李冠徵. (2021). 熱化學法合成具抗氧化能力之多醣碳奈米凝膠於急性腎衰竭治療. 國立臺灣海洋大學生命科學暨生物科技學系碩士學位論文.基隆.臺灣.林福胤.(2018). 合成海藻酸碳奈米材料於抗凝血應用. 國立臺灣海洋大學生命科學暨生物科技學系碩士學位論文.基隆.臺灣.林綉美、黃淑芬. (2009) 臺灣大型底棲海藻誌,行政院國家科學委員會專題研究計畫成果報告,9 頁。
周立進、江國辰、張至維、張桂祥. (2021). 臺灣產馬尾藻人工藻床育苗技術開發,國家海洋研究院自行研究報告,1 頁。
陳國勤. (2020). 臺灣本島人工海岸生物多樣性調查 (2-1),「臺灣本島人工海岸生物多樣性調查(1/2)」案成果報告書,51頁。
尉宇鈞. (2021). 探討紫菜多醣及寡醣配方於小鼠模式中免疫調節及抗過敏之功效.
國立臺灣海洋大學食品科學系碩士學位論文.基隆.臺灣.
詹弦燁. (2023). 製備碳奈米載體於胰島素遞送. 國立臺灣海洋大學生命科學暨生物科技學系碩士學位論文.基隆.臺灣.歐璟誼. (2022). 探討海藻多醣、寡醣與藻渣減緩過敏於調節腸道菌叢之作用. 國立臺灣海洋大學食品科學系碩士學位論文.基隆.臺灣.羅凱隆. (2021). 探討海藻酸鈉及其碳量子點對於A型流感病毒感染之保護效果.國立臺灣海洋大學食品科學系碩士學位論文.基隆.臺灣.蔡偉忠. (2022). 探討含紫菜多醣及寡醣奈米乳化液作為黏膜型疫苗左覬覦小鼠陰道白色念珠菌感染之預防功效. 國立臺灣海洋大學食品科學系碩士學位論文.基隆.臺灣.
Abd El-Baky, H. H., El Baz, F. K., & El-Baroty, G. S. (2008). Evaluation of marine alga Ulva lactuca L. as a source of natural preservative ingredient. American-Eurasian Journal of Agricultural & Environmental Sciences, 3(3), 434-44.
Admassu, H., Abera, T., Abraha, B., Yang, R., & Zhao, W. (2018). Proximate, mineral and amino acid composition of dried laver (Porphyra spp.) seaweed. Journal of Academia and Industrial Research (JAIR), 6(9), 149.
Agblevor, F. A., Hames, B. R., Schell, D., & Chum, H. L. (2007). Analysis of biomass sugars using a novel HPLC method. Applied Biochemistry and Biotechnology, 136, 309-326.
Aguilera-Morales, M., Casas-Valdez, M., Carrillo-Domınguez, S., González-Acosta, B., & Pérez-Gil, F. (2005). Chemical composition and microbiological assays of marine algae Enteromorpha spp. as a potential food source. Journal of Food Composition and Analysis, 18(1), 79-88.
Ali, I., Manzoor, Z., Koo, J. E., Kim, J. E., Byeon, S. H., Yoo, E. S., & Koh, Y. S. (2017). 3-Hydroxy-4, 7-megastigmadien-9-one, isolated from Ulva pertusa, attenuates TLR9-mediated inflammatory response by down-regulating mitogen-activated protein kinase and NF-κB pathways. Pharmaceutical Biology, 55(1), 435-440.
Apaydin, G., Aylikci, V., Cengiz, E. R. H. A. N., Saydam, M., Küp, N., & Tiraşoğlu, E. (2010). Analysis of metal contents of seaweed (Ulva lactuca) from Istanbul, Turkey by EDXRF. Turkish Journal of Fisheries and Aquatic Sciences, 10(2).
Arguelles, E. D. L. R., Monsalud, R. G., & Sapin, A. B. (2019). Chemical composition and in vitro antioxidant and antibacterial activities of Sargassum vulgare C. Agardh from Lobo, Batangas, Philippines. Journal of the International Society for Southeast Asian Agricultural Sciences, 25, 112-122.
Baker, S. N., & Baker, G. A. (2010). Luminescent carbon nanodots: emergent nanolights. Angewandte Chemie International Edition, 49(38), 6726-6744.
Barrere, F., Mahmood, T. A., De Groot, K., & Van Blitterswijk, C. A. (2008). Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions. Materials Science and Engineering: R: Reports, 59(1-6), 38-71.
