中華民國國家標準(central nervous system, CNS)。飼料檢驗法 (粗脂肪之測定) (CNS 2770-4 N4024-4)。經濟部標準檢驗局。臺北。
古璦寧。(2013)。臺灣蜆 (Corbicula fluminea)脂溶性機能成分之鑑定、影響因素及對人肝細胞氧化壓力之功效。國立臺灣海洋大學食品科學系碩士論文。基隆。台灣貝類資料庫。正確測量貝殼的方法。中央研究院。臺北。
台灣綠藻公司。Available online : https://www.taiwanChlorella.com.tw/shoppings.php?page=1 (accessed on 16 January 2024).
李汶。(2010)。臺灣蜆 (Corbicula fluminea)生物活性物質受濾食微藻之影響。國立臺灣海洋大學食品科學系碩士論文。基隆。味丹生技。Available online : https://000527.vedan.com/zh-tw/Products_list.php?productCategoryId=0ac7ab70-4f63-41ab-8960-ac4df06070c9 (accessed on 16 January 2024).
邱煜凱。2013。小球藻植物固醇之鑑定。國立臺灣海洋大學食品科學系碩士學位論文。基隆。衛生福利部食品藥物管理署。2015。食品添加物規格檢驗方法-附錄A一般試驗法。21-22。臺灣。
A.O.A.C. (Association of Official Analytical Chemists). (1995). Official Methods of Analysis (14th Ed.). Washington, D.C., USA: Association of Official Analytical Chemists.
A.O.A.C. (Association of Official Analytical Chemists). (2012). Official Methods of Analysis (19th Ed.) Washington, DC, USA: Association of Official Analytical Chemists.
Abbas M. M., Al-Rawi N., Abbas M. A., and Al-Khateeb I. (2019). Naringenin potentiated β-sitosterol healing effect on the scratch wound assay. Research in Pharmaceutical Sciences, 14(6), 566.
Abdou E. M., Fayed M. A., Helal D., and Ahmed K. A. (2019). Assessment of the hepatoprotective effect of developed lipid-polymer hybrid nanoparticles (LPHNPs) encapsulating naturally extracted β-Sitosterol against CCl4 induced hepatotoxicity in rats. Scientific Reports, 9(1), 19779.
Alagawany M., Taha A. E., Noreldin A., El-Tarabily K. A., and Abd El-Hack M. E. (2021). Nutritional applications of species of Spirulina and Chlorella in farmed fish: A review. Aquaculture, 542, 736841.
Alishah Aratboni H., Rafiei N., Garcia-Granados R., Alemzadeh A., and Morones-Ramírez J. R. (2019). Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microbial Cell Factories, 18, 1-17.
Alrifai O., Hao X., Marcone M. F., and Tsao R. (2019). Current review of the modulatory effects of LED lights on photosynthesis of secondary metabolites and future perspectives of microgreen vegetables. Journal of Agricultural and Food Chemistry, 67(22), 6075-6090.
Ambati R. R., Gogisetty D., Aswathanarayana R. G., Ravi S., Bikkina P. N., Bo L., and Yuepeng S. (2019). Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Critical Reviews in Food Science and Nutrition, 59(12), 1880-1902.
Ambati R. R., Phang S. M., Ravi S., and Aswathanarayana R. G. (2014). Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Marine Drugs, 12(1), 128-152.
Andrade L. M., Andrade C. J., Dias M., Nascimento C., and Mendes M. A. (2018). Chlorella and spirulina microalgae as sources of functional foods. Nutraceuticals, and Food Supplements, 6(1), 45-58.
Awad A. B., Fink C. S., Williams H., and Kim U. (2001). In vitro and in vivo (SCID mice) effects of phytosterols on the growth and dissemination of human prostate cancer PC-3 cells. European Journal of Cancer Prevention, 10(6), 507-513.
Baidya A., Akter T., Islam M. R., Shah A. A., Hossain M. A., Salam M. A., and Paul S. I. (2021). Effect of different wavelengths of LED light on the growth, chlorophyll, β-carotene content and proximate composition of Chlorella ellipsoidea. Heliyon, 7(12).
Bantis F. (2021). Light spectrum differentially affects the yield and phytochemical content of microgreen vegetables in a plant factory. Plants, 10(10), 2182.
Benveniste P. (2004). Biosynthesis and accumulation of sterols. Annual Review of Plant Biology Volume, 55, 429-457.
Bialevich, V., Zachleder, V., & Bišová, K. (2022). The effect of variable light source and light intensity on the growth of three algal species. Cells, 11(8), 1293.
Bian Z. H., Cheng R. F., Yang Q. C., Wang J., and Lu C. (2016). Continuous light from red, blue, and green light-emitting diodes reduces nitrate content and enhances phytochemical concentrations and antioxidant capacity in lettuce. Journal of the American Society for Horticultural Science, 141(2), 186-195.
Blanc M., Hsieh W. Y., Robertson K. A., Watterson S., Shui G., Lacaze P., Khondoker M., Dickinson P., Sing G., Rodríguez-Martín S., Phelan P., Forster T., Strobl B., Müller M., Riemersma R., Osborne T., Wenk M. R., Angulo A., and Ghazal P. (2011). Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS Biology, 9(3), e1000598.
