鄭文萍 (2024)。環境因子對海洋紅孢囊藻生長、生理及脂肪酸組成之影響。國立臺灣海洋大學水產養殖學系碩士論文,基隆。Abdullah, N., Amran, N. A., & Yasin, N. H. M. (2017). Algae oil extraction from freshwater microalgae Chlorella vulgaris. Malaysian Journal of Analytical Sciences, 21(3), 735-744.
Abe, K., Imamaki, A., & Hirano, M. (2002). Removal of nitrate, nitrite, ammonium and phosphate ions from water by the aerial microalga Trentepohlia aurea. Journal of Applied Phycology, 14, 129-134.
Adam, F., Abert-Vian, M., Peltier, G., & Chemat, F. (2012). “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Bioresource Technology, 114, 457-465.
Al-Hasan, R. H., Ali, A. M., Ka'wash, H. H., & Radwan, S. S. (1990). Effect of salinity on the lipid and fatty acid composition of the halophyte Navicula sp.: potential in mariculture. Journal of Applied Phycology, 2, 215-222.
Amarni, F., & Kadi, H. (2010). Kinetics study of microwave-assisted solvent extraction of oil from olive cake using hexane: comparison with the conventional extraction. Innovative Food Science & Emerging Technologies, 11(2), 322-327.
AOAC Fat (Total, Saturated and Unsaturated) in Foods, Hydrolytic Extraction Gas Chromatographic Method,” 18th Edition, AOAC Official Method 996.06, AOAC International, Arlington, 2001.
AOCS Official Method Ce 1h-05, 2005. Determination of cis-, trans-, saturated, monounsaturated and polyunsaturated fatty acids in vegetable or non-ruminant animal oils and fats by capillary GLC. Official Methods and Recommended Practices of the AOCS, Sixth edition. Firestone, D. (ed.); AOCS Press, Champaign, IL, USA, pp. 1-29.
Araujo, G. S., Matos, L. J., Fernandes, J. O., Cartaxo, S. J., Gonçalves, L. R., Fernandes, F. A., & Farias, W. R. (2013). Extraction of lipids from microalgae by ultrasound application: Prospection of the optimal extraction method. Ultrasonics Sonochemistry, 20(1), 95-98.
Arena, R., Lima, S., Villanova, V., Moukri, N., Curcuraci, E., Messina, C., Santulli, A., & Scargiali, F. (2021). Cultivation and biochemical characterization of isolated Sicilian microalgal species in salt and temperature stress conditions. Algal Research, 59, 102430.
Azencott, H. R., Peter, G. F., & Prausnitz, M. R. (2007). Influence of the cell wall on intracellular delivery to algal cells by electroporation and sonication. Ultrasound in Medicine & Biology, 33(11), 1805-1817.
Baker, E. R., McLaughlin, J. J., Hutner, S. H., DeAngelis, B., Feingold, S., Frank, O., & Baker, H. (1981). Water-soluble vitamins in cells and spent culture supernatants of Poteriochromonas stipitata, Euglena gracilis, and Tetrahymena thermophila. Archives of Microbiology, 129, 310-313.
Barkia, I., Saari, N., & Manning, S. R. (2019). Microalgae for high-value products towards human health and nutrition. Marine Drugs, 17(5), 304.
Beetul, K., Gopeechund, A., Kaullysing, D., Mattan-Moorgawa, S., Puchooa, D., & Bhagooli, R. (2016). Challenges and opportunities in the present era of marine algal applications. Algae-Organisms for Imminent Biotechnology, 40.
Borowitzka, M. A. (2013). High-value products from microalgae—their development and commercialisation. Journal of Applied Phycology, 25, 743-756.
Bremus, C., Herrmann, U., Bringer-Meyer, S., & Sahm, H. (2006). The use of microorganisms in L-ascorbic acid production. Journal of Biotechnology, 124(1), 196-205.
Burczyk, J., Zych, M., Ioannidis, N. E., & Kotzabasis, K. (2014). Polyamines in cell walls of chlorococcalean microalgae. Zeitschrift für Naturforschung C, 69(1-2), 75-80.