Bhalodia, N. R., Nariya, P. B., Acharya, R. N., & Shukla, V. J. (2013). In vitro antioxidant activity of hydro alcoholic extract from the fruit pulp of Cassia fistula Linn. AYU, 34(2), 209.
Biswas, S. K. (2016). Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox?. Oxidative Medicine and Cellular Longevity, 2016.
Blomster, J., Maggs, C. A., & Stanhope, M. J. (1998). Molecular and morphological analysis of Enteromorpha intestinalis and E. compressa (Chlorophyta) in the British Isles. Journal of Phycology, 34(2), 319-340.
Blouin, N. A., Brodie, J. A., Grossman, A. C., Xu, P., & BRawley, S. H. (2011). Porphyra: a marine crop shaped by stress. Trends in Plant Science, 16(1), 29-37.
Cao, J., Wang, J., Wang, S., & Xu, X. (2016). Porphyra species: a mini-review of its pharmacological and nutritional properties. Journal of Medicinal Food, 19(2), 111-119.
Cardozo, K. H., Guaratini, T., Barros, M. P., Falcão, V. R., Tonon, A. P., Lopes, N. P., Campos, S., Torres, M. A, Souza, A. O, Colepicolo, P., & Pinto, E. (2007). Metabolites from algae with economical impact. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 146(1-2), 60-78.
Cayuela, A., Soriano, M. L., Carrillo-Carrión, C., & Valcárcel, M. (2016). Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chemical Communications, 52(7), 1311-1326.
Chen, S. K., Tsai, M. L., Huang, J. R., & Chen, R. H. (2009). In vitro antioxidant activities of low-molecular-weight polysaccharides with various functional groups. Journal of Agricultural and Food Chemistry, 57(7), 2699-2704.
Cho, J. Y., Baik, K. U., Jung, J. H., & Park, M. H. (2000). In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa. European Journal of Pharmacology, 398(3), 399-407.
Choudhary, N., Hwang, S., & Choi, W. (2014). Carbon nanomaterials: a review. Handbook of Nanomaterials Properties, 709-769.
Cian, R. E., Hernández-Chirlaque, C., Gámez-Belmonte, R., Drago, S. R., Sánchez de Medina, F., & Martínez-Augustin, O. (2018). Green alga Ulva spp. hydrolysates and their peptide fractions regulate cytokine production in splenic macrophages and lymphocytes involving the TLR4-NFκB/MAPK pathways. Marine Drugs, 16(7), 235.
Clarke, S. (2013). Development of hierarchical magnetic nanocomposite materials for biomedical applications (Doctoral dissertation, Dublin City University).
Collins, K. G., Fitzgerald, G. F., Stanton, C., & Ross, R. P. (2016). Looking beyond the terrestrial: the potential of seaweed derived bioactives to treat non-communicable diseases. Marine Drugs, 14(3), 60.
Dai, L., Chang, D. W., Baek, J. B., & Lu, W. (2012). Carbon nanomaterials for advanced energy conversion and storage. Small, 8(8), 1130-1166.
Dang, T. T., Bowyer, M. C., Van Altena, I. A., & Scarlett, C. J. (2018). Comparison of chemical profile and antioxidant properties of the brown algae. International Journal of Food Science & Technology, 53(1), 174-181.
Dawczynski, C., Schubert, R., & Jahreis, G. (2007). Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chemistry, 103(3), 891-899.
Dinarello, C. A. (1996). Biologic basis for interleukin-1 in disease.
Dinis, T. C., Madeira, V. M., & Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315(1), 161-169.
Dominguez, H., & Loret, E. P. (2019). Ulva lactuca, a source of troubles and potential riches. Marine Drugs, 17(6), 357.
Dodgson, K. S., & Price, R. G. (1962). A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochemical Journal, 84(1), 106.
Ďuračková, Z. (2010). Some current insights into oxidative stress. Physiological Research, 59(4).
Facchin, B. M., Dos Reis, G. O., Vieira, G. N., Mohr, E. T. B., da Rosa, J. S., Kretzer, I. F., Demarchi, I. G., & Dalmarco, E. M. (2022). Inflammatory biomarkers on an LPS-induced RAW 264.7 cell model: A systematic review and meta-analysis. Inflammation Research, 71(7), 741-758.
Fang, R. E., Wei, Y. J., Fang, S. Y., & Huang, C. H. (2023). Effects of Sargassum-derived oligosaccharides, polysaccharides and residues on ameliorating enteritis and dysbiosis in a murine model of food allergy. Journal of Functional Foods, 110, 105844.