Calpe-Berdiel L., Escolà-Gil J. C., and Blanco-Vaca F. (2009). New insights into the molecular actions of plant sterols and stanols in cholesterol metabolism. Atherosclerosis, 203(1), 18-31.
Canelli G., Tarnutzer C., Carpine R., Neutsch L., Bolten C. J., Dionisi F., and Mathys A. (2020). Biochemical and nutritional evaluation of Chlorella and AuxenoChlorella biomasses relevant for food application. Frontiers in Nutrition, 7, 565996.
Chapman K. D., Venables B. J., Dian E. E., and Gross G. W. (2003). Identification and quantification of neuroactive N‐acylethanolamines in cottonseed processing fractions. Journal of the American Oil Chemists' Society, 80(3), 223-229.
Chapman K. D., Venables B., Markovic R., Blair Jr R. W., and Bettinger C. (1999). N-Acylethanolamines in seeds. Quantification of molecular species and their degradation upon imbibition. Plant Physiology, 120(4), 1157-1164.
Choi H. I., Hwang S. W., and Sim S. J. (2019). Comprehensive approach to improving life-cycle CO2 reduction efficiency of microalgal biorefineries: A review. Bioresource Technology, 291, 121879.
Chu B., Zhao J., Zheng H., Gong J., Chen K., Zhang S., Xiao G. and He Y. (2021). Performance of LED with mixed wavelengths or two-phase culture on the growth and lipid accumulation of Chlorella pyrenoidosa. International Journal of Agricultural and Biological Engineering, 14(1), 90-96.
Chuu C. P., Kokontis J. M., Hiipakka R. A., and Liao S. (2007). Modulation of liver X receptor signaling as novel therapy for prostate cancer. Journal of Biomedical Science, 14, 543-553.
Ciccone M. M., Cortese F., Gesualdo M., Carbonara S., Zito A., Ricci G., De Pascalis F., Scicchitano P., and Riccioni G. (2013). Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediators of Inflammation, 2013.
Colussi G., Catena C., Novello M., Bertin N., and Sechi L. A. (2017). Impact of omega-3 polyunsaturated fatty acids on vascular function and blood pressure: relevance for cardiovascular outcomes. Nutrition, Metabolism and Cardiovascular Diseases, 27(3), 191-200.
Converti A., Casazza A. A., Ortiz E. Y., Perego P., and Del Borghi M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6), 1146-1151.
Craver J. K., Gerovac J. R., Lopez R. G., and Kopsell D. A. (2017). Light intensity and light quality from sole-source light-emitting diodes impact phytochemical concentrations within Brassica microgreens. Journal of the American Society for Horticultural Science, 142(1), 3-12.
D’Alessandro E. B., and Antoniosi Filho N. R. (2016). Concepts and studies on lipid and pigments of microalgae: A review. Renewable and Sustainable Energy Reviews, 58, 832-841.
De-Bashan L. E., Trejo A., Huss V. A. R., Hernandez J. P., Bashan Y. (2008). Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresource Technology, 99, 4980–4989.
Dighe S. B., Kuchekar B. S., and Wankhede S. B. (2016). Analgesic and anti-inflammatory activity of β-sitosterol isolated from leaves of Oxalis corniculata. International Journal of Pharmacological Research, 6(3), 109-113.
Dineshkumar R., Chauhan A. S., and Sen R. (2020). Optimal and strategic delivery of CO2 for Chlorella minutissima-mediated valorization of domestic wastewater with concomitant production of biomass and biofuel. Sustainable Energy & Fuels, 4(12), 6321-6329.
Diprat A. B., Thys R. C. S., Rodrigues E., and Rech R. (2020). Chlorella sorokiniana: A new alternative source of carotenoids and proteins for gluten-free bread. Lwt, 134, 109974.
Dörr R., Huss V. A. R. (1990). Characterization of nuclear DNA in 12 species of Chlorella (Chlorococcales, Chlorophyta) by DNA reassociation. Biosystems, 24, 145-155.
Du L. Jiang N., Wang G., Chu, Y., Lin, W., Qian, J., Zhang Y., Zheng J., and Chen G. (2014). Autophagy inhibition sensitizes bladder cancer cells to the photodynamic effects of the novel photosensitizer chlorophyllin e4. Journal of Photochemistry and Photobiology B: Biology, 133, 1-10.
Eclae Cosmetics. Available online: http://eclae.com/en/eclae/9-discover-eclae#dunaliellasalina (accessed on 12 January 2024).
Fan X., Zang J., Xu Z., Guo S., Jiao X., Liu X., and Gao Y. (2013). Effects of different light quality on growth, chlorophyll concentration and chlorophyll biosynthesis precursors of non-heading Chinese cabbage (Brassica campestris L.). Acta Physiologiae Plantarum, 35, 2721-2726.
Feng S., Gan L., Yang C. S., Liu A. B., Lu W., Shao P., Dai Z., Sun P. and Luo Z. (2018). Effects of stigmasterol and β-sitosterol on nonalcoholic fatty liver disease in a mouse model: a lipidomic analysis. Journal of Agricultural and Food Chemistry, 66(13), 3417-3425.