Cardozo, K. H., Guaratini, T., Barros, M. P., Falcão, V. R., Tonon, A. P., Lopes, N. P., Campos, S., Torres, M. A., Souza, A. O., & Colepicolo, P. (2007). Metabolites from algae with economical impact. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 146(1-2), 60-78.
Chaisutyakorn, P., Praiboon, J., & Kaewsuralikhit, C. (2018). The effect of temperature on growth and lipid and fatty acid composition on marine microalgae used for biodiesel production. Journal of Applied Phycology, 30, 37-45.
Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J., & Chang, J.-S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technology, 102(1), 71-81.
Chen, F., & Jiang, Y. (2001). Algae and their Biotechnological Potential. Springer Science & Business Media.
Chen, Y., Xie, M.-Y., & Gong, X.-F. (2007). Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. Journal of Food Engineering, 81(1), 162-170.
Craske, J. D., & Bannon, C. D. (1987). Gas liquid chromatography analysis of the fatty acid composition of fats and oils: a total system for high accuracy. Journal of the American Oil Chemists Society, 64(10), 1413-1417.
Crawford, M. (2000). Placental delivery of arachidonic and docosahexaenoic acids: implications for the lipid nutrition of preterm infants. The American Journal of Clinical Nutrition, 71(1), 275S-284S.
de Moura, R. R., Etges, B. J., dos Santos, E. O., Martins, T. G., Roselet, F., Abreu, P. C., Primel, E. G., & D'Oca, M. G. (2018). Microwave‐assisted extraction of lipids from wet microalgae paste: a quick and efficient method. European Journal of Lipid Science and Technology, 120(7), 1700419.
Dijkman, N. A., & Kromkamp, J. C. (2006). Phospholipid-derived fatty acids as chemotaxonomic markers for phytoplankton: application for inferring phytoplankton composition. Marine Ecology Progress Series, 324, 113-125.
Domozych, D. S., Ciancia, M., Fangel, J. U., Mikkelsen, M. D., Ulvskov, P., & Willats, W. G. (2012). The cell walls of green algae: a journey through evolution and diversity. Frontiers in Plant Science, 3, 82.
Donsì, F., Annunziata, M., & Ferrari, G. (2013). Microbial inactivation by high pressure homogenization: Effect of the disruption valve geometry. Journal of Food Engineering, 115(3), 362-370.
Drevon, C. A., Baksaas, I., & Krokan, H. (1993). Omega-3 fatty acids: metabolism and biological effects. Switzerland, Basel: Birkhäuser Verlag AG.
Duarte, K., Justino, C., Gomes, A., Rocha-Santos, T., & Duarte, A. C. (2014). Green analytical methodologies for preparation of extracts and analysis of bioactive compounds. In Comprehensive Analytical Chemistry, 65, 59-78.
Engler, C. (1985). Disruption of microbial cells.
Flynn, K. (2020). Enhancing Microalgal Production–constructing decision support tools using system dynamics modelling. Swansea University.
Furuki, T., Maeda, S., Imajo, S., Hiroi, T., Amaya, T., Hirokawa, T., Ito, K., & Nozawa, H. (2003). Rapid and selective extraction of phycocyanin from Spirulina platensis with ultrasonic cell disruption. Journal of Applied Phycology, 15, 319-324.
Ganzler, K., Salgó, A., & Valkó, K. (1986). Microwave extraction: A novel sample preparation method for chromatography. Journal of Chromatography A, 371, 299-306.
Gao, K. (1998). Chinese studies on the edible blue-green alga, Nostoc flagelliforme: a review. Journal of Applied Phycology, 10, 37-49.
García, J. L., De Vicente, M., & Galán, B. (2017). Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology, 10(5), 1017.
Georgianna, D. R., & Mayfield, S. P. (2012). Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 488(7411), 329-335.
Gerber, M. (2012). Omega-3 fatty acids and cancers: a systematic update review of epidemiological studies. British Journal of Nutrition, 107(S2), S228-S239.