Figueira, T. A., da Silva, A. J. R., Enrich-Prast, A., Yoneshigue-Valentin, Y., & de Oliveira, V. P. (2020). Structural characterization of ulvan polysaccharide from cultivated and collected Ulva fasciata (Chlorophyta). Advances in Bioscience and Biotechnology, 11(5), 206-216.
Fridovich, I. (1978). The Biology of Oxygen Radicals: The superoxide radical is an agent of oxygen toxicity; superoxide dismutases provide an important defense. Science, 201(4359), 875-880.
Fu, L., Qian, Y., Wang, C., Xie, M., Huang, J., & Wang, Y. (2019). Two polysaccharides from Porphyra modulate immune homeostasis by NF-κB-dependent immunocyte differentiation. Food & Function, 10(4), 2083-2093.
Fuentes, A. L., Millis, L., Vapenik, J., & Sigola, L. (2014). Lipopolysaccharide-mediated enhancement of zymosan phagocytosis by RAW 264.7 macrophages is independent of opsonins, laminarin, mannan, and complement receptor 3. Journal of Surgical Research, 189(2), 304-312.
Fujiwara, N., & Kobayashi, K. (2005). Macrophages in inflammation. Current Drug Targets-Inflammation & Allergy, 4(3), 281-286.
Hamid, R., Rotshteyn, Y., Rabadi, L., Parikh, R., & Bullock, P. (2004). Comparison of alamar blue and MTT assays for high through-put screening. Toxicology in vitro, 18(5), 703-710.
Heinrich, P. C., Castell, J. V., & Andus, T. (1990). Interleukin-6 and the acute phase response. Biochemical Journal, 265(3), 621.
Gülçin, İ., Huyut, Z., Elmastaş, M., & Aboul-Enein, H. Y. (2010). Radical scavenging and antioxidant activity of tannic acid. Arabian Journal of Chemistry, 3(1), 43-53.
Gillmore, J. D., Lovat, L. B., Persey, M. R., Pepys, M. B., & Hawkins, P. N. (2001). Amyloid load and clinical outcome in AA amyloidosis in relation to circulating concentration of serum amyloid A protein. The Lancet, 358(9275), 24-29.
Hentati, F., Delattre, C., Ursu, A. V., Desbrières, J., Le Cerf, D., Gardarin, C., Abdelkafi, S., Michaud, P. & Pierre, G. (2018). Structural characterization and antioxidant activity of water-soluble polysaccharides from the Tunisian brown seaweed Cystoseira compressa. Carbohydrate Polymers, 198, 589-600.
Heo, S. J., Yoon, W. J., Kim, K. N., Ahn, G. N., Kang, S. M., Kang, D. H., Affan, A., OH, C ., Jung, W. K. & Jeon, Y. J. (2010). Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food and Chemical Toxicology, 48(8-9), 2045-2051.
Heyraud, A., Colin-Morel, P., Girond, S., Richard, C., & Kloareg, B. (1996). HPLC analysis of saturated or unsaturated oligoguluronates and oligomannuronates. Application to the determination of the action pattern of Haliotis tuberculata alginate lyase. Carbohydrate Research, 291, 115-126.
Hwang, J., Yadav, D., Lee, P. C., & Jin, J. O. (2022). Immunomodulatory effects of polysaccharides from marine algae for treating cancer, infectious disease, and inflammation. Phytotherapy Research, 36(2), 761-777.
Hwang, P. A., Chien, S. Y., Chan, Y. L., Lu, M. K., Wu, C. H., Kong, Z. L., & Wu, C. J. (2011). Inhibition of lipopolysaccharide (LPS)-induced inflammatory responses by Sargassum hemiphyllum sulfated polysaccharide extract in RAW 264.7 macrophage cells. Journal of Agricultural and Food Chemistry, 59(5), 2062-2068.
Hu, J., Luo, J., Zhang, M., Wu, J., Zhang, Y., Kong, H., & Zhao, Y. (2021). Protective effects of radix sophorae flavescentis carbonisata-based carbon dots against ethanol‐induced acute gastric ulcer in rats: anti-inflammatory and antioxidant activities. International Journal of Nanomedicine, 2461-2475.
Hultin, H. O. (1994). Oxidation of lipids in seafoods. Seafoods: Chemistry, Processing Technology and Quality, 49-74.
Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841-1856.
Huang, S. F. (2006). Benthic marine algae of Lan-Yu (Orchid Island), Taiwan. 國立臺灣博物館學刊, 59(2), 19-50.
Idriss, H. T., & Naismith, J. H. (2000). TNFα and the TNF receptor superfamily: Structure‐function relationship (s). Microscopy Research and Technique, 50(3), 184-195.
