 18, 1-10.
Busnelli, M.; Manzini, S.; Sirtori, C. R.; Chiesa, G.; Parolini, C. Effects of vegetable proteins on hypercholesterolemia and gut microbiota modulation. Nutrients. 2018, 10, 1249.
Campos, M. L.; de Souza, C. M.; de Oliveira, K. B. S.; Dias, S. C.; Franco, O. L. The role of antimicrobial peptides in plant immunity. Journal of Experimental Botany. 2018, 69, 4997-5011.
Centers for Disease Control and Prevention. 2022. Diabetic Ketoacidosis, Available online: https://www.cdc.gov/diabetes/basics/diabetic-ketoacidosis.html. (Accessed on 28 June 2023)
Chao, D.; He, R.; Jung, S.; Aluko, R. E. Effect of pressure or temperature pretreatment of isolated pea protein on properties of the enzymatic hydrolysates. Food Research International. 2013, 54, 1528-1534.
Chen, G. W.; Tsai, J. S.; Pan, B. S. Purification of angiotensin I-converting enzyme inhibitory peptides and antihypertensive effect of milk produced by protease-facilitated lactic fermentation. International Dairy Journal. 2007, 17, 641-647.
Chen, G. W.; Yang, M. H. Production and purification of novel hypocholesterolemic peptides from lactic fermented spirulina platensis through high hydrostatic pressure-assisted protease hydrolysis. Catalysts. 2021, 11, 873.
Chen, J.; Ji, H.; Luo, J.; Zhang, D.; Liu, S. Two novel angiotensin‐converting enzyme (ACE) and dipeptidyl peptidase IV (DPP‐IV) inhibiting peptides from tilapia (Oreochromis mossambicus) skin and their molecular docking mechanism. Journal of Food Science. 2024.
Chen, M.; Li, B. The effect of molecular weights on the survivability of casein-derived antioxidant peptides after the simulated gastrointestinal digestion. Innovative Food Science & Emerging Technologies. 2012, 16, 341-348.
Chen, M.; Wang, L.; Xie, B.; Ma, A.; Hu, K.; Zheng, C.; Wu, W. Effects of high-pressure treatments (ultra-high hydrostatic pressure and high-pressure homogenization) on bighead carp (Aristichthys nobilis) myofibrillar protein native state and its hydrolysate. Food and Bioprocess Technology. 2022, 15, 2252-2266.
Cheng, M. C.; Pan, T. M. Prevention of hypertension-induced vascular dementia by Lactobacillus paracasei subsp. paracasei NTU 101-fermented products. Pharmaceutical Biology. 2017, 55, 487-496.
Chu, I. K.; Siu, C. K.; Lau, J. K. C.; Tang, W. K.; Mu, X.; Lai, C. K.; Siu, K. M. Proposed nomenclature for peptide ion fragmentation. International Journal of Mass Spectrometry. 2015, 390, 24-27.
Church, F. C.; Swaisgood, H. E.; Porter, D. H.; Catignani, G. L. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of Dairy Science. 1983, 66, 1219-1227.
Clemente, A. Enzymatic protein hydrolysates in human nutrition. Trends in Food Science & Technology. 2000, 11, 254-262.
Cruz-Casas, D. E.; Aguilar, C. N.; Ascacio-Valdés, J. A.; Rodríguez-Herrera, R.; Chávez-González, M. L.; Flores-Gallegos, A. C. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chemistry: Molecular Sciences. 2021, 3, 100047.
Cumby, N.; Zhong, Y.; Naczk, M.; Shahidi, F. Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chemistry. 2008, 109, 144-148.
Daliri, E. B. M.; Lee, B. H.; Park, B. J.; Kim, S. H.; Oh, D. H. Antihypertensive peptides from whey proteins fermented by lactic acid bacteria. Food Science and Biotechnology. 2018, 27, 1781-1789.
Daliri, E. B. M.; Oh, D. H.; Lee, B. H. Bioactive peptides. Foods. 2017, 6, 32.
Davies, M. G.; Thomas, A. J. An investigation of hydrolytic techniques for the amino acid analysis of foodstuffs. Journal of the Science of Food and Agriculture. 1973, 24, 1525-1540.
De Groot, A. P.; Slump, P., Feron, V. J.; Van Beek, L. Effects of alkali-treated proteins: feeding studies with free and protein-bound lysinoalanine in rats and other animals. The Journal of Nutrition. 1976, 106, 1527-1538.
De la Cruz-Torres, L. F.; Rodríguez-Celestino, V.; Centeno-Leija, S.; Serrano-Posada, H.; Ceballos-Magaña, S. G.; Aguilar-Padilla, J.; Osuna-Castro, J. A. Development of a rapid, high-sensitivity, low-cost fluorescence method for protein surface hydrophobicity determination using a Nanodrop fluorospectrometer. Food Chemistry. 2022, 396, 133681.
De Maria, S.; Ferrari, G.; Maresca, P. Effect of high hydrostatic pressure on the enzymatic hydrolysis of bovine serum albumin. Journal of the Science of Food and Agriculture. 2017, 97, 3151-3158.
De Maria, S.; Ferrari, G.; Maresca, P. Effects of high hydrostatic pressure on the conformational structure and the functional properties of bovine serum albumin. Innovative Food Science & Emerging Technologies. 2016, 33, 67-75.