Gerken, H. G., Donohoe, B., & Knoshaug, E. P. (2013). Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta, 237, 239-253.
Gill, S. S., Willette, S., Dungan, B., Jarvis, J. M., Schaub, T., VanLeeuwen, D. M., St. Hilaire, R., & Holguin, F. O. (2018). Suboptimal temperature acclimation affects kennedy pathway gene expression, lipidome and metabolite profile of Nannochloropsis salina during PUFA enriched TAG synthesis. Marine Drugs, 16(11), 425.
González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. (2012). Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresource technology, 110, 610-616.
Greenwell, H. C., Laurens, L., Shields, R., Lovitt, R., & Flynn, K. (2010). Placing microalgae on the biofuels priority list: a review of the technological challenges. Journal of the Royal Society Interface, 7(46), 703-726.
Grimi, N., Dubois, A., Marchal, L., Jubeau, S., Lebovka, N., & Vorobiev, E. (2014). Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresource Technology, 153, 254-259.
Halim, R., Rupasinghe, T. W., Tull, D. L., & Webley, P. A. (2013). Mechanical cell disruption for lipid extraction from microalgal biomass. Bioresource Technology, 140, 53-63.
Hamed, I. (2016). The evolution and versatility of microalgal biotechnology: A review. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1104-1123.
Hamilton, S. (1992). Extraction of lipids and derivative formation. Lipid Analysis: A Practical Approach, 13-64.
Hamilton, S., Hamilton, R. J., Sewell, P. A. Extraction of Lipidsand Derivative Formation. In Lipid Analysis: A Practical Approach; Hamilton, R. J., Hamilton, S., Eds., IRL Press: Oxford, U.K., 1992, 13-64
Harrison, S. T. (1991). Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnology Advances, 9(2), 217-240.
Hernández-Pérez, A., & Labbé, J. I. (2014). Microalgas, cultivo y beneficios. Revista de biología marina y oceanografía, 49(2), 157-173.
Hosikian, A., Lim, S., Halim, R., & Danquah, M. K. (2010). Chlorophyll extraction from microalgae: A review on the process engineering aspects. International Journal of Chemical Engineering, 2010(1), 391632.
Hounslow, E. P. (2016). Salt stress in two Chlamydomonas species: Novel insights into biofuel production from microalgae (Doctoral dissertation, University of Sheffield).
Hu, G. P., Yuan, J., Sun, L., She, Z. G., Wu, J. H., Lan, X. J., Zhu, X., Lin, Y. C., & Chen, S. P. (2011). Statistical research on marine natural products based on data obtained between 1985 and 2008. Marine Drugs, 9(4), 514-525.
Huffer, J. W., Westcott, J. E., Miller, L. V., & Krebs, N. F. (1998). Microwave method for preparing erythrocytes for measurement of zinc concentration and zinc stable isotope enrichment. Analytical Chemistry, 70(11), 2218-2220.
Kermanshahi‐Pour, A., Zimmerman, J. B., & Anastas, P. T. (2013). Microalgae‐derived chemicals: opportunity for an integrated chemical plant. Natural and Artificial Photosynthesis: Solar Power as an Energy Source, 387-433.
Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal research, 6, 52-63.
Kula, M. R., & Schütte, H. (1987). Purification of proteins and the disruption of microbial cells. Biotechnology Progress, 3(1), 31-42.
Kumar, S. J., Prasad, S. R., Banerjee, R., Agarwal, D. K., Kulkarni, K. S., & Ramesh, K. (2017). Green solvents and technologies for oil extraction from oilseeds. Chemistry Central Journal, 11, 1-7.
Lauritano, C., Andersen, J. H., Hansen, E., Albrigtsen, M., Escalera, L., Esposito, F., Helland, K., Hanssen, K. Ø., Romano, G., & Ianora, A. (2016). Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Frontiers in Marine Science, 3, 68.
Lee, A. K., Lewis, D. M., & Ashman, P. J. (2012). Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass and Bioenergy, 46, 89-101.