Innocenzi, P., & Stagi, L. (2023). Carbon dots as oxidant-antioxidant nanomaterials, understanding the structure-properties relationship. A critical review. Nano Today, 50, 101837.
Israel, A., Einav, R., & Seckbach, J. (Eds.). (2010). Seaweeds and their role in Globally Changing Environments (Vol. 15). Springer Science & Business Media.
Ivashkiv, L. B. (2013). Epigenetic regulation of macrophage polarization and function. Trends in Immunology, 34(5), 216-223.
Jabs, T. (1999). Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochemical Pharmacology, 57(3), 231-245.
Janus, Ł., Radwan-Pragłowska, J., Piątkowski, M., & Bogdał, D. (2020). Smart, tunable CQDs with antioxidant properties for biomedical applications—ecofriendly synthesis and characterization. Molecules, 25(3), 736.
Jiang, F., Ding, Y., Tian, Y., Yang, R., Quan, M., Tong, Z., Luo, D., Chi, Z., & Liu, C. (2022). Hydrolyzed low-molecular-weight polysaccharide from Enteromorpha prolifera exhibits high anti-inflammatory activity and promotes wound healing. Biomaterials Advances, 133, 112637.
Jiang, Z., Hama, Y., Yamaguchi, K., & Oda, T. (2012). Inhibitory effect of sulphated polysaccharide porphyran on nitric oxide production in lipopolysaccharide-stimulated RAW264. 7 macrophages. The Journal of Biochemistry, 151(1), 65-74.
Kazir, M., Abuhassira, Y., Robin, A., Nahor, O., Luo, J., Israel, A., Golberg, A. & Livney, Y. D. (2019). Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocolloids, 87, 194-203.
Kell, D. B., & Pretorius, E. (2015). On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death. Integrative Biology, 7(11), 1339-1377.
Kelm, M. (1999). Nitric oxide metabolism and breakdown. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1411(2-3), 273-289.
Ko, W., Lee, H., Kim, N., Jo, H. G., Woo, E. R., Lee, K., & Lee, D. S. (2021). The anti-oxidative and anti-neuroinflammatory effects of sargassum horneri by heme oxygenase-1 induction in BV2 and HT22 cells. Antioxidants, 10(6), 859.
Kraan, S. (2012). Algal polysaccharides, novel applications and outlook. In Carbohydrates-comprehensive studies on glycobiology and glycotechnology. IntechOpen.
Kraan, S. (2013). Pigments and minor compounds in algae. In Functional ingredients from algae for foods and nutraceuticals (pp. 205-251). Woodhead Publishing.
Lahaye, M. (1991). Marine algae as sources of fibres: Determination of soluble and insoluble dietary fibre contents in some ‘sea vegetables’. Journal of the Science of Food and Agriculture, 54(4), 587-594.
Lakshmanan, A., Balasubramanian, B., Maluventhen, V., Malaisamy, A., Baskaran, R., Liu, W. C., & Arumugam, M. (2022). Extraction and characterization of fucoidan derived from Sargassum ilicifolium and its biomedical potential with in silico molecular docking. Applied Sciences, 12(24), 13010.
Leopoldini, M., Marino, T., Russo, N., & Toscano, M. (2004). Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. The Journal of Physical Chemistry A, 108(22), 4916-4922.
Li, B., Liu, S., Xing, R., Li, K., Li, R., Qin, Y., Wang, X., Wei, Z., & Li, P. (2013). Degradation of sulfated polysaccharides from Enteromorpha prolifera and their antioxidant activities. Carbohydrate Polymers, 92(2), 1991-1996.
Li, B., Lu, F., Wei, X., & Zhao, R. (2008). Fucoidan: structure and bioactivity. Molecules, 13(8), 1671-1695.
Li, C., Tang, T., Du, Y., Jiang, L., Yao, Z., Ning, L., & Zhu, B. (2023). Ulvan and Ulva oligosaccharides: a systematic review of structure, preparation, biological activities and applications. Bioresources and Bioprocessing, 10(1), 66.
Lim, S. Y., Shen, W., & Gao, Z. (2015). Carbon quantum dots and their applications. Chemical Society Reviews, 44(1), 362-381.
Lin, C. J., Chang, L., Chu, H. W., Lin, H. J., Chang, P. C., Wang, R. Y., & Huang, C. C. (2019). High amplification of the antiviral activity of curcumin through transformation into carbon quantum dots. Small, 15(41), 1902641.
Lin, C. J., Hwang, T. L., Wang, R. Y., Nain, A., Shih, R. H., Chang, L., Lin, H. J., Harroun, S. G., Chang, H. T., & Huang, C. C. (2024). Augmenting Neutrophil Extracellular Traps with Carbonized Polymer Dots: A Potential Treatment for Bacterial Sepsis. Small, 2307210.