Fernandes A. S., Nascimento T. C., Pinheiro P. N., de Rosso V. V., de Menezes C. R., Jacob-Lopes E., and Zepka L. Q. (2021). Insights on the intestinal absorption of chlorophyll series from microalgae. Food Research International, 140, 110031.
Folta K. M., and Childers K. S. (2008). Light as a growth regulator: Controlling plant biology with narrow-bandwidth solid-state lighting systems. HortScience, 43(7), 1957-1964.
Fraile L., Crisci E., Córdoba L., Navarro M. A., Osada J., and Montoya M. (2012). Immunomodulatory properties of beta-sitosterol in pig immune responses. International Immunopharmacology, 13(3), 316-321.
Frigaard N. U., Larsen K. L., and Cox R. P. (1996). Spectrochromatography of photosynthetic pigments as a fingerprinting technique for microbial phototrophs. FEMS Microbiology Ecology, 20(2), 69-77.
Fu W., Magnúsdóttir M., Brynjólfson S., Palsson B. Ø., & Paglia G. (2012). UPLC-UV-MS E analysis for quantification and identification of major carotenoid and chlorophyll species in algae. Analytical and Bioanalytical Chemistry, 404, 3145-3154.
FüzfaiI Z., Molnár-Perl I. (2007). Gas chromatographic–mass spectrometric fragmentation study of flavonoids as their trimethylsilyl derivatives:Analysis of flavonoids, sugars, carboxylic and amino acids in model systems and in citrus fruits. Journal of Chromatography A, 1149 (1), 88–101.
Gachet M. S., Schubert A., Calarco S., Boccard J. and Gertsch J. (2017). Targeted metabolomics shows plasticity in the evolution of signaling lipids and uncovers old and new endocannabinoids in the plant kingdom. Scientific Reports, 7(1), 41177.
Genser B., Silbernagel G., De Backer G., Bruckert E., Carmena R., Chapman M. J., Deanfield J., Descamps O. S., Rietzschel E. R., Dias K. C., and März W. (2012). Plant sterols and cardiovascular disease: a systematic review and meta-analysis. European Heart Journal, 33(4), 444-451.
Glemser M., Heining M., Schmidt J., Becker A., Garbe D., Buchholz R., and Brück T. (2016). Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Applied Microbiology and Biotechnology, 100, 1077-1088.
Goad L. J., and Akihisa T. (1997). Mass spectrometry of sterols. Analysis of Sterols, 152-196.
Goericke R., Olson R. J., & Shalapyonok A. J. D. S. R. P. I. O. R. P. (2000). A novel niche for Prochlorococcus sp. in low-light suboxic environments in the Arabian Sea and the Eastern Tropical North Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 47(7), 1183-1205.
Gomez C., Morrow R. C., Bourget C. M., Massa G. D., and Mitchell C. A. (2013). Comparison of intracanopy light-emitting diode towers and overhead high-pressure sodium lamps for supplemental lighting of greenhouse-grown tomatoes. HortTechnology, 23(1), 93-98.
Gong G., Wu B., Liu L., Li J., He M., and Hu, G. (2022). Enhanced biomass and lipid production by light exposure with mixed culture of Rhodotorula glutinis and Chlorella vulgaris using acetate as sole carbon source. Bioresource Technology, 364, 128139.
Guan X. L., Souza C. M., Pichler H., Dewhurst G., Schaad O., Kajiwara K., Wakabayashi H., Ivanova T., Castillon G. A., Piccolis M., Abe F., Loewith R., Funato K., Wenk M. R., and Riezman H. (2009). Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Molecular Biology of the Cell, 20(7), 2083-2095.
Guedes A. C., Amaro H. M., and Malcata F. X. (2011). Microalgae as sources of carotenoids. Marine Drugs, 9(4), 625-644.
Gulati S., Liu Y., Munkacsi A. B., Wilcox L., and Sturley S. L. (2010). Sterols and sphingolipids: dynamic duo or partners in crime?. Progress in Lipid Research, 49(4), 353-365.
Hagman C. H. C. (2020). Phytoplankton in humic and colored Nordic lakes.
Hailat I. A., Parrish C. C., and Helleur R. J. (2016). Sterol composition of blue mussels fed algae and effluent diets from finfish culture. Journal of Shellfish Research, 35(2), 429-434.
Hannich J. T., Umebayashi K., and Riezman H. (2011). Distribution and functions of sterols and sphingolipids. Cold Spring Harbor Perspectives in Biology, 3(5), a004762.
Harwood J. L. (2019). Algae: Critical sources of very long-chain polyunsaturated fatty acids. Biomolecules, 9(11), 708.
Hasan M. M., Bashir T., Ghosh R., Lee S. K., and Bae, H. (2017). An overview of LEDs’ effects on the production of bioactive compounds and crop quality. Molecules, 22(9), 1420.
He J. X., Fujioka S., Li T. C., Kang S. G., Seto H., Takatsuto S., Yoshida S., and Jang J. C. (2003). Sterols regulate development and gene expression in Arabidopsis. Plant Physiology, 131(3), 1258-1269.
