|
陳薪妤 (2022)。石蓴多醣/聚己內酯複合奈米纖維支架對小鼠纖維母細胞之影響。國立臺灣海洋大學生命科學暨生物科技學系論文。基隆。台灣。 張萍育 (2023)。萃取石蓴多醣以製備溫感性奈米纖維作為創傷敷材之研究。 國立臺灣海洋大學食品科學系碩士論文。基隆。台灣。 Adamczak, A., Ożarowski, M., & Karpiński, T. M. (2020). Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals, 13(7), 153. Agüero, L. E. M., Lubambo, A. F., Saul, C. K., Silva, B. F., de Freitas, R. A., Colodi, F. G., Duarte, M. E. R., & Noseda, M. D. (2023). Poly (vinyl alcohol)/ulvan electrospun nanofibers thermallycrosslinked to produce a water stable biomaterial. Biotechnology Research and Innovation Journal, 7(2), 0-0. Agarwal, Y., Rajinikanth, P., Ranjan, S., Tiwari, U., Balasubramnaiam, J., Pandey, P., Arya, D. K., Anand, S., & Deepak, P. (2021). Curcumin loaded polycaprolactone-/polyvinyl alcohol-silk fibroin based electrospun nanofibrous mat for rapid healing of diabetic wound: An in-vitro and in-vivo studies. International Journal of Biological Macromolecules, 176, 376-386. Akhmetova, A., & Heinz, A. (2020). Electrospinning proteins for wound healing purposes: opportunities and challenges. Pharmaceutics, 13(1), 4. Alves, A., Pinho, E. D., Neves, N. M., Sousa, R. A., & Reis, R. L. (2012). Processing ulvan into 2D structures: cross-linked ulvan membranes as new biomaterials for drug delivery applications. International Journal of Pharmaceutics, 426, 76-81. Amalraj, A., Varma, K., Jacob, J., Divya, C., Kunnumakkara, A. B., Stohs, S. J., & Gopi, S. (2017). A novel highly bioavailable curcumin formulation improves symptoms and diagnostic indicators in rheumatoid arthritis patients: a randomized, double-blind, placebo-controlled, two-dose, three-arm, and parallel-group study. Journal of Medicinal Food, 20(10), 1022-1030. Ambekar, R. S., & Kandasubramanian, B. (2019). Advancements in nanofibers for wound dressing: a review. European Polymer Journal, 117, 304-336. Anjum, S., Gupta, A., Sharma, D., Gautam, D., Bhan, S., Sharma, A., Kapil, A., & Gupta, B. (2016). Development of novel wound care systems based on nanosilver nanohydrogels of polymethacrylic acid with Aloe vera and curcumin. Materials Science and Engineering: C, 64, 157-166. Ashammakhi, N., Wimpenny, I., Nikkola, L., & Yang, Y. (2009). Electrospinning: methods and development of biodegradable nanofibres for drug release. Journal of Biomedical Nanotechnology, 5(1), 1-19. Augustine, R., Zahid, A. A., Hasan, A., Wang, M., & Webster, T. J. (2019). CTGF loaded electrospun dual porous core-shell membrane for diabetic wound healing. International Journal of Nanomedicine, 8573-8588. Azimi, B., Ricci, C., Macchi, T., Günday, C., Munafò, S., Maleki, H., Pratesi, F., Tempesti, V., Cristallini, C., & Bruschini, L. (2023). A Straightforward Method to Produce Multi-Nanodrug Delivery Systems for Transdermal/Tympanic Patches Using Electrospinning and Electrospray. Polymers, 15(17), 3494. Baji, A., Mai, Y.-W., Wong, S.-C., Abtahi, M., & Chen, P. (2010). Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Composites Science and Technology, 70(5), 703-718. Barros, A., Alves, A., Nunes, C., Coimbra, M., Pires, R., & Reis, R. (2013). Carboxymethylation of ulvan and chitosan and their use as polymeric components of bone cements. Acta biomaterialia, 9(11), 9086-9097. Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325-347. Blalock, J. S., Holmes, R. G., & Rueggeberg, F. A. (2006). Effect of temperature on unpolymerized composite resin film thickness. The Journal of Prosthetic Dentistry, 96(6), 424-432. Bootdee, K., & Nithitanakul, M. (2021). Poly (d, l-lactide-co-glycolide) nanospheres within composite poly (vinyl alcohol)/aloe vera electrospun nanofiber as a novel wound dressing for controlled release of drug. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(4), 223-230. Can-Herrera, L. A., Oliva, A. I., Dzul-Cervantes, M. A. A., Pacheco-Salazar, O. F., & Cervantes-Uc, J. M. (2021). Morphological and mechanical properties of electrospun polycaprolactone scaffolds: effect of applied voltage. Polymers, 13(4), 662. Cavo, M., Serio, F., Kale, N. R., D'Amone, E., Gigli, G., & Del Mercato, L. L. (2020). Electrospun nanofibers in cancer research: from engineering of in vitro 3D cancer models to therapy. Biomaterials Science, 8(18), 4887-4905. Cecchini, B., Rovelli, R., Zavagna, L., Azimi, B., Macchi, T., Kaya, E., Esin, S., Bruschini, L., Milazzo, M., & Batoni, G. (2023). Alginate-based