Liu, D., Tang, W., Yin, J. Y., Nie, S. P., & Xie, M. Y. (2021). Monosaccharide composition analysis of polysaccharides from natural sources: Hydrolysis condition and detection method development. Food Hydrocolloids, 116, 106641.
Liu, Q. M., Xu, S. S., Li, L., Pan, T. M., Shi, C. L., Liu, H., Cao, M. J., Su, W. J., & Liu, G. M. (2017). In vitro and in vivo immunomodulatory activity of sulfated polysaccharide from Porphyra haitanensis. Carbohydrate Polymers, 165, 189-196.
Liu, R., Wu, D., Liu, S., Koynov, K., Knoll, W., & Li, Q. (2009). An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angewandte Chemie International Edition, 48(25), 4598-4601.
Lopez-Castejon, G., & Brough, D. (2011). Understanding the mechanism of IL-1β secretion. Cytokine & Growth Factor Reviews, 22(4), 189-195.
Lordan, S., Ross, R. P., & Stanton, C. (2011). Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Marine Drugs, 9(6), 1056-1100.
Lorenzo, J. M., Agregán, R., Munekata, P. E., Franco, D., Carballo, J., Şahin, S., Lacomba, S. & Barba, F. J. (2017). Proximate composition and nutritional value of three macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Marine Drugs, 15(11), 360.
Lu, Y., & Wahl, L. M. (2005). Oxidative stress augments the production of matrix metalloproteinase-1, cyclooxygenase-2, and prostaglandin E2 through enhancement of NF-κB activity in lipopolysaccharide-activated human primary monocytes. The Journal of Immunology, 175(8), 5423-5429.
M Cardoso, S., G Carvalho, L., J Silva, P., S Rodrigues, M., R Pereira, O., & Pereira, L. (2014). Bioproducts from seaweeds: a review with special focus on the Iberian Peninsula. Current Organic Chemistry, 18(7), 896-917.
Mac Monagail, M., Cornish, L., Morrison, L., Araújo, R., & Critchley, A. T. (2017). Sustainable harvesting of wild seaweed resources. European Journal of Phycology, 52(4), 371-390.
MacArtain, P., Gill, C. I., Brooks, M., Campbell, R., & Rowland, I. R. (2007). Nutritional value of edible seaweeds. Nutrition Reviews, 65(12), 535-543.
Majno, G., & Joris, I. (2004). Cells, tissues, and disease: principles of general pathology. Oxford University Press.
Mao, J. Y., Miscevic, D., Unnikrishnan, B., Chu, H. W., Chou, C. P., Chang, L., ... & Huang, C. C. (2022). Carbon nanogels exert multipronged attack on resistant bacteria and strongly constrain resistance evolution. Journal of Colloid and Interface Science, 608, 1813-1826.
Michalak, I., & Chojnacka, K. (2015). Algae as production systems of bioactive compounds. Engineering in Life Sciences, 15(2), 160-176.
Moshage, H., Kok, B., Huizenga, J. R., & Jansen, P. L. (1995). Nitrite and nitrate determinations in plasma: a critical evaluation. Clinical Chemistry, 41(6), 892-896.
Nielsen, S. S. (2010). Phenol-sulfuric acid method for total carbohydrates. Food Analysis Laboratory Manual, 47-53.
Ortiz, J., Romero, N., Robert, P., Araya, J., Lopez-Hernández, J., Bozzo, C., Navarrete, E., Osorio, A. & Rios, A. (2006). Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry, 99(1), 98-104.
Ou, J. Y., Wei, Y. J., Liu, F. L., & Huang, C. H. (2023). Anti-allergic effects of Ulva-derived polysaccharides, oligosaccharides and residues in a murine model of food allergy. Heliyon, 9(12), e22840.
Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315.
Paiva, L., Lima, E., Neto, A. I., & Baptista, J. (2016). Isolation and characterization of angiotensin I-converting enzyme (ACE) inhibitory peptides from Ulva rigida C. Agardh protein hydrolysate. Journal of Functional Foods, 26, 65-76.
Prantner, D., Darville, T., Sikes, J. D., Andrews Jr, C. W., Brade, H., Rank, R. G., & Nagarajan, U. M. (2009). Critical role for interleukin-1β (IL-1β) during Chlamydia muridarum genital infection and bacterial replication-independent secretion of IL-1β in mouse macrophages. Infection and Immunity, 77(12), 5334-5346.