Lee, J.-B., Hayashi, K., Hirata, M., Kuroda, E., Suzuki, E., Kubo, Y., & Hayashi, T. (2006). Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep-sea water in Toyama Bay. Biological and Pharmaceutical Bulletin, 29(10), 2135-2139.
Lee, S. J., Yoon, B.-D., & Oh, H.-M. (1998). Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnology Techniques, 12(7), 553-556.
Lewis, T., Nichols, P. D., & McMeekin, T. A. (2000). Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. Journal of Microbiological Methods, 43(2), 107-116.
Liu, X., Duan, S., Li, A., Xu, N., Cai, Z., & Hu, Z. (2009). Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum. Journal of Applied Phycology, 21, 239-246.
Mandal, V., Mohan, Y., & Hemalatha, S. (2007). Microwave assisted extraction—an innovative and promising extraction tool for medicinal plant research. Pharmacognosy Reviews, 1(1), 7-18.
Marcato, B., & Vianello, M. (2000). Microwave-assisted extraction by fast sample preparation for the systematic analysis of additives in polyolefins by high-performance liquid chromatography. Journal of Chromatography A, 869(1-2), 285-300.
Mason, T. (1990). The uses of ultrasound in chemistry. RSC, Cambridge, 20-56.
Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217-232.
Matos, Â. P., Feller, R., Moecke, E. H. S., de Oliveira, J. V., Junior, A. F., Derner, R. B., & Sant’Anna, E. S. (2016). Chemical characterization of six microalgae with potential utility for food application. Journal of the American Oil Chemists' Society, 93, 963-972.
Molina Grima, E., Sánchez Pérez, J., Garcia Camacho, F., García Sánchez, J., & López Alonso, D. (1993). n-3 PUFA productivity in chemostat cultures of microalgae. Applied Microbiology and Biotechnology, 38, 599-605.
Molino, A., Iovine, A., Casella, P., Mehariya, S., Chianese, S., Cerbone, A., Rimauro, J., & Musmarra, D. (2018). Microalgae characterization for consolidated and new application in human food, animal feed and nutraceuticals. International Journal of Environmental Research and Public Health, 15(11), 2436.
Molins, C., Hogendoorn, E., Heusinkveld, H., Van Harten, D., Van Zoonen, P., & Baumann, R. (1996). Microwave assisted solvent extraction (MASE) for the efficient determination of triazines in soil samples with aged residues. Chromatographia, 43, 527-532.
Mu, N., Mehar, J. G., Mudliar, S. N., & Shekh, A. Y. (2019). Recent advances in microalgal bioactives for food, feed, and healthcare products: commercial potential, market space, and sustainability. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1882-1897.
Mubarak, M., Shaija, A., & Suchithra, T. (2015). A review on the extraction of lipid from microalgae for biodiesel production. Algal Research, 7, 117-123.
Muhaemin, M. M. M., & Kaswadji, R. F. (2010). Biomass nutrient profiles of marine microalgae Dunaliella salina. Jurnal Penelitian Sains, 13(3).
Natarajan, R., Ang, W. M. R., Chen, X., Voigtmann, M., & Lau, R. (2014). Lipid releasing characteristics of microalgae species through continuous ultrasonication. Bioresource Technology, 158, 7-11.
Neto, A. M. P., de Souza, R. A. S., Leon-Nino, A. D., da Costa, J. D. a. A., Tiburcio, R. S., Nunes, T. A., de Mello, T. C. S., Kanemoto, F. T., Saldanha-Corrêa, F. M. P., & Gianesella, S. M. F. (2013). Improvement in microalgae lipid extraction using a sonication-assisted method. Renewable Energy, 55, 525-531.
Oh, H. M., Choi, A.-R., & Mheen, T. I. (2003). High-value materials from microalgae= 미세조류 유래 고부가 유용물질. Korean Journal of (Applied) Microbiology & Biotechnology, 31(2), 95-102.
Olaizola, M. (2003). Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomolecular Engineering, 20(4-6), 459-466.
Ötleş, S., & Pire, R. (2001). Fatty acid composition of Chlorella and Spirulina microalgae species. Journal of AOAC International, 84(6), 1708-1714.