Deacon, C. F.; Lebovitz, H. E. Comparative review of dipeptidyl peptidase‐4 inhibitors and sulphonylureas. Diabetes, Obesity and Metabolism. 2016, 18, 333-347.
Díaz, O.; Candia, D.; Cobos, Á. Effects of ultraviolet radiation on properties of films from whey protein concentrate treated before or after film formation. Food Hydrocolloids. 2016, 55, 189-199.
Doi, E.; Shibata, D.; Matoba, T. Modified colorimetric ninhydrin methods for peptidase assay. Analytical Biochemistry. 1981, 118, 173-184.
Dong, Y.; Sui, L.; Yang, F.; Ren, X.; Xing, Y.; Xiu, Z. Reducing the intestinal side effects of acarbose by baicalein through the regulation of gut microbiota: An in vitro study. Food Chemistry. 2022, 394, 133561.
Eckhardt, M.; Langkopf, E.; Mark, M.; Tadayyon, M.; Thomas, L.; Nar, H.; Himmelsbach, F. 8-(3-(R)-aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3, 7-dihydropurine-2, 6-dione (BI 1356), a highly potent, selective, long-acting, and orally bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes. Journal of Medicinal Chemistry. 2007, 50, 6450-6453.
Emkani, M.; Oliete, B.; Saurel, R. Effect of lactic acid fermentation on legume protein properties, a review. Fermentation. 2022, 8, 244.
Feng, L.; Xie, Y.; Peng, C.; Liu, Y.; Wang, H. A novel antidiabetic food produced via solid-state fermentation of Tartary buckwheat by L. plantarum TK9 and L. paracasei TK1501. Food Technology and Biotechnology. 2018, 56, 373.
Feng, L.; Xie, Y.; Peng, C.; Liu, Y.; Wang, H. A novel antidiabetic food produced via solid-state fermentation of Tartary buckwheat by L. plantarum TK9 and L. paracasei TK1501. Food Technology and Biotechnology. 2018, 56, 373.
Filippatos, T. D.; Panagiotopoulou, T. V.; Elisaf, M. S. Adverse effects of GLP-1 receptor agonists. The Review of Diabetic Studies: RDS. 2014, 11, 202.
Fountoulakis, M.; Lahm, H. W. Hydrolysis and amino acid composition analysis of proteins. Journal of Chromatography A. 1998, 826, 109-134.
Franck, M.; Perreault, V.; Suwal, S.; Marciniak, A.; Bazinet, L.; Doyen, A. High hydrostatic pressure-assisted enzymatic hydrolysis improved protein digestion of flaxseed protein isolate and generation of peptides with antioxidant activity. Food Research International. 2019, 115, 467-473.
Frister, H.; Meisel, H.; Schlimme, E. OPA method modified by use of N, N-dimethyl-2-mercaptoethylammonium chloride as thiol component. Fresenius' Zeitschrift Fuer Analytische Chemie. 1988, 330, 631-633.
Gallagher, W. FTIR analysis of protein structure. Course Manual Chem. 2009, 455.
García Arteaga, V.; Demand, V.; Kern, K.; Strube, A.; Szardenings, M.; Muranyi, I.; Schweiggert-Weisz, U. Enzymatic hydrolysis and fermentation of pea protein isolate and its effects on antigenic proteins, functional properties, and sensory profile. Foods. 2022, 11, 118.
Garcia-Mora, P.; Peñas, E.; Frías, J.; Gomez, R.; Martinez-Villaluenga, C. High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins. Food Chemistry. 2015, 171, 224-232.
Garcia-Mora, P.; Penas, E.; Frias, J.; Zielinski, H.; Wiczkowski, W.; Zielinska, D.; Martinez-Villaluenga, C. High-pressure-assisted enzymatic release of peptides and phenolics increases angiotensin converting enzyme I inhibitory and antioxidant activities of pinto bean hydrolysates. Journal of Agricultural and Food Chemistry. 2016, 64, 1730-1740.
Gómez, M. J.; Gaya, P.; Nunez, M.; Medina, M. Debittering activity of peptidases from selected lactobacilli strains in model cheeses. 1996.
Grossi, A.; Olsen, K.; Bolumar, T.; Rinnan, Å.; Øgendal, L. H.; Orlien, V. The effect of high pressure on the functional properties of pork myofibrillar proteins. Food Chemistry. 2016, 196, 1005-1015.
Grossmann, L.; Hinrichs, J.; Goff, H. D.; Weiss, J. Heat-induced gel formation of a protein-rich extract from the microalga Chlorella sorokiniana. Innovative Food Science & Emerging Technologies. 2019, 56, 102176.
Gu, H.; Gao, J.; Shen, Q.; Gao, D.; Wang, Q.; Tangyu, M.; Mao, X. Dipeptidyl peptidase-IV inhibitory activity of millet protein peptides and the related mechanisms revealed by molecular docking. LWT-Food Science and Technology. 2021, 138, 110587.
Guan, H.; Diao, X.; Jiang, F.; Han, J.; Kong, B. The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates. Food Chemistry. 2018, 245, 89-96.
Guasch, L.; Ojeda, M. J.; González-Abuín, N.; Sala, E.; Cereto-Massagué, A.; Mulero, M.; Pujadas, G. Identification of novel human dipeptidyl peptidase-IV inhibitors of natural origin (part I): virtual screening and activity assays. 2012.