Pengzhan, Y., Quanbin, Z., Ning, L., Zuhong, X., Yanmei, W., & Zhi'en, L. (2003). Polysaccharides from Ulva pertusa (Chlorophyta) and preliminary studies on their antihyperlipidemia activity. Journal of Applied Phycology, 15, 21-27.
Pérez, M. J., Falqué, E., & Domínguez, H. (2016). Antimicrobial action of compounds from marine seaweed. Marine Drugs, 14(3), 52.
Popa, E. G., Reis, R. L., & Gomes, M. E. (2015). Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage. Critical Reviews in Biotechnology, 35(3), 410-424.
Poyton, R. O., Ball, K. A., & Castello, P. R. (2009). Mitochondrial generation of free radicals and hypoxic signaling. Trends in Endocrinology & Metabolism, 20(7), 332-340.
Qi, H., Zhang, Q., Zhao, T., Chen, R., Zhang, H., Niu, X., & Li, Z. (2005). Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. International Journal of Biological Macromolecules, 37(4), 195-199.
Qi, X., Mao, W., Gao, Y., Chen, Y., Chen, Y., Zhao, C., Li, N., Wang, C., Yan, M., Lin, C & Shan, J. (2012). Chemical characteristic of an anticoagulant-active sulfated polysacc haride from Enteromorpha clathrata. Carbohydrate Polymers, 90(4), 1804-1810.
Quemener, B., Lahaye, M., & Bobin-Dubigeon, C. (1997). Sugar determination in ulvans by a chemical-enzymatic method coupled to high performance anion exchange chromatography. Journal of Applied Phycology, 9(2), 179-188.
Reuter, S., Gupta, S. C., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: how are they linked?. Free Radical Biology and Medicine, 49(11), 1603-1616.
Robin, A., Sack, M., Israel, A., Frey, W., Müller, G., & Golberg, A. (2018). Deashing macroalgae biomass by pulsed electric field treatment. Bioresource Technology, 255, 131-139.
Rose-John, S. (2018). Interleukin-6 family cytokines. Cold Spring Harbor Perspectives in Biology, 10(2), a028415.
Sabina, H., Tasneem, S., Samreen, K. Y., Choudhary, M. I., & Aliya, R. (2005). Antileishmanial activity in the crude extract of various seaweed from the coast of Karachi, Pakistan. Pakistan Journal of Botany, 37(1), 163-168.
Sakamoto, S., Putalun, W., Vimolmangkang, S., Phoolcharoen, W., Shoyama, Y., Tanaka, H., & Morimoto, S. (2018). Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. Journal of Natural Medicines, 72, 32-42.
Sari-Chmayssem, N., Taha, S., Mawlawi, H., Guégan, J. P., Jeftić, J., & Benvegnu, T. (2019). Extracted ulvans from green algae Ulva linza of Lebanese origin and amphiphilic derivatives: Evaluation of their physico-chemical and rheological properties. Journal of Applied Phycology, 31, 1931-1946.
Schenk, M., Fabri, M., Krutzik, S. R., Lee, D. J., Vu, D. M., Sieling, P. A., Montoya, D., Liu, P. T., & Modlin, R. L. (2014). Interleukin‐1β triggers the differentiation of macrophages with enhanced capacity to present mycobacterial antigen to T cells. Immunology, 141(2), 174-180.
Schindler, R. A. L. F., Ghezzi, P. I. E. T. R. O., & Dinarello, C. A. (1990). IL-1 induces IL-1. IV. IFN-gamma suppresses IL-1 but not lipopolysaccharide-induced transcription of IL-1. Journal of Immunology (Baltimore, Md.: 1950), 144(6), 2216-2222.
Shabana, S., Hamouda, H. I., Abdalla, M., Sharaf, M., Chi, Z., & Liu, C. (2022). Multifunctional nanoparticles based on marine polysaccharides for apremilast delivery to inflammatory macrophages: Preparation, targeting ability, and uptake mechanism. International Journal of Biological Macromolecules, 222, 1709-1722.
Sharma, J. N., Al-Omran, A., & Parvathy, S. S. (2007). Role of nitric oxide in inflammatory diseases. Inflammopharmacology, 15, 252-259.
Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40(6), 945-948.
Soltani, R., Guo, S., Bianco, A., & Ménard‐Moyon, C. (2020). Carbon nanomaterials applied for the treatment of inflammatory diseases: preclinical evidence. Advanced Therapeutics, 3(9), 2000051.
Stiger-Pouvreau, V., Bourgougnon, N., Deslandes, E., Fleurence, J., & Levine, I. (2016). Seaweed in health and disease prevention. Academic Press.