He Q., Yang H., Wu L., and Hu C. (2015). Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresource Technology, 191, 219-228.
Heins R. D., Liu B., and Runkle E. S. (1998). Regulation of crop growth and development based on environmental factors. In XXV International Horticultural Congress, Part 3: Culture Techniques with Special Emphasis on Environmental Implications, 513 (pp. 17-28).
Heydarizadeh P., Poirier I., Loizeau D., Ulmann L., Mimouni V., Schoefs B., and Bertrand M. (2013). Plastids of marine phytoplankton produce bioactive pigments and lipids. Marine Drugs, 11(9), 3425-3471.
Hikihara R., Yamasaki Y., Shikata T., Nakayama N., Sakamoto S., Kato S., Hatate H., and Tanaka, R. (2020). Analysis of phytosterol, fatty acid, and carotenoid composition of 19 microalgae and 6 bivalve species. Journal of Aquatic Food Product Technology, 29(5), 461-479.
Holmberg N., Harker M., Gibbard C. L., Wallace A. D., Clayton J. C., Rawlins S., Hellyer A., and Safford R. (2002). Sterol C-24 methyltransferase type 1 controls the flux of carbon into sterol biosynthesis in tobacco seed. Plant Physiology, 130(1), 303-311.
Hussein H. A., Mohamad H., Ghazaly M. M., Laith A. A. and Abdullah M. A. (2020). Anticancer and antioxidant activities of Nannochloropsis oculata and Chlorella sp. extracts in co-application with silver nanoparticle. Journal of King Saud University-Science, 32(8), 3486-3494.
Janssen M., Kuijpers T. C., Veldhoen B., Ternbach M. B., Tramper J., Mur L. R., Wijffels R. H. (1999). Specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles: 13–87s. Journal of Biotechnology, 35, 323–333.
Kaiser E., Ouzounis T., Giday H., Schipper R., Heuvelink E., and Marcelis L. F. (2019). Adding blue to red supplemental light increases biomass and yield of greenhouse-grown tomatoes, but only to an optimum. Frontiers in Plant Science, 9, 2002.
Kandilian R., Lee E., and Pilon L. (2013). Radiation and optical properties of Nannochloropsis oculata grown under different irradiances and spectra. Bioresource Technology, 137, 63-73.
Kessler R. E. and Huss V. A. R. (1992). Comparative physiology and biochemistry and taxonomic assignment of the Chlorella (chlorophyceae) strains of the culture collection of the University of Texas at Austin. Journal of Phycology, 28, 550 – 553.
Kim S. C., Chapman K. D., and Blancaflor E. B. (2010). Fatty acid amide lipid mediators in plants. Plant Science, 178(5), 411-419.
Kim S. H., Sunwoo I. Y., Hong H. J., Awah C. C., Jeong G. T. and Kim S. K. (2019). Lipid and unsaturated fatty acid productions from three microalgae using nitrate and light-emitting diodes with complementary LED wavelength in a two-phase culture system. Bioprocess and Biosystems Engineering, 42, 1517-1526.
Kim T. H., Lee Y., Han S. H., and Hwang S. J. (2013). The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresource Technology, 130, 75-80.
Kuczynska P., Jemiola-Rzeminska M., and Strzalka K. (2015). Photosynthetic pigments in diatoms. Marine Drugs, 13(9), 5847-5881.
Kumar K., Dasgupta C. N., Das D. (2014). Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresource Technology, 167, 358–366.
Kyriacou M. C., El-Nakhel C., Pannico A., Graziani G., Soteriou G. A., Giordano M., Zarrelli A., Ritieni A., De Pascale S., Rouphael Y. (2019). Genotype-specific modulatory effects of select spectral bandwidths on the nutritive and phytochemical composition of microgreens. Frontiers in Plant Science, 10, 1501.
Lane C. D., Coury D. A., Allnutt F. C. T. (2017). Composition and potential products from AuxenoChlorella protothecoides, Chlorella sorokiniana and Chlorella vulgaris. Industrial Biotechnology, 13, 270–276.
Lee J. Y., Yoo C., Jun S. Y., Ahn C. Y., and Oh H. M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101(1), S75-S77.
Lefsrud M. G., Kopsell D. A., Kopsell D. E., and Curran‐Celentano J. (2006). Irradiance levels affect growth parameters and carotenoid pigments in kale and spinach grown in a controlled environment. Physiologia Plantarum, 127(4), 624-631.
Lim Y. A., Chong M. N., Foo S. C., and Ilankoon I. M. S. K. (2021). Analysis of direct and indirect quantification methods of CO2 fixation via microalgae cultivation in photobioreactors: A critical review. Renewable and Sustainable Energy Reviews, 137, 110579.
Lima S., Schulze P. S., Schüler L. M., Rautenberger R., Morales-Sánchez D., Santos T. F., Pereira H., Varela J. C. S., Scargiali F., Wijffels R. H. and Kiron, V. (2021). Flashing light emitting diodes (LEDs) induce proteins, polyunsaturated fatty acids and pigments in three microalgae. Journal of Biotechnology, 325, 15-24.