Habibi-najafi, M. B.; Lee, B. H. Debittering of tryptic digests from β-casein and enzyme modified cheese by x-prolyl dipeptidylpeptidase from Lactobacillus casei ssp. casei. LLG. Iranian Journal of Science. 2007, 31, 263-270.
Habinshuti, I.; Nsengumuremyi, D.; Muhoza, B.; Ebenezer, F.; Aregbe, A. Y.; Ndisanze, M. A. Recent and novel processing technologies coupled with enzymatic hydrolysis to enhance the production of antioxidant peptides from food proteins: a review. Food Chemistry. 2023, 136313.
Hamuro, Y.; Coales, S. J.; Molnar, K. S.; Tuske, S. J.; Morrow, J. A. Specificity of immobilized porcine pepsin in H/D exchange compatible conditions. Rapid Communications in Mass Spectrometry. 2008, 22, 1041-1046.
Harnedy, P. A.; Parthsarathy, V.; McLaughlin, C. M.; O'Keeffe, M. B.; Allsopp, P. J.; McSorley, E. M.; FitzGerald, R. J. Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: a source of antidiabetic peptides. Food Research International. 2018, 106, 598-606.
Hayes, M.; Ross, R. P.; Fitzgerald, G. F.; Hill, C.; Stanton, C. Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. Applied and Environmental Microbiology. 2006, 72, 2260-2264.
He, L., Han, L.; Yu, Q.; Wang, X., Li, Y.; Han, G. High pressure-assisted enzymatic hydrolysis promotes the release of a bi-functional peptide from cowhide gelatin with dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant activities. Food Chemistry. 2024, 435, 137546.
Holt, R. I. G.; DeVries; J. H.; Hess-Fischl, A.; Hirsch, I. B.; Kirkman, M. S.; Klupa, T.; Ludwig, B.; Nørgaard, K.; Pettus, J.; Renard, E.; Skyler, J. S.; Snoek, F. J.; Weinstock, R. S.; Peters, A. L. The management of type 1 diabetes in adults. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2021, 64, 2609-2652.
Hu, F.; Ci, A. T.; Wang, H.; Zhang, Y. Y.; Zhang, J. G.; Thakur, K.; Wei, Z. J. Identification and hydrolysis kinetic of a novel antioxidant peptide from pecan meal using Alcalase. Food Chemistry. 2018, 261, 301-310.
Huang, H. W.; Hsu, C. P.; Wang, C. Y. Healthy expectations of high hydrostatic pressure treatment in food processing industry. Journal of Food and Drug Analysis. 2020, 28, 1-13.
Huang, H. W.; Lung, H. M.; Yang, B. B.; Wang, C. Y. Responses of microorganisms to high hydrostatic pressure processing. Food Control. 2014, 40, 250-259.
Huang, H. W.; Wu, S. J.; Lu, J. K., Shyu, Y. T.; Wang, C. Y. Current status and future trends of high-pressure processing in food industry. Food Control. 2017, 72, 1-8.
Idowu, A. T.; Benjakul, S. Bitterness of fish protein hydrolysate and its debittering prospects. Journal of Food Biochemistry. 2019, 43, e12978.
International Diabetes Federation. 2021. About diabetes, Available online: https://idf.org/about-diabetes/introduction/. (Accessed on 27 June 2023)
Ishibashi, N.; Kouge, K.; Shinoda, I.; Kanehisa, H.; Okai, H. A mechanism for bitter taste sensibility in peptides. Agricultural and Biological Chemistry. 1988, 52, 819-827.
Izquierdo, F. J.; Alli, I.; Gómez, R.; Ramaswamy, H. S.; Yaylayan, V. Effects of high pressure and microwave on pronase and α-chymotrypsin hydrolysis of β-lactoglobulin. Food Chemistry. 2005, 92, 713-719.
Jahanbani, R.; Ghaffari, M.; Vahdati, K.; Salami, M.; Khalesi, M.; Sheibani, N.; Moosavi-Movahedi, A. A. Kinetics study of protein hydrolysis and inhibition of angiotensin converting enzyme by peptides hydrolysate extracted from walnut. International Journal of Peptide Research and Therapeutics. 2018, 24, 77-85.
Ji, B.; Liu, S.; He, X.; Man, V. H.; Xie, X. Q.; Wang, J. Prediction of the binding affinities and selectivity for CB1 and CB2 ligands using homology modeling, molecular docking, molecular dynamics simulations, and MM-PBSA binding free energy calculations. ACS Chemical Neuroscience. 2020, 11, 1139-1158.
Jin, J.; Ma, H.; Qu, W.; Wang, K.; Zhou, C.; He, R.; Owusu, J. Effects of multi-frequency power ultrasound on the enzymolysis of corn gluten meal: Kinetics and thermodynamics study. Ultrasonics Sonochemistry. 2015, 27, 46-53.
Jin, R.; Teng, X.; Shang, J.; Wang, D.; Liu, N. Identification of novel DPP–IV inhibitory peptides from Atlantic salmon (Salmo salar) skin. Food Research International. 2020, 133, 109161.
Juillerat-Jeanneret, L. Dipeptidyl peptidase IV and its inhibitors: therapeutics for type 2 diabetes and what else?. Journal of Medicinal Chemistry. 2014, 57, 2197-2212.
Kalambura, S.; Krička, T.; Kiš, D.; Guberac, S.; Kozak, D.; Stoić, A. High-risk bio-waste processing by alkaline hydrolysis and isolation of amino acids. Tehnički Vjesnik. 2016, 23, 1771-1776.