Patil, V., Källqvist, T., Olsen, E., Vogt, G., & Gislerød, H. R. (2007). Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International, 15, 1-9.
Perez-Garcia, O., & Bashan, Y. (2015). Microalgal heterotrophic and mixotrophic culturing for bio-refining: from metabolic routes to techno-economics. Algal Biorefineries: Volume 2: Products and Refinery Design, 61-131.
Plaza, M., Herrero, M., Cifuentes, A., & Ibanez, E. (2009). Innovative natural functional ingredients from microalgae. Journal of Agricultural and Food Chemistry, 57(16), 7159-7170.
Popovich, C. A., Damiani, C., Constenla, D., & Leonardi, P. I. (2012). Lipid quality of the diatoms Skeletonema costatum and Navicula gregaria from the South Atlantic Coast (Argentina): evaluation of its suitability as biodiesel feedstock. Journal of Applied Phycology, 24, 1-10.
Potumarthi, R., & Baadhe, R. R. (2013). Issues in algal biofuels for fuelling the future. Applications of Microbial Engineering; Gupta, VK, Schmoll, M., Maki, M., Tuohy, M., Mazutti, MA, Eds, 408-425.
Prartono, T., Kawaroe, M., & Katili, V. (2013). Fatty acid composition of three diatom species Skeletonema costatum, Thalassiosira sp. and Chaetoceros gracilis. Int. J. Environ. Bioenerg, 6, 28-43.
Radwan, S. S. (1991). Sources of C 20-polyunsaturated fatty acids for biotechnological use. Applied Microbiology and Biotechnology, 35, 421-430.
Rahman, K.M. (2020). Food and High Value Products from Microalgae: Market Opportunities and Challenges. In: Alam, M., Xu, JL., Wang, Z. (eds) Microalgae Biotechnology for Food, Health and High Value Products, 3-27, Singapore.
Ramluckan, K., Moodley, K. G., & Bux, F. (2014). An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method. Fuel, 116, 103-108.
Ranjan, A., Patil, C., & Moholkar, V. S. (2010). Mechanistic assessment of microalgal lipid extraction. Industrial & Engineering Chemistry Research, 49(6), 2979-2985.
Ranjith Kumar, R., Hanumantha Rao, P., & Arumugam, M. (2015). Lipid extraction methods from microalgae: a comprehensive review. Frontiers in Energy Research, 2, 61.
Reitan, K. I., Rainuzzo, J. R., & Olsen, Y. (1994). Effect of nutrient limitation on fatty acid and lipid content of marine microalgae 1. Journal of Phycology, 30(6), 972-979.
Richardson, J. W., Johnson, M. D., Zhang, X., Zemke, P., Chen, W., & Hu, Q. (2014). A financial assessment of two alternative cultivation systems and their contributions to algae biofuel economic viability. Algal research, 4, 96-104.
Richmond, A., Boussiba, S., Vonshak, A., & Kopel, R. (1993). A new tubular reactor for mass production of microalgae outdoors. Journal of Applied Phycology, 5, 327-332.
Rodas-Zuluaga, L. I., Castillo-Zacarías, C., Núñez-Goitia, G., Martínez-Prado, M. A., Rodríguez-Rodríguez, J., López-Pacheco, I. Y., Sosa-Hernández, J. E., Iqbal, H. M. N., & Parra-Saldívar, R. (2021). Implementation of kLa-Based strategy for Scaling Up Porphyridium purpureum (red marine microalga) to produce high-value phycoerythrin, fatty acids, and proteins. Marine Drugs, 19(6), 290.
Rohit, M. V., & Venkata Mohan, S. (2018). Quantum yield and fatty acid profile variations with nutritional mode during microalgae cultivation. Frontiers in Bioengineering and Biotechnology, 6, 111.
Roostaei, J., Zhang, Y., Gopalakrishnan, K., & Ochocki, A. J. (2018). Mixotrophic microalgae biofilm: a novel algae cultivation strategy for improved productivity and cost-efficiency of biofuel feedstock production. Scientific Reports, 8(1), 12528.