Lin K. H., Huang M. Y., Huang W. D., Hsu M. H., Yang Z. W., and Yang C. M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae, 150, 86-91.
Lindsey K., Pullen M. L., and Topping J. F. (2003). Importance of plant sterols in pattern formation and hormone signalling. Trends in Plant Science, 8(11), 521-525.
Liu H., and Liu W. (2017). Concentration and distributions of fatty acids in algae, submerged plants and terrestrial plants from the northeastern Tibetan Plateau. Organic Geochemistry, 113, 17-26.
Liu J., Yuan C., Hu G., and Li F. (2012). Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11-1 under nitrogen limitation. Applied Biochemistry and Biotechnology, 166, 2127-2137.
Liu S., Jiang J., Ma Z., Xiao M., Yang L., Tian B., Yu Y., Bi C., Fang A. and Yang Y. (2022). The role of hydroxycinnamic acid amide pathway in plant immunity. Frontiers in Plant Science, 13, 922119.
Lizzul A. M., Lekuona-Amundarain A., Purton S., and Campos L. C. (2018). Characterization of Chlorella sorokiniana, UTEX 1230. Biology, 7(2), 25.
López-Rubalcava C., Piña-Medina B., Estrada-Reyes R., Heinze G., and Martínez-Vázquez M. (2006). Anxiolytic-like actions of the hexane extract from leaves of Annona cherimolia in two anxiety paradigms: Possible involvement of the GABA/benzodiazepine receptor complex. Life Sciences, 78(7), 730-737.
Luo X., Su P., and Zhang W. (2015). Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Marine Drugs, 13(7), 4231-4254.
Mackinney G. (1941). Absorption of light by chlorophyll solutions. Journal of Biological Chemistry, 140(2), 315–322.
Maltsev Y., and Maltseva K. (2021). Fatty acids of microalgae: Diversity and applications. Reviews in Environmental Science and Bio/Technology, 20, 515-547.
Maltsev Y., Maltseva K., Kulikovskiy M. and Maltseva S. (2021). Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology, 10(10), 1060.
Meng Q., Kelly N., and Runkle E. S. (2019). Substituting green or far-red radiation for blue radiation induces shade avoidance and promotes growth in lettuce and kale. Environmental and Experimental Botany, 162, 383-391.
Mercer E. I. (1993). Inhibitors of sterol biosynthesis and their applications. Progress in Lipid Research, 32(4), 357-416.
Min K. H., Kim D. H., Ki M. R., and Pack S. P. (2022). Recent progress in flocculation, dewatering, and drying technologies for microalgae utilization: Scalable and low-cost harvesting process development. Bioresource Technology, 344, 126404.
Naznin M. T., and Lefsrud M. G. (2014, September). Impact of LED irradiance on plant photosynthesis and action spectrum of plantlet. In Optics and Photonics for Information Processing VIII (Vol. 9216, p. 921602). SPIE.
Naznin M. T., Lefsrud M., Gravel V., and Azad M. O. K. (2019). Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants, 8(4), 93.
Negi S., Perrine Z., Friedland N., Kumar A., Tokutsu R., Minagawa J., Berg H., Barry A. N., Govindjee G. and Sayre R. (2020). Light regulation of light‐harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae. The Plant Journal, 103(2), 584-603.
Novoveská L., Ross M. E., Stanley M. S., Pradelles R., Wasiolek V., and Sassi J. F. (2019). Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Marine Drugs, 17(11), 640.
Nzayisenga J. C., Farge X., Groll S. L., Sellstedt A. (2020). Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for Biofuels, 13(1), 1-8.
O'Callaghan Y., Kenny O., O’Connell N. M., Maguire A. R., McCarthy F. O., and O'Brien N. M. (2013). Synthesis and assessment of the relative toxicity of the oxidised derivatives of campesterol and dihydrobrassicasterol in U937 and HepG2 cells. Biochimie, 95(3), 496-503.
Ododo M. M., Choudhury M. K., and Dekebo A. H. (2016). Structure elucidation of β-sitosterol with antibacterial activity from the root bark of Malva parviflora. SpringerPlus, 5(1), 1-11.
Ogbonna J. C., Nweze N. O., and Ogbonna C. N. (2021). Effects of light on cell growth, chlorophyll, and carotenoid contents of Chlorella sorokiniana and Ankistrodesmus falcatus in poultry dropping medium. Journal of Applied Biology and Biotechnology, 9(2), 157-163.
Orlando M., Trivellini A., Puccinelli M., Ferrante A., Incrocci L., and Mensuali-Sodi A. (2022). Increasing the functional quality of Crocus sativus L. by-product (tepals) by controlling spectral composition. Horticulture, Environment, and Biotechnology, 63(3), 363-373.
Osório C., Machado S., Peixoto J., Bessada S., Pimentel F. B., C. Alves R., and Oliveira M. B. P. (2020). Pigments content (chlorophylls, fucoxanthin and phycobiliproteins) of different commercial dried algae. Separations, 7(2), 33.
Ouzounis T., Razi Parjikolaei B., Fretté X., Rosenqvist E., and Ottosen C. O. (2015). Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. Frontiers in Plant Science, 6, 19.