Kalra, S.; Bahendeka, S.; Sahay, R.; Ghosh, S.; Md, F.; Orabi, A.; Das, A. K. Consensus recommendations on sulfonylurea and sulfonylurea combinations in the management of Type 2 diabetes mellitus–International Task Force. Indian Journal of Endocrinology and Metabolism. 2018, 22, 132-157.
Kask, S.; Adamberg, K.; Orłowski, A.; Vogensen, F. K.; Møller, P. L.; Ardö, Y.; Paalme, T. Physiological properties of Lactobacillus paracasei, L. danicus and L. curvatus strains isolated from Estonian semi-hard cheese. Food Research International. 2003, 36, 1037-1046.
Kato, A.; Nakai, S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochimica et Biophysica Acta (BBA)-Protein Structure. 1980, 624, 13-20.
Kessler, E. Upper limits of temperature for growth in Chlorella (Chlorophyceae). Plant Systematics and Evolution. 1985, 151, 67-71.
Kharroubi, A. T.; Darwish, H. M. Diabetes mellitus: The epidemic of the century. World Journal of Diabetes. 2015, 6, 850.
Kim, C. T.; Gujral, N.; Ganguly, A.; Suh, J. W.; Sunwoo, H. H. Chondroitin sulphate extracted from antler cartilage using high hydrostatic pressure and enzymatic hydrolysis. Biotechnology Reports. 2014, 4, 14-20.
Kojima, K.; Hama, T.; Kato, T.; Nagatsu, T. Rapid chromatogrpahic purification of dipeptidyl peptidase IV in human submaxillary gland. Journal of Chromatography A. 1980, 189, 233-240.
Kumar, K.; Dasgupta, C. N.; Das, D. Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresource Technology. 2014, 167, 358-366.
Lacroix, I. M.; Li-Chan, E. C. Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation–Current knowledge and future research considerations. Trends in Food Science & Technology. 2016, 54, 1-16.
Lam, S.; Saad, M. Saxagliptin: a new dipeptidyl peptidase-4 inhibitor for type 2 diabetes. Cardiology in Review. 2010, 18, 213-217.
Lammi, C.; Zanoni, C.; Arnoldi, A.; Vistoli, G. Peptides derived from soy and lupin protein as dipeptidyl-peptidase IV inhibitors: in vitro biochemical screening and in silico molecular modeling study. Journal of Agricultural and Food Chemistry. 2016, 64, 9601-9606.
Lan, V. T. T.; Ito, K.; Ohno, M.; Motoyama, T.; Ito, S.; Kawarasaki, Y. Analyzing a dipeptide library to identify human dipeptidyl peptidase IV inhibitor. Food Chemistry. 2015, 175, 66-73.
Landim, A. P. M.; Tiburski, J. H.; Mellinger, C. G.; Juliano, P.; Rosenthal, A. Potential application of high hydrostatic pressure on the production of hydrolyzed proteins with antioxidant and antihypertensive properties and low allergenicity: A review. Foods. 2023, 12, 630.
Lebovitz, H. E. Thiazolidinediones: the forgotten diabetes medications. Current Diabetes Reports. 2019, 19, 1-13.
Leonhardt, L.; Käferböck, A.; Smetana, S.; de Vos, R.; Toepfl, S.; Parniakov, O. Bio-refinery of Chlorella sorokiniana with pulsed electric field pre-treatment. Bioresource Technology. 2020, 301, 122743.
Li, Y.; Aiello, G.; Fassi, E. M. A.; Boschin, G.; Bartolomei, M.; Bollati, C.; Lammi, C. Investigation of Chlorella pyrenoidosa protein as a source of novel angiotensin I-converting enzyme (ACE) and dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides. Nutrients. 2021, 13, 1624.
Lin, Y. H.; Chen, G. W.; Yeh, C. H.; Song, H.; Tsai, J. S. Purification and identification of angiotensin I-converting enzyme inhibitory peptides and the antihypertensive effect of Chlorella sorokiniana protein hydrolysates. Nutrients. 2018, 10, 1397.
Lin, Y. H.; Tsai, J. S.; Chen, G. W. Purification and identification of hypocholesterolemic peptides from freshwater clam hydrolysate with in vitro gastrointestinal digestion. Journal of Food Biochemistry. 2017, 41, e12385.
Linares, E.; Larré, C.; Popineau, Y. Freeze-or spray-dried gluten hydrolysates. 1. Biochemical and emulsifying properties as a function of drying process. Journal of Food Engineering. 2001, 48, 127-135.
Liu, B.; Li, N.; Chen, F.; Zhang, J.; Sun, X.; Xu, L.; Fang, F. Review on the release mechanism and debittering technology of bitter peptides from protein hydrolysates. Comprehensive Reviews in Food Science and Food Safety. 2022, 21, 5153-5170.
Liu, M.; Bayjanov, J. R.; Renckens, B.; Nauta, A.; Siezen, R. J. The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics. 2010, 11, 1-15.
Liu, N.; Lin, P.; Zhang, K.; Yao, X.; Li, D.; Yang, L.; Zhao, M. Combined effects of limited enzymatic hydrolysis and high hydrostatic pressure on the structural and emulsifying properties of rice proteins. Innovative Food Science & Emerging Technologies. 2022, 77, 102975.