Sun, Y. P., Zhou, B., Lin, Y., Wang, W., Fernando, K. S., Pathak, P., ... & Xie, S. Y. (2006). Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 128(24), 7756-7757.
Tanaka, T., Narazaki, M., & Kishimoto, T. (2014). IL-6 in inflammation, immunity, and disease. Cold Spring Harbor Perspectives in Biology, 6(10), a016295.
Tian, H., Liu, H., Song, W., Zhu, L., Zhang, T., Li, R., & Yin, X. (2020). Structure, antioxidant and immunostimulatory activities of the polysaccharides from Sargassum carpophyllum. Algal Research, 49, 101853.
Torres, P. B., Nagai, A., Jara, C. E. P., Santos, J. P., Chow, F., & Santos, D. Y. A. C. D. (2021). Determination of sulfate in algal polysaccharide samples: a step-by-step protocol using microplate reader. Ocean and Coastal Research, 69, e21021.
Turner, M. D., Nedjai, B., Hurst, T., & Pennington, D. J. (2014). Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1843(11), 2563-2582.
Villar-Fincheira, P., Sanhueza-Olivares, F., Norambuena-Soto, I., Cancino-Arenas, N., Hernandez-Vargas, F., Troncoso, R., Gabrielli, L., & Chiong, M. (2021). Role of interleukin-6 in vascular health and disease. Frontiers in Molecular Biosciences, 8, 641734.
Wang, H., Zhang, M., Ma, Y., Wang, B., Huang, H., Liu, Y., Shao, M., & Kang, Z. (2020). Carbon dots derived from citric acid and glutathione as a highly efficient intracellular reactive oxygen species scavenger for alleviating the lipopolysaccharide-induced inflammation in macrophages. ACS Applied Materials & Interfaces, 12(37), 41088-41095.
Wang, F., Kong, L. M., Xie, Y. Y., Wang, C., Wang, X. L., Wang, Y. B., Fu, L. L., & Zhou, T. (2021). Purification, structural characterization, and biological activities of degraded polysaccharides from Porphyra yezoensis. Journal of Food Biochemistry, 45(4), e13661.
Wang, Y., & Hu, A. (2014). Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C, 2(34), 6921-6939.
Wang, Y., Ye, H., Qiao, L., Du, C., Wei, Z., Wang, T., Wang, J., Liu, R., & Wang, P. (2021). Intestinal anti-inflammatory effects of selenized Ulva pertusa polysaccharides in a dextran sulfate sodium-induced inflammatory bowel disease model. Journal of Medicinal Food, 24(3), 236-247.
Wang, J., & Qiu, J. (2016). A review of carbon dots in biological applications. Journal of Materials Science, 51, 4728-4738.
Wang, J., Zhang, Q., Zhang, Z., Song, H., & Li, P. (2010). Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules, 46(1), 6-12.
Wang, K., Gao, Z., Gao, G., Wo, Y., Wang, Y., Shen, G., & Cui, D. (2013). Systematic safety evaluation on photoluminescent carbon dots. Nanoscale Research Letters, 8, 1-9.
Wang, L., Oh, J. Y., Kim, H. S., Lee, W., Cui, Y., Lee, H. G., Kim, Y. T., Ko, J. Y., & Jeon, Y. J. (2018). Protective effect of polysaccharides from Celluclast-assisted extract of Hizikia fusiforme against hydrogen peroxide-induced oxidative stress in vitro in Vero cells and in vivo in zebrafish. International Journal of Biological Macromolecules, 112, 483-489.
Wei, Y. J., Fang, R. E., Ou, J. Y., Pan, C. L., & Huang, C. H. (2022). Modulatory effects of Porphyra-derived polysaccharides, oligosaccharides and their mixture on antigen-specific immune responses in ovalbumin-sensitized mice. Journal of Functional Foods, 96, 105209.
Wijesinghe, W. A. J. P., & Jeon, Y. J. (2012). Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydrate Polymers, 88(1), 13-20.
Williams DF (1999). The Williams dictionary of biomaterials. Liverpool University Press
Wu, X., Jiang, W., Lu, J., Yu, Y., & Wu, B. (2014). Analysis of the monosaccharide composition of water-soluble polysaccharides from Sargassum fusiforme by high performance liquid chromatography/electrospray ionisation mass spectrometry. Food Chemistry, 145, 976-983.
Wulandari, P. A. C., Ilmi, Z. N., Husen, S. A., Winarni, D., Alamsjah, M. A., Awang, K., Vastano, M., Pellis, A., MacQuarrie, D., & Pudjiastuti, P. (2021). Wound healing and antioxidant evaluations of alginate from Sargassum ilicifolium and mangosteen rind combination extracts on diabetic mice model. Applied Sciences, 11(10), 4651.