Paniagua-Pérez R., Flores-Mondragón G., Reyes-Legorreta C., Herrera-López B., Cervantes-Hernández I., Madrigal-Santillán O., Morales-González J. A., Álvarez-González I. and Madrigal-Bujaidar E. (2017). Evaluation of the anti-inflammatory capacity of beta-sitosterol in rodent assays. African Journal of Traditional, Complementary and Alternative Medicines, 14(1), 123-130.
Paradiso R., Arena C., Rouphael Y., d’Aquino L., Makris K., Vitaglione P., and De Pascale S. (2019). Growth, photosynthetic activity and tuber quality of two potato cultivars in controlled environment as affected by light source. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 153(5), 725-735.
Park Y. J., Bang I. J., Jeong M. H., Kim H. R., Lee D. E., Kwak J. H., and Chung K. H. (2019). Effects of β-Sitosterol from corn silk on TGF-β1-induced epithelial–mesenchymal transition in lung alveolar epithelial cells. Journal of Agricultural and Food Chemistry, 67(35), 9789-9795.
Paterson E., & Amadò R. (1997). Simplified method for the simultaneous gas chromatographic determination of fatty acid composition and cholesterol in food. LWT-Food Science and Technology, 30(2), 202-209.
Patterson G. W. (1974). Sterols of some green algae. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 47(2), 453-457.
Patterson G. W., and Nes W. D. (Eds.). (1991). Physiology and biochemistry of sterols. The American Oil Chemists Society.
Pérez-Gálvez A., Viera I., & Roca M. (2020). Development of an accurate and direct method for the green food colorants detection. Food Research International, 136, 109484.
Piasecka A., and Baier A. (2022). Metabolic and proteomic analysis of Chlorella sorokiniana, Chloroidium saccharofilum, and Chlorella vulgaris cells cultured in autotrophic, photoheterotrophic, and mixotrophic cultivation modes. Molecules, 27(15), 4817.
Ponnulakshmi R., Shyamaladevi B., Vijayalakshmi P., and Selvaraj J. (2019). In silico and in vivo analysis to identify the antidiabetic activity of beta sitosterol in adipose tissue of high fat diet and sucrose induced type-2 diabetic experimental rats. Toxicology Mechanisms and Methods, 29(4), 276-290.
Porsbring T., Blanck H., Tjellström H., and Backhaus T. (2009). Toxicity of the pharmaceutical clotrimazole to marine microalgal communities. Aquatic Toxicology, 91(3), 203-211.
Quach H. T., Steeper R. L., and Griffin G. W. (2004). An improved method for the extraction and thin-layer chromatography of chlorophyll a and b from spinach. Journal of Chemical Education, 81(3), 385.
Ra C. H., Sirisuk P., Jung J. H., Jeong G. T., and Kim S. K. (2018). Effects of light-emitting diode (LED) with a mixture of wavelengths on the growth and lipid content of microalgae. Bioprocess and Biosystems Engineering, 41, 457-465.
Rana M. S. and Prajapati S. K. (2021). Stimulating effects of glycerol on the growth, phycoremediation and biofuel potential of Chlorella pyrenoidosa cultivated in wastewater. Environmental Technology & Innovation, 24, 102082.
Randhir A., Laird D. W., Maker G., Trengove R. and Moheimani N. R. (2020). Microalgae: a potential sustainable commercial source of sterols. Algal Research, 46, 101772.
Rao A. V., and Rao L. G. (2007). Carotenoids and human health. Pharmacological Research, 55(3), 207-216.
Ras M., Steyer J.-P., Bernard O. (2013). Temperature effect on microalgae:a crucial factor for outdoor production. Reviews in Environmental Science and Bio/Technology, 12(2), 153–164.
Renaud S. M., Thinh L. V., Lambrinidis G., and Parry D. L. (2002). Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211(1-4), 195-214.
Rimm E. B., Appel L. J., Chiuve S. E., Djoussé L., Engler M. B., Kris-Etherton P. M., Mozaffarian D., Siscovick D. S., and Lichtenstein, A. H. (2018). Seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease: a science advisory from the American Heart Association. Circulation, 138(1), e35-e47.
Ritchie R. J (2006). Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research, 89(1), 27-41.
Ritchie R. J., Sma-Air S., and Phongphattarawat S. (2021). Using DMSO for chlorophyll spectroscopy. Journal of Applied Phycology, 33, 2047-2055.
Roleda M. Y., Slocombe S. P., Leakey R. J., Day J. G., Bell E. M., and Stanley M. S. (2013). Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresource Technology, 129, 439-449.
Samuolienė G., Brazaitytė A., Urbonavičiūtė A., Šabajevienė G., and Duchovskis P. (2010). The effect of red and blue light component on the growth and development of frigo strawberries. Zemdirbyste-Agriculture, 97(2), 99-104.
Samuolienė G., Viršilė A., Brazaitytė A., Jankauskienė J., Sakalauskienė S., Vaštakaitė V., Novičkovas A., Viškelienė A., Sasnauskas A., Duchovskis P. (2017). Blue light dosage affects carotenoids and tocopherols in microgreens. Food Chemistry, 228, 50-56.