Liu, R.; Cheng, J.; Wu, H. Discovery of food-derived dipeptidyl peptidase IV inhibitory peptides: A review. International Journal of Molecular Sciences. 2019, 20, 463.
Liu, R.; Li, S.; Yang, B.; Chen, L.; Ge, Q.; Xiong, G.; Zhang, W. Investigation of the antioxidant capacity of cell-free extracts from Lactobacillus plantarum NJAU-01 obtained by different cell disruption methods. Lebensmittel-Wissenschaft&Technologie. 2021, 152, 112393.
Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry. 1951, 193, 265-275.
Ma, R.; Liu, H.; Li, Y.; Atem, B. J. A.; Ling, X.; He, N.; Lu, Y. Effects of high hydrostatic pressure treatment: Characterization of eel (Anguilla japonica) surimi, structure, and angiotensin-converting enzyme inhibitory activity of myofibrillar protein. Food and Bioprocess Technology. 2021, 14, 1631-1639.
McCrimmon, R. J.; Frier, B. M. Hypoglycaemia, the most feared complication of insulin therapy. Diabete & Metabolisme. 1994, 20, 503-512.
Meinlschmidt, P.; Schweiggert-Weisz, U.; Eisner, P. Soy protein hydrolysates fermentation: Effect of debittering and degradation of major soy allergens. LWT-Food Science and Technology. 2016, 71, 202-212.
Milewski, S. Protein structure and physicochemical properties. Chemical and Functional Properties of Food Proteins. Sikorski, ZE (Ed) Technomic Publishing Company, Inc. Pennsylvania. 2001, 35-55.
Momen, S.; Alavi, F.; Aider, M. Alkali-mediated treatments for extraction and functional modification of proteins: Critical and application review. Trends in Food Science & Technology. 2021, 110, 778-797.
Mora, L.; Toldrá, F. Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides. Current Opinion in Food Science. 2022, 100973.
Mune, M. A. M.; Minka, S. R.; Henle, T. Investigation on antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activity of Bambara bean protein hydrolysates. Food Chemistry. 2018, 250, 162-169.
Mustățea, G.; Ungureanu, E. L.; Iorga, E. Protein acidic hydrolysis for amino acids analysis in food-progress over time: a short review. 2019.
Nabeno, M.; Akahoshi, F.; Kishida, H.; Miyaguchi, I.; Tanaka, Y.; Ishii, S.; Kadowaki, T. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochemical and Biophysical Research Communications. 2013, 434, 191-196.
Naderi, N.; House, J. D.; Pouliot, Y.; Doyen, A. Effects of high hydrostatic pressure processing on hen egg compounds and egg products. Comprehensive Reviews in Food Science and Food Safety. 2017, 16, 707-720.
Nauck, M. A.; Meier, J. J. Incretin hormones: Their role in health and disease.Diabetes, Obesity and Metabolism. 2018,20, 5-21.
Nazir, M. A.; Mu, T. H.; Zhang, M. Preparation and identification of angiotensin I‐converting enzyme inhibitory peptides from sweet potato protein by enzymatic hydrolysis under high hydrostatic pressure. International Journal of Food Science & Technology. 2020, 55, 482-489.
Noman, A.; Xu, Y.; Al-Bukhaiti, W. Q.; Abed, S. M.; Ali, A. H.; Ramadhan, A. H.; Xia, W. Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme. Process Biochemistry. 2018, 67, 19-28.
Nongonierma, A. B.; FitzGerald, R. J. An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chemistry. 2014, 165, 489-498.
Nongonierma, A. B.; FitzGerald, R. J. Inhibition of dipeptidyl peptidase IV (DPP-IV) by tryptophan containing dipeptides. Food & Function. 2013, 4, 1843-1849.
Nongonierma, A. B.; FitzGerald, R. J. Susceptibility of milk protein-derived peptides to dipeptidyl peptidase IV (DPP-IV) hydrolysis. Food Chemistry. 2014, 145, 845-852.
Obaroakpo, J. U.; Liu, L.; Zhang, S.; Lu, J.; Pang, X.; Lv, J. α-Glucosidase and ACE dual inhibitory protein hydrolysates and peptide fractions of sprouted quinoa yoghurt beverages inoculated with Lactobacillus casei. Food Chemistry. 2019, 299, 124985.
Olsen, J. V.; Ong, S. E.; Mann, M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Molecular & Cellular Proteomics. 2004, 3, 608-614.
Olsen, K.; Kristiansen, K. R.; Skibsted, L. H. Effect of high hydrostatic pressure on the steady-state kinetics of tryptic hydrolysis of β-lactoglobulin. Food Chemistry. 2003, 80, 255-260.
Olvera-Rosales, L. B.; Cruz-Guerrero, A. E.; Jaimez-Ordaz, J.; Pérez-Escalante, E.; Quintero-Lira, A.; Ramírez-Moreno, E.; González-Olivares, L. G. Differences in the Proteolytic System of Lactic Acid Bacteria Affect the Release of DPP-IV Inhibitory Peptides from Whey Proteins. Dairy. 2023, 4, 515-526.
Ono, S.; Hosokawa, M.; Miyashita, K.; Takahashi, K. Isolation of peptides with angiotensin I‐converting enzyme inhibitory effect derived from hydrolysate of upstream chum salmon muscle. Journal of Food Science. 2003, 68, 1611-1614.