Xu, X., Zhang, K., Zhao, L., Li, C., Bu, W., Shen, Y., Gu, Z., Chang, B., Zheng, C., Lin, C., Sun, H & Yang, B. (2016). Aspirin-based carbon dots, a good biocompatibility of material applied for bioimaging and anti-inflammation. ACS Applied Materials & Interfaces, 8(48), 32706-32716.
Yabe, T., Ishii, Y., Amano, Y., Koga, T., Hayashi, S., Nohara, S., & Tatsumoto, H. (2009). Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan. Limnology, 10, 239-245.
Yamauchi, R., Tatsumi, Y., Asano, M., Kato, K., & Ueno, Y. (1988). Effect of metal salts and fructose on the autoxidation of methyl linoleate in emulsions. Agricultural and Biological Chemistry, 52(3), 849-850.
Yan, X., Zhao, Y., Luo, J., Xiong, W., Liu, X., Cheng, J., Wang, Y., Zhang, M., & Qu, H. (2017). Hemostatic bioactivity of novel Pollen Typhae Carbonisata-derived carbon quantum dots. Journal of Nanobiotechnology, 15(1), 1-8.
Yatom, S., Bak, J., Khrabryi, A., & Raitses, Y. (2017). Detection of nanoparticles in carbon arc discharge with laser-induced incandescence. Carbon, 117, 154-162.
Yoshimura, A., Mori, H., Ohishi, M., Aki, D., & Hanada, T. (2003). Negative regulation of cytokine signaling influences inflammation. Current Opinion in Immunology, 15(6), 704-708.
Yoshizawa, Y., Ametani, A., Tsunehiro, J., Nomura, K., Itoh, M., Fukui, F., & Kaminogawa, S. (1995). Macrophage stimulation activity of the polysaccharide fraction from a marine alga (Porphyra yezoensis): structure-function relationships and improved solubility. Bioscience, Biotechnology, and Biochemistry, 59(10), 1933-1937.
Yuen, S. N., Choi, S. M., Phillips, D. L., & Ma, C. Y. (2009). Raman and FTIR spectroscopic study of carboxymethylated non-starch polysaccharides. Food Chemistry, 114(3), 1091-1098.
Zange, R., & Kissel, T. (1997). Comparative in vitro biocompatibility testing of polycyanoacrylates and poly (D, L-lactide-co-glycolide) using different mouse fibroblast (L929) biocompatibility test models. European Journal of Pharmaceutics and Biopharmaceutics, 44(2), 149-157.
Zhang, J. M., & An, J. (2007). Cytokines, inflammation and pain. International Anesthesiology Clinics, 45(2), 27.
Zhang, M., Bai, L., Shang, W., Xie, W., Ma, H., Fu, Y., Fang, D., Sun, H.,Fan, L., Han, M., Liu, C., & Yang, S. (2012). Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. Journal of Materials Chemistry, 22(15), 7461-7467.
Zhang, Q., Li, N., Liu, X., Zhao, Z., Li, Z., & Xu, Z. (2004). The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Carbohydrate Research, 339(1), 105-111.
Zhang, Q., Li, N., Zhou, G., Lu, X., Xu, Z., & Li, Z. (2003). In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacological Research, 48(2), 151-155.
Zhang, Q., Qi, H., Zhao, T., Deslandes, E., Ismaeli, N. M., Molloy, F., & Critchley, A. T. (2005). Chemical characteristics of a polysaccharide from Porphyra capensis (Rhodophyta). Carbohydrate Research, 340(15), 2447-2450.
Zhang, R., & Chen, W. (2014). Nitrogen-doped carbon quantum dots: Facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosensors and Bioelectronics, 55, 83-90.
Zhang, R., Zhang, X., Tang, Y., & Mao, J. (2020). Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review. Carbohydrate Polymers, 228, 115381.
Zhao, G. R., Zhang, H. M., Ye, T. X., Xiang, Z. J., Yuan, Y. J., Guo, Z. X., & Zhao, L. B. (2008). Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food and Chemical Toxicology, 46(1), 73-81.
Zhao, Y., Zhang, Z., Pan, Z., & Liu, Y. (2021, December). Advanced bioactive nanomaterials for biomedical applications. In Exploration (Vol. 1, No. 3, p. 20210089).
Zhou, Y., Sun, H., Wang, F., Ren, J., & Qu, X. (2017). How functional groups influence the ROS generation and cytotoxicity of graphene quantum dots. Chemical Communications, 53(76), 10588-10591.