Santos A. R., Niero R., Valdir Filho C., Yunes R. A., Pizzolatti M. G., Delle Monache F., and Calixtro J. B. (1995). Antinociceptive properties of steroids isolated from Phyllanthus corcovadensis in mice. Planta Medica, 61(04), 329-332.
Scheer H. (2006). An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications, 1-26.
Schulze P. S., Barreira L. A., Pereira H. G., Perales J. A., and Varela J. C. (2014). Light emitting diodes (LEDs) applied to microalgal production. Trends in Biotechnology, 32(8), 422-430.
Sforza E., Gris B., de Farias Silva C., Morosinotto T., and Bertucco A. (2014). Effects of light on cultivation of Scenedesmus obliquus in batch and continuous flat plate photobioreactor. Chemical Engineering Transactions, 38, 211.
Sharma K. K., Schuhmann H., and Schenk P. M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5(5), 1532-1553.
Sharmila R. and Sindhu G. (2017). Evaluate the antigenotoxicity and anticancer role of β-sitosterol by determining oxidative DNA damage and the expression of phosphorylated mitogen-activated protein kinases’, C-fos, C-jun, and endothelial growth factor receptor. Pharmacognosy Magazine, 13(49), 95.
Sheashea M., Xiao J., & Farag M. A. (2021). MUFA in metabolic syndrome and associated risk factors: is MUFA the opposite side of the PUFA coin?. Food & Function, 12(24), 12221-12234.
Shokravi Z., Shokravi H., Chyuan O. H., Lau W. J., Koloor S. S. R., Petrů M., and Ismail A. F. (2020). Improving ‘lipid productivity’in microalgae by bilateral enhancement of biomass and lipid contents: A review. Sustainability, 12(21), 9083.
Shu C. H., Tsai C. C., Liao W. H., Chen K. Y., and Huang H. C. (2012). Effects of light quality on the accumulation of oil in a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. Journal of Chemical Technology & Biotechnology, 87(5), 601-607.
Simopoulos A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy, 56(8), 365-379.
Singh S. P., and Singh P. (2015). Effect of temperature and light on the growth of algae species: A review. Renewable and Sustainable Energy Reviews, 50, 431-444.
Sirisuk P., Ra C. H., Jeong G. T., and Kim S. K. (2018). Effects of wavelength mixing ratio and photoperiod on microalgal biomass and lipid production in a two-phase culture system using LED illumination. Bioresource Technology, 253, 175-181.
Sorokin C. and Myers J. (1953). A High-Temperature Strain of Chlorella. Science, 117(3039), 330-331.
Soupas L., Juntunen L., Säynäjoki S., Lampi A. M., and Piironen V. (2004). GC‐MS method for characterization and quantification of sitostanol oxidation products. Journal of the American Oil Chemists' Society, 81(2), 135-141.
Stahl W., and Sies H. (2012). β-Carotene and other carotenoids in protection from sunlight. The American Journal of Clinical Nutrition, 96(5), 1179S-1184S.
Starr P. R., and Parks L. W. (1962). Effect of temperature on sterol metabolism in yeast. Journal of Cellular and Comparative Physiology, 59(2), 107-110.
Sushchik N. N., Kalacheva G. S., Zhila N. O., Gladyshev M. I., and Volova, T. G. (2003). A temperature dependence of the intra-and extracellular fatty-acid composition of green algae and cyanobacterium. Russian Journal of Plant Physiology, 50, 374-380.
Tanyaros S., and Chuseingjaw S. (2016). A partial substitution of microalgae with single cell detritus produced from seaweed (P orphyra haitanensis) for the nursery culture of tropical oyster (C rassostrea belcheri). Aquaculture Research, 47(7), 2080-2088.
Teo C. L., Atta M., Bukhari A., Taisir M., Yusuf A. M., and Idris A. (2014). Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. Bioresource Technology, 162, 38-44.
Van Breemen R. B., Canjura F. L., & Schwartz S. J. (1991). Identification of chlorophyll derivatives by mass spectrometry. Journal of Agricultural and Food Chemistry, 39(8), 1452-1456.
Varela J. C., Pereira H., Vila M., and León R. (2015). Production of carotenoids by microalgae: achievements and challenges. Photosynthesis research, 125, 423-436.
Vecchi V., Barera S., Bassi R., and Dall’Osto L. (2020). Potential and challenges of improving photosynthesis in algae. Plants, 9(1), 67.
Vidal M. L., Bassères A., Narbonne J. F. (2002). Influence of temperature, pH,oxygenation, water-type and substrate on biomarker responses in the freshwater clam Corbicula fluminea (Müller). Comparative Biochemistry and Physiology, 132, 93-104.
Vieira G. C., Hawkyard M., Langdon C., Sühnel S., Scaranto B. M., Ferreira J. P. R., Gomes C. H. A. de M., Vézina L. P., and De Melo C. M. R. (2021). Replacement of living microalgae with a dried alfalfa chloroplast product in diets for the Brown mussel (Perna perna), Yellow clam (Mesodesma mactroides) and Manila clam (Venerupis philippinarum). Aquaculture Nutrition, 27(6), 2307-2319.