Ortiz-Velez, L.; Goodwin, A.; Schaefer, L.; Britton, R. A. Challenges and pitfalls in the engineering of human Interleukin 22 (hIL-22) secreting Lactobacillus reuteri. Frontiers in Bioengineering and Biotechnology. 2020, 8, 543.
Padron, S., Rogers, E.; Beckler, M. D.; Kesselman, M. Republished: DPP-4 inhibitor (sitagliptin)-induced seronegative rheumatoid arthritis. Drug and Therapeutics Bulletin. 2020, 58, 12-15.
Pan, F.; Zhou, N.; Li, J.; Du, X.; Zhao, L.; Wang, C.; Ai, X. Identification of C-phycocyanin-derived peptides as angiotensin converting enzyme and dipeptidyl peptidase IV inhibitors via molecular docking and molecular dynamic simulation. ES Food & Agroforestry. 2020, 2, 58-69.
Pandraju, S.; Rao, P. S. High-pressure processing of sugarcane juice (Saccharum officinarum) for shelf-life extension during ambient storage. Sugar Tech : an International Journal of Sugar Crops & Related Industries. 2020, 22, 340-353.
Panyam, D.; Kilara, A. Enhancing the functionality of food proteins by enzymatic modification. Trends in Food Science & Technology. 1996, 7, 120-125.
Paschou, S. A.; Papadopoulou-Marketou, N.; Chrousos, G. P.; Kanaka-Gantenbein, C. On type 1 diabetes mellitus pathogenesis. Endocrine Connections. 2018, 7, R38.
Protein Data Bank. 2003. Crystal structure of Human Dipeptidyl peptidase IV, Available online: https://www.rcsb.org/structure/1J2E. (Accessed on 14 August 2023)
Qi, W.; He, Z. Enzymatic hydrolysis of protein: Mechanism and kinetic model. Frontiers of Chemistry in China. 2006, 1, 308-314.
Qu, W.; Ma, H.; Jia, J.; He, R.; Luo, L.; Pan, Z. Enzymolysis kinetics and activities of ACE inhibitory peptides from wheat germ protein prepared with SFP ultrasound-assisted processing. Ultrasonics Sonochemistry. 2012, 19, 1021-1026.
Quan, S.; Tsuda, H.; Miyamoto, T. Angiotensin i‐converting enzyme inhibitory peptides in skim milk fermented with lactobacillus helveticus 130b4 from camel milk in inner mongolia, china. Journal of the Science of Food and Agriculture. 2008, 88, 2688-2692.
Rasmussen, H. B.; Branner, S.; Wiberg, F. C.; Wagtmann, N. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nature Structural Biology. 2003, 10, 19-25.
Raveschot, C.; Cudennec, B.; Coutte, F.; Flahaut, C.; Fremont, M.; Drider, D.; Dhulster, P. Production of bioactive peptides by Lactobacillus species: from gene to application. Frontiers in Microbiology. 2018, 9, 2354.
Ren, X.; Pan, D.; Wu, Z.; Zeng, X.; Sun, Y.; Cao, J.; Guo, Y. Limited hydrolysis of β‐casein by cell wall proteinase and its effect on hydrolysates's conformational and structural properties. International Journal of Food Science & Technology. 2015, 50, 55-61.
Rena, G.; Hardie, D. G.; Pearson, E. R. The mechanisms of action of metformin. Diabetologia. 2017, 60, 1577-1585.
Rendi, I. P.; Maranata, J.; Chaerunisa, H.; Nugraheni, N.; Alfathonah, S. S. Molecular Docking of Compounds in Moringa oleifera Lam with Dipeptidyl Peptidase-4 Receptors as Antidiabetic Candidates. Jurnal Farmasi dan Ilmu Kefarmasian Indonesia. 2021, 8, 242-249.
Rivero-Pino, F.; Espejo-Carpio, F. J.; Guadix, E. M. Identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from vegetable protein sources. Food Chemistry. 2021, 354, 129473.
Rivero-Pino, F.; Espejo-Carpio, F. J.; Guadix, E. M. Production and identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from discarded Sardine pilchardus protein. Food Chemistry. 2020, 328, 127096.
Ruiz, J. Á. G.; Ramos, M.; Recio, I. Angiotensin converting enzyme-inhibitory activity of peptides isolated from Manchego cheese. Stability under simulated gastrointestinal digestion. International Dairy Journal. 2004, 14, 1075-1080.
Sami, W.; Ansari, T.; Butt, N. S.; Ab Hamid, M. R. Effect of diet on type 2 diabetes mellitus: A review. International Journal of Health Sciences. 2017, 11, 65.
Sbroggio, M. F.; Montilha, M. S.; Figueiredo, V. R. G. D.; Georgetti, S. R.; Kurozawa, L. E. Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Science and Technology. 2016, 36, 375-381.
Segura-Campos, M.; Chel-Guerrero, L.; Betancur-Ancona, D.; Hernandez-Escalante, V. M. Bioavailability of bioactive peptides. Food Reviews International. 2011, 27, 213-226.
Seidler, J.; Zinn, N.; Boehm, M. E.; Lehmann, W. D. De novo sequencing of peptides by MS/MS. Proteomics. 2010, 10, 634-649.
Shaokui, Z. E. N. G.; Ping, Y. A. N. G.; Xiuhong, C. H. E. N. Study on the removal of fish odour and bitter from protein hydrolystaes of tilapia by-products by microorganism fermentation. South China Fisheries Science. 2009, 5, 58-63.