Rosenberg, U., & Bogl, W. (1987). Microwave thawing, drying, and baking in the food industry. Food Technology, 41.
Running, J., Severson, D., & Schneider, K. (2002). Extracellular production of L-ascorbic acid by Chlorella protothecoides, Prototheca species, and mutants of P. moriformis during aerobic culturing at low pH. Journal of Industrial Microbiology and Biotechnology, 29, 93-98.
Ryckebosch, E., Muylaert, K., & Foubert, I. (2012). Optimization of an analytical procedure for extraction of lipids from microalgae. Journal of the American Oil Chemists' Society, 89(2), 189-198.
Sajadian, S. F., Morowvat, M. H., & Ghasemi, Y. (2018). Investigation of autotrophic, heterotrophic, and mixotrophic modes of cultivation on lipid and biomass production in Chlorella vulgaris. National Journal of Physiology, Pharmacy and Pharmacology, 8(4), 594-599.
Santin, A., Russo, M. T., Ferrante, M. I., Balzano, S., Orefice, I., & Sardo, A. (2021). Highly valuable polyunsaturated fatty acids from microalgae: strategies to improve their yields and their potential exploitation in aquaculture. Molecules, 26(24), 7697.
Saunders, J., Smith, T., & Stroud, M. (2015). Malnutrition and undernutrition. Medicine, 43(2), 112-118.
Shen, Y., Pei, Z., Yuan, W., & Mao, E. (2009). Effect of nitrogen and extraction method on algae lipid yield. International Journal of Agricultural and Biological Engineering, 2(1), 51-57.
Shene, C., Monsalve, M. T., Vergara, D., Lienqueo, M. E., & Rubilar, M. (2016). High pressure homogenization of Nannochloropsis oculata for the extraction of intracellular components: Effect of process conditions and culture age. European Journal of Lipid Science and Technology, 118(4), 631-639.
Shipe, R. F., & Brzezinski, M. A. (1999). A study of Si deposition synchrony in Rhizosolenia (Bacillariophyceae) mats using a novel 32Si autoradiographic method. Journal of Phycology, 35(5), 995-1004.
Simopoulos, A. P. (1999). Essential fatty acids in health and chronic disease. The American Journal of Clinical Nutrition, 70(3), 560s-569s.
Singh, N., Kumar, K., Goyal, A., & Moholkar, V. S. (2022). Ultrasound-assisted biodiesel synthesis by in–situ transesterification of microalgal biomass: Optimization and kinetic analysis. Algal Research, 61, 102582.
Soto-Sánchez, O., Hidalgo, P., González, A., Oliveira, P. E., Hernández Arias, A. J., & Dantagnan, P. (2023). Microalgae as Raw Materials for Aquafeeds: Growth Kinetics and Improvement Strategies of Polyunsaturated Fatty Acids Production. Aquaculture Nutrition, 2023(1), 5110281
Sousa, I., Gouveia, L., Batista, A. P., Raymundo, A., & Bandarra, N. M. (2008). Microalgae in novel food products. Food Chemistry Research Developments, 75-112.
Spigno, G., & De Faveri, D. M. (2009). Microwave-assisted extraction of tea phenols: A phenomenological study. Journal of Food Engineering, 93(2), 210-217.
Sriharan, S., Bagga, D., & Nawaz, M. (1991). The effects of nutrients and temperature on biomass, growth, lipid production, and fatty acid composition of Cyclotella cryptica Reimann, Lewin, and Guillard. Applied Biochemistry and Biotechnology, 28, 317-326.
Stramarkou, M., Oikonomopoulou, V., Chalima, A., Boukouvalas, C., Topakas, E., & Krokida, M. (2021). Optimization of green extractions for the recovery of docosahexaenoic acid (DHA) from Crypthecodinium cohnii. Algal Research, 58, 102374.
Su, G., Jiao, K., Li, Z., Guo, X., Chang, J., Ndikubwimana, T., Sun, Y., Zeng, X., Lu, Y., & Lin, L. (2016). Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum. Bioprocess and Biosystems Engineering, 39, 1129-1136.