Volkman J. K. (2016). Sterols in microalgae. The Physiology of Microalgae, 485-505.
Voshall A., Christie N. T., Rose S. L., Khasin M., Van Etten J. L., Markham J. E., Riekhof W. R., and Nickerson K. W. (2021). Sterol Biosynthesis in four green algae: A bioinformatic analysis of the ergosterol versus phytosterol decision point. Journal of Phycology, 57(4), 1199-1211.
Vuppaladadiyam A., Yao J., Florin N., George A., Wang X., Labeeuw L., Jiang Y., Davis R., Abbas A., Ralph P., Fennell P., Zhao M. (2018). Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization. ChemSusChem, 11(2), 334-355. 2017.
Wang J., and Yin Y. (2018). Fermentative hydrogen production using pretreated microalgal biomass as feedstock. Microbial Cell Factories, 17(1), 1-16.
Wang Z. Y., Wang Q., Chong K., Wang F., Wang L., Bai M., and Jia C. (2006). The brassinosteroid signal transduction pathway. Cell Research, 16(5), 427-434.
Wei L., Huang X., and Huang Z. (2015). Temperature effects on lipid properties of microalgae Tetraselmis subcordiformis and Nannochloropsis oculata as biofuel resources. Chinese Journal of Oceanology and Limnology, 33(1), 99-106.
Xu K., Zou X., Wen H., Xue Y., Qu Y., and Li Y. (2019). Effects of multi-temperature regimes on cultivation of microalgae in municipal wastewater to simultaneously remove nutrients and produce biomass. Applied Microbiology and Biotechnology, 103, 8255–8265.
Xu Y., Ibrahim I. M., Wosu C. I., Ben-Amotz A., and Harvey P. J. (2018). Potential of new isolates of Dunaliella salina for natural β-carotene production. Biology, 7(1), 14.
Yamasaki Y., Ishii K., Hikihara R., Ishimaru M., Sato F., Taga S., Kishioka M., Matsunaga S., Shikata T., Abe M., Kato S., Tanaka R., and Murase, N. (2019). Usefulness of the euglenophyte Eutreptiella eupharyngea as a new diet alga for clam culture. Algal Research, 40, 101493.
Yan C., and Zheng Z. (2014). Performance of mixed LED light wavelengths on biogas upgrade and biogas fluid removal by microalga Chlorella sp. Applied Energy, 113, 1008-1014.
Yin X., Wang J., Yang M., and Xie X. (2019). Evaluation of macroalgal detritus as food source for juvenile Manila clam, Ruditapes philippinarum: Effects on growth, amino acid content and fatty acid composition. Aquaculture Research, 50(12), 3579-3588.
Ying Q., Jones-Baumgardt C., Zheng Y., and Bozzo G. (2021). The proportion of blue light from light-emitting diodes alters microgreen phytochemical profiles in a species-specific manner. HortScience, 56(1), 13-20.
You T., and Barnett S. M. (2004). Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochemical Engineering Journal, 19(3), 251-258.
Yuan, C., Zhang, X., Long, X., Jin, J., & Jin, R. (2019). Effect of β-sitosterol self-microemulsion and β-sitosterol ester with linoleic acid on lipid-lowering in hyperlipidemic mice. Lipids in Health and Disease, 18, 1-11.
Yun H. S., Kim Y. S., and Yoon H. S. (2020). Characterization of Chlorella sorokiniana and Chlorella vulgaris fatty acid components under a wide range of light intensity and growth temperature for their use as biological resources. Heliyon, 6(7).
Yun H. S., Kim Y. S., and Yoon H. S. (2020). Characterization of Chlorella sorokiniana and Chlorella vulgaris fatty acid components under a wide range of light intensity and growth temperature for their use as biological resources. Heliyon, 6(7).
Zhang L. S., Liang S., Zong M. H., Yang J. G., & Lou W. Y. (2020). Microbial synthesis of functional odd-chain fatty acids: a review. World Journal of Microbiology and Biotechnology, 36, 1-9.
Zhang L., Liu P. H., Wu J. N., Yang G. F., Suo Y. Y., Luo N., and Chen C. (2015). Studies on chemical compounds of Chlorella sorokiniana. China Journal of Chinese Materia Medica, 40(7), 1325-1329.
Zhang Y., Xiao Z., Ager E., Kong L., and Tan L. (2021). Nutritional quality and health benefits of microgreens, a crop of modern agriculture. Journal of Future Foods, 1(1), 58-66.
Zhao Y., Sun S., Hu C., Zhang H., Xu J., and Ping L. (2015). Performance of three microalgal strains in biogas slurry purification and biogas upgrade in response to various mixed light-emitting diode light wavelengths. Bioresource Technology, 187, 338-345.
Zhao Y., Wang H. P., Han B., and Yu X. (2019). Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: A review. Bioresource Technology, 274, 549-556.
Zhou W., Wang J., Chen P., Ji C., Kang Q., Lu B., Li K., Liu J. and Ruan R. (2017). Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renewable and Sustainable Energy Reviews, 76, 1163-1175.