Sharma, S.; Pradhan, R.; Manickavasagan, A.; Thimmanagari, M.; Dutta, A. Corn distillers solubles as a novel bioresource of bioactive peptides with ACE and DPP IV inhibition activity: characterization, in silico evaluation, and molecular docking. Food & Function. 2022, 13, 8179-8203.
Sheih, I. C.; Fang, T. J.; Wu, T. K. Isolation and characterisation of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the algae protein waste. Food Chemistry. 2009, 115, 279-284.
Siavash, M.; Tabbakhian, M.; Sabzghabaee, A. M.; Razavi, N. Severity of gastrointestinal side effects of metformin tablet compared to metformin capsule in type 2 diabetes mellitus patients. Journal of Research in Pharmacy Practice. 2017, 6, 73.
Singh, B. P.; Vij, S. Growth and bioactive peptides production potential of Lactobacillus plantarum strain C2 in soy milk: A LC-MS/MS based revelation for peptides biofunctionality. Lwt. 2017, 86, 293-301.
Sunwoo, H. H.; Gujral, N.; Huebl, A. C.; Kim, C. T. Application of high hydrostatic pressure and enzymatic hydrolysis for the extraction of ginsenosides from fresh ginseng root (Panax ginseng CA Myer). Food and Bioprocess Technology. 2014, 7, 1246-1254.
Suwal, S.; Perreault, V.; Marciniak, A.; Tamigneaux, É.; Deslandes, É.; Bazinet, L.; Doyen, A. Effects of high hydrostatic pressure and polysaccharidases on the extraction of antioxidant compounds from red macroalgae, Palmaria palmata and Solieria chordalis. Journal of Food Engineering. 2019, 252, 53-59.
Taga, Y.; Hayashida, O.; Kusubata, M.; Ogawa-Goto, K.; Hattori, S. Production of a novel wheat gluten hydrolysate containing dipeptidyl peptidase-IV inhibitory tripeptides using ginger protease. Bioscience, Biotechnology, and Biochemistry. 2017, 81, 1823-1828.
Tan, M.; Xu, J.; Gao, H.; Yu, Z.; Liang, J.; Mu, D.; Zheng, Z. Effects of combined high hydrostatic pressure and pH-shifting pretreatment on the structure and emulsifying properties of soy protein isolates. Journal of Food Engineering. 2021, 306, 110622.
Tan, P. S.; Van Kessel, T. A.; Van de Veerdonk, F. L.; Zuurendonk, P. F.; Bruins, A. P.; Konings, W. Degradation and debittering of a tryptic digest from beta-casein by aminopeptidase N from Lactococcus lactis subsp. cremoris Wg2. Applied and Environmental Microbiology. 1993, 59, 1430-1436.
Taskila, S.; Ojamo, H. The current status and future expectations in industrial production of lactic acid by lactic acid bacteria. IntechOpen. 2013.
Tchorbanov, B.; Marinova, M.; Grozeva, L. Debittering of protein hydrolysates by Lactobacillus LBL-4 aminopeptidase. Enzyme Research. 2011, 2011.
Tsado, A. N.; Okoli, N. R.; Jiya, A. G.; Gana, D.; Saidu, B.; Zubairu, R.; Salihu, I. Z. Proximate, minerals, and amino acid compositions of banana and plantain peels. BIOMED Natural and Applied Science. 2021, 1, 032-042.
Uenishi, H.; Kabuki, T.; Seto, Y.; Serizawa, A.; Nakajima, H. Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats. International Dairy Journal. 2012, 22, 24-30.
Ulug, S. K.; Jahandideh, F.; Wu, J. Novel technologies for the production of bioactive peptides. Trends in Food Science & Technology. 2021, 108, 27-39.
Valencia, P.; Espinoza, K.; Ceballos, A.; Pinto, M.; Almonacid, S. Novel modeling methodology for the characterization of enzymatic hydrolysis of proteins. Process Biochemistry. 2015, 50, 589-597.
van Hylckama Vlieg, J. E. T.; Hugenholtz, J. Mining natural diversity of lactic acid bacteria for flavour and health benefits. International Dairy Journal. 2007, 17, 1290-1297.
Velarde-Salcedo, A. J.; Barrera-Pacheco, A.; Lara-González, S.; Montero-Morán, G. M.; Díaz-Gois, A.; De Mejia, E. G.; De La Rosa, A. P. B. In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food Chemistry. 2013, 136, 758-764.
Wan, X. Z.; Ai, C.; Chen, Y. H.; Gao, X. X.; Zhong, R. T.; Liu, B.; Zhao, C. Physicochemical characterization of a polysaccharide from green microalga Chlorella pyrenoidosa and its hypolipidemic activity via gut microbiota regulation in rats. Journal of Agricultural and Food Chemistry. 2019, 68, 1186-1197.
Wang, H.; Li, L. Comprehensive evaluation of probiotic property, hypoglycemic ability and antioxidant activity of lactic acid bacteria. Foods. 2022, 11, 1363.
Wang, P.; Zou, M.; Gu, Z.; Yang, R. Heat-induced polymerization behavior variation of frozen-stored gluten. Food Chemistry. 2018, 255, 242-251.
Wang, S.; Wang, T.; Sun, Y.; Cui, Y.; Yu, G.; Jiang, L. Effects of high hydrostatic pressure pretreatment on the functional and structural properties of rice bran protein hydrolysates. Foods. 2021, 11, 29.