Suali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316-4342.
Subramanian, G., Yadav, G., & Sen, R. (2016). Rationally leveraging mixotrophic growth of microalgae in different photobioreactor configurations for reducing the carbon footprint of an algal biorefinery: a techno-economic perspective. Rsc Advances, 6(77), 72897-72904.
Survase, S. A., Bajaj, I. B., & Singhal, R. S. (2006). Biotechnological Production of Vitamins. Food Technology & Biotechnology, 44(3).
Takeda, H. (1991). Sugar composition of the cell wall and the taxonomy of Chlorella (Chlorophyceae) 1. Journal of Phycology, 27(2), 224-232.
Tatsuzawa, H., & Takizawa, E. (1995). Changes in lipid and fatty acid composition of Pavlova lutheri. Phytochemistry, 40(2), 397-400.
Tharunkumar, J., Jothibasu, K., Iniyakumar, M., & Rakesh, S. (2022). Microalgae Cell Wall Disruption and Biocomponents Fractionation for Fuel Conversion. Micro-algae: Next-generation Feedstock for Biorefineries: Contemporary Technologies and Future Outlook, 73-95.
Tibbetts, S. M., Milley, J. E., & Lall, S. P. (2015). Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. Journal of Applied Phycology, 27, 1109-1119.
Valencia, I., Ansorena, D., & Astiasarán, I. (2007). Development of dry fermented sausages rich in docosahexaenoic acid with oil from the microalgae Schizochytrium sp.: Influence on nutritional properties, sensorial quality and oxidation stability. Food Chemistry, 104(3), 1087-1096.
Vieira, V. (2017). The role of the value-chain for the development of high-value products from microalgae. Algal Biomass Summit.
Wang, A., Yan, K., Chu, D., Nazer, M., Lin, N. T., Samaranayake, E., & Chang, J. (2020). Microalgae as a mainstream food ingredient: Demand and supply perspective. Microalgae Biotechnology for Food, Health and High Value Products, 29-79.
Wang, J., Yang, H., & Wang, F. (2014). Mixotrophic cultivation of microalgae for biodiesel production: status and prospects. Applied Biochemistry and Biotechnology, 172, 3307-3329.
Wei, L., Huang, X., & Huang, Z. (2015). Temperature effects on lipid properties of microalgae Tetraselmis subcordiformis and Nannochloropsis oculata as biofuel resources. Chinese Journal of Oceanology and Limnology, 33(1), 99-106.
Yongmanitchai, W. (1989). Omega-3 fatty acids: alternative sources of production. Process Biochem., 24, 117-125.
Yongmanitchai, W., & Ward, O. P. (1991). Screening of algae for potential alternative sources of eicosapentaenoic acid. Phytochemistry, 30(9), 2963-2967.
Yuvraj, & Padmanabhan, P. (2017). Technical insight on the requirements for CO 2-saturated growth of microalgae in photobioreactors. 3 Biotech, 7, 1-7.
Zghaibi, N., Omar, R., Mustapa Kamal, S. M., Awang Biak, D. R., & Harun, R. (2019). Microwave-assisted brine extraction for enhancement of the quantity and quality of lipid production from microalgae Nannochloropsis sp. Molecules, 24(19), 3581.
Zhang, X., Yan, S., Tyagi, R. D., Drogui, P., & Surampalli, R. Y. (2014). Ultrasonication assisted lipid extraction from oleaginous microorganisms. Bioresource Technology, 158, 253-261.
Zhang, Z., Sun, D., Wu, T., Li, Y., Lee, Y., Liu, J., & Chen, F. (2017). The synergistic energy and carbon metabolism under mixotrophic cultivation reveals the coordination between photosynthesis and aerobic respiration in Chlorella zofingiensis. Algal Research, 25, 109-116.
Zhu, C., & Lee, Y. (1997). Determination of biomass dry weight of marine microalgae. Journal of Applied Phycology, 9, 189-194.