Wang, T. Y.; Hsieh, C. H.; Hung, C. C.; Jao, C. L.; Chen, M. C.; Hsu, K. C. Fish skin gelatin hydrolysates as dipeptidyl peptidase IV inhibitors and glucagon-like peptide-1 stimulators improve glycaemic control in diabetic rats: A comparison between warm-and cold-water fish. Journal of Functional Foods. 2015, 19, 330-340.
Wang, Y.; Zhao, P.; Zhou, Y.; Hu, X.; Xiong, H. From bitter to delicious: properties and uses of microbial aminopeptidases. World Journal of Microbiology and Biotechnology. 2023, 39, 72.
Wang, Z.; Li, Y.; Jiang, L.; Qi, B.; Zhou, L. Relationship between secondary structure and surface hydrophobicity of soybean protein isolate subjected to heat treatment. Journal of Chemistry, 2014.
Weber, A. E. Dipeptidyl peptidase IV inhibitors for the treatment of diabetes. Journal of Medicinal Chemistry. 2004, 47, 4135-4141.
White Jr, J. R. Dipeptidyl peptidase-IV inhibitors: pharmacological profile and clinical use. Clinical Diabetes. 2008, 26, 53-57.
Wisuthiphaet, N.; Kongruang, S.; Chamcheun, C. Production of fish protein hydrolysates by acid and enzymatic hydrolysis. Journal of Medical and Bioengineering. 2015, 4.
Worsztynowicz, P.; Białas, W.; Grajek, W. Integrated approach for obtaining bioactive peptides from whey proteins hydrolysed using a new proteolytic lactic acid bacteria. Food Chemistry. 2020, 312, 126035.
Wu, J.; Ding, X. Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides. Food Research International. 2002, 35, 367-375.
Xu, F.; Yao, Y.; Xu, X.; Wang, M.; Pan, M.; Ji, S.; Wang, L. Identification and quantification of DPP-IV-inhibitory peptides from hydrolyzed-rapeseed-protein-derived napin with analysis of the interactions between key residues and protein domains. Journal of Agricultural and Food Chemistry. 2019, 67, 3679-3690.
Xu, F.; Yao, Y.; Xu, X.; Wang, M.; Pan, M.; Ji, S.; Wang, L. Identification and quantification of DPP-IV-inhibitory peptides from hydrolyzed-rapeseed-protein-derived napin with analysis of the interactions between key residues and protein domains. Journal of Agricultural and Food Chemistry. 2019, 67, 3679-3690.
Xu, Q.; Hong, H.; Wu, J.; Yan, X. Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends in Food Science & Technology. 2019, 86, 399-411.
Xu, Y.; Galanopoulos, M.; Sismour, E.; Ren, S.; Mersha, Z.; Lynch, P.; Almutaimi, A. Effect of enzymatic hydrolysis using endo-and exo-proteases on secondary structure, functional, and antioxidant properties of chickpea protein hydrolysates. Journal of Food Measurement and Characterization. 2020, 14, 343-352.
Ye, S.; Li, H.; Yang, W.; Luo, Y. Accurate determination of interfacial protein secondary structure by combining interfacial-sensitive amide I and amide III spectral signals. Journal of the American Chemical Society. 2014 136, 1206-1209.
Yu, Z. H. U.; YUAN, Y. H.; MEI, L. P.; DING, S. K.; GAO, Y. C.; DU, X. F.; Li, G. U. O. Comparison of structural and physicochemical properties of potato protein and potato flour modified with tyrosinase. Journal of Integrative Agriculture. 2022, 21, 1513-1524.
Zan, R.; Wu, Q.; Chen, Y.; Wu, G.; Zhang, H.; Zhu, L. Identification of Novel Dipeptidyl Peptidase-IV Inhibitory Peptides in Chickpea Protein Hydrolysates. Journal of Agricultural and Food Chemistry. 2023.
Zhang, T.; Jiang, B.; Miao, M.; Mu, W.; Li, Y. Combined effects of high-pressure and enzymatic treatments on the hydrolysis of chickpea protein isolates and antioxidant activity of the hydrolysates. Food Chemistry. 2012, 135, 904-912.
Zhang, Y.; Zhang, Z. H.; He, R.; Xu, R.; Zhang, L.; Gao, X. Improving soy sauce aroma using high hydrostatic pressure and the preliminary mechanism. Foods. 2022, 11, 2190.
Zhang, Z.; Yang, Y.; Zhou, P.; Zhang, X.; Wang, J. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chemistry. 2017, 217, 678-686.
Zhao, Z. K.; Mu, T. H.; Zhang, M.; Richel, A. Chemical forces, structure, and gelation properties of sweet potato protein as affected by pH and high hydrostatic pressure. Food and Bioprocess Technology. 2018, 11, 1719-1732.
Zhou, H.; Wang, C.; Ye, J.; Tao, R.; Chen, H.; Cao, F. Effects of enzymatic hydrolysis assisted by high hydrostatic pressure processing on the hydrolysis and allergenicity of proteins from ginkgo seeds. Food and Bioprocess Technology. 2016, 9, 839-848.
Zhu, S. M.; Lin, S. L.; Ramaswamy, H. S.; Yu, Y.; Zhang, Q. T. Enhancement of functional properties of rice bran proteins by high pressure treatment and their correlation with surface hydrophobicity. Food and Bioprocess Technology. 2017, 10, 317-327.