patch for middle ear delivery of probiotics: a preliminary study using electrospray and electrospinning. Applied Sciences, 13(23), 12750. Chen, X., Wang, X., Wang, S., Zhang, X., Yu, J., & Wang, C. (2020). Mussel-inspired polydopamine-assisted bromelain immobilization onto electrospun fibrous membrane for potential application as wound dressing. Materials Science and Engineering: C, 110, 110624. Chen, X., Yue, Z., Winberg, P. C., Dinoro, J. N., Hayes, P., Beirne, S., & Wallace, G. G. (2019). Development of rhamnose-rich hydrogels based on sulfated xylorhamno-uronic acid toward wound healing applications. Biomaterials science, 7(8), 3497-3509. Chinatangkul, N., Tubtimsri, S., Panchapornpon, D., Akkaramongkolporn, P., Limmatvapirat, C., & Limmatvapirat, S. (2019). Design and characterisation of electrospun shellac-polyvinylpyrrolidone blended micro/nanofibres loaded with monolaurin for application in wound healing. International Journal of Pharmaceutics, 562, 258-270. Dąbrowska, A., Rotaru, G. M., Derler, S., Spano, F., Camenzind, M., Annaheim, S., Stämpfli, R., Schmid, M., & Rossi, R. (2016). Materials used to simulate physical properties of human skin. Skin Research and Technology, 22(1), 3-14. Danti, S., Anand, S., Azimi, B., Milazzo, M., Fusco, A., Ricci, C., Zavagna, L., Linari, S., Donnarumma, G., & Lazzeri, A. (2021). Chitin nanofibril application in tympanic membrane scaffolds to modulate inflammatory and immune response. Pharmaceutics, 13(9), 1440. Darby, I. A., Laverdet, B., Bonté, F., & Desmoulière, A. (2014). Fibroblasts and myofibroblasts in wound healing. Clinical, Cosmetic and Investigational Dermatology, 7, 301. Dias, J., Granja, P., & Bártolo, P. (2016). Advances in electrospun skin substitutes. Progress in Materials Science, 84, 314-334. Don, T.-M., Liu, L.-M., Chen, M., & Huang, Y.-C. (2021). Crosslinked complex films based on chitosan and ulvan with antioxidant and whitening activities. Algal Research, 58, 102423. Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2-3), 151-160. Duracka, M., Lukac, N., Kacaniova, M., Kantor, A., Hleba, L., Ondruska, L., & Tvrda, E. (2019). Antibiotics versus natural biomolecules: The case of in vitro induced bacteriospermia by enterococcus faecalis in rabbit semen. Molecules, 24(23), 4329. Elashnikov, R., Rimpelová, S., Lyutakov, O., Pavlíčková, V. r. S., Khrystonko, O., Kolská, Z. k., & Švorčík, V. c. (2022). Ciprofloxacin-loaded poly (N-isopropylacrylamide-co-acrylamide)/Polycaprolactone nanofibers as dual thermo-and pH-responsive antibacterial materials. ACS Applied Bio Materials, 5(4), 1700-1709. Elias, P. M. (2005). Stratum corneum defensive functions: an integrated view. Journal of Investigative Dermatology, 125(2), 183-200. Fahimirad, S., & Ajalloueian, F. (2019). Naturally-derived electrospun wound dressings for target delivery of bio-active agents. International Journal of Pharmaceutics, 566, 307-328. Fahmy, A., Kamoun, E. A., El-Eisawy, R., El-Fakharany, E. M., Taha, T. H., El-Damhougy, B. K., & Abdelhai, F. (2015). Poly (vinyl alcohol)-hyaluronic acid membranes for wound dressing applications: synthesis and in vitro bio-evaluations. Journal of the Brazilian Chemical Society, 26, 1466-1474. Fallah, M., Bahrami, S. H., & Ranjbar-Mohammadi, M. (2016). Fabrication and characterization of PCL/gelatin/curcumin nanofibers and their antibacterial properties. Journal of Industrial Textiles, 46(2), 562-577. Faury, G., Ruszova, E., Molinari, J., Mariko, B., Raveaud, S., Velebny, V., & Robert, L. (2008). The α-L-Rhamnose recognizing lectin site of human dermal fibroblasts functions as a signal transducer: modulation of Ca2+ fluxes and gene expression. Biochim Biophys Acta, 1780(12), 1388-1394. Fereydouni, N., Darroudi, M., Movaffagh, J., Shahroodi, A., Butler, A. E., Ganjali, S., & Sahebkar, A. (2019). Curcumin nanofibers for the purpose of wound healing. Journal of Cellular Physiology, 234(5), 5537-5554. Fong, H., Chun, I., & Reneker, D. H. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592. Fu, S. Z., Meng, X. H., Fan, J., Yang, L. L., Wen, Q. L., Ye, S. J., Lin, S., Wang, B. Q., Chen, L. L., & Wu, J. B. (2014). Acceleration of dermal wound healing by using electrospun curcumin‐loaded poly (ε‐caprolactone)‐poly (ethylene glycol)‐poly (ε‐caprolactone) fibrous mats. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102(3), 533-542. Géhin, C., Tokarska, J., Fowler, S., Barran, P., & Trivedi, D. (2023). No skin off your back: the sampling and extraction of sebum for metabolomics. Metabolomics, 19(4), 21. Ghaee, A., Bagheri-Khoulenjani, S., Afshar, H. A., & Bogheiri, H. (2019). Biomimetic nanocomposite scaffolds based on surface modified PCL-nanofibers containing curcumin embedded in chitosan/gelatin for skin regeneration. Composites Part B: Engineering, 177, 107339. Ghorani, B., & Tucker, N. (2015). Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids, 51, 227-240. Gjødsbøl, K., Christensen, J. J., Karlsmark, T., Jørgensen, B., Klein, B. M., & Krogfelt, K. A. (2006). Multiple bacterial species reside in chronic wounds: a longitudinal study. International Wound Journal, 3(3), 225-231. Guo, J., Wang, T., Yan, Z., Ji, D., Li, J., & Pan, H. (2022). Preparation and evaluation of dual drug-loaded nanofiber membranes based on coaxial electrostatic spinning technology. International Journal of Pharmaceutics, 629, 122410. Haider, A., Haider, S., & Kang, I.-K. (2018). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8), 1165-1188. Haider, S., Al-Zeghayer, Y., Ahmed Ali, F. A., Haider, A., Mahmood, A., Al-Masry, W. A., Imran, M., & Aijaz, M. O. (2013). Highly aligned narrow diameter chitosan electrospun nanofibers. Journal of Polymer Research, 20, 1-11. Han, G., & Ceilley, R. (2017). Chronic wound healing: a review of current management and treatments. Advances in Therapy, 34, 599-610. Hao, S., Wang, B., & Wang, Y. (2015). Porous hydrophilic core/hydrophobic shell nanoparticles for particle size and drug release control. Materials Science and Engineering: C, 49, 51-57. He, X.-X., Zheng, J., Yu, G.-F., You, M.-H., Yu, M., Ning, X., & Long, Y.-Z. (2017). Near-field electrospinning: progress and applications. The Journal of Physical Chemistry C, 121(16), 8663-8678. Hettiarachchi, S. S., Perera, Y., Dunuweera, S. P., Dunuweera, A. N., Rajapakse, S., & Rajapakse, R. M. G. (2022). Comparison of antibacterial activity of nanocurcumin with bulk curcumin. ACS Omega, 7(50), 46494-46500. Hong, J., Yeo, M., Yang, G. H., & Kim, G. (2019). Cell-electrospinning and its application for tissue engineering. International Journal of Molecular Sciences, 20(24), 6208. Hu, H., & Xu, F.-J. (2020). Rational design and latest advances of polysaccharide-based hydrogels for wound healing. Biomaterials Science, 8(8), 2084-2101. Huang, W., Zou, T., Li, S., Jing, J., Xia, X., & Liu, X. (2013). Drug-loaded zein nanofibers prepared using a modified coaxial electrospinning process. Aaps Pharmscitech, 14, 675-681. Ibrahim, M. I., Amer, M. S., Ibrahim, H. A., & Zaghloul, E. H. (2022). Considerable production of ulvan from Ulva lactuca with special emphasis on its antimicrobial and anti-fouling properties. Applied Biochemistry and Biotechnology, 194(7), 3097-3118. Jatoi, A. W., Ogasawara, H., Kim, I. S., & Ni, Q.-Q. (2019). Polyvinyl alcohol nanofiber based three phase wound dressings for sustained wound healing applications. Materials Letters, 241, 168-171. Jin, G., Prabhakaran, M. P., Kai, D., & Ramakrishna, S. (2013). Controlled release of multiple epidermal induction factors through core–shell nanofibers for skin regeneration. European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 689-698. Kamoun, E. A., Loutfy, S. A., Hussein, Y., & Kenawy, E.-R. S. (2021). Recent advances in PVA-polysaccharide based hydrogels and electrospun nanofibers in biomedical applications: A review. International Journal of Biological Macromolecules, 187, 755-768. Kanani, A. G., & Bahrami, S. H. (2011). Effect of changing solvents on poly (ε-caprolactone) nanofibrous webs morphology. Journal of Nanomaterials, 2011, 1-10. Kanitakis, J. (2002). Anatomy, histology and immunohistochemistry of normal human skin. European Journal of Dermatology, 12(4), 390-401. Katsogiannis, K. A. G., Vladisavljević, G. T., & Georgiadou, S. (2015). Porous electrospun polycaprolactone (PCL) fibres by phase separation. European Polymer Journal, 69, 284-295. Kayan, G. Ö., & Kayan, A. (2023). Polycaprolactone composites/blends and their applications especially in water treatment. ChemEngineering, 7(6), 104. Khamrai, M., Banerjee, S. L., Paul, S., Samanta, S., & Kundu, P. P. (2019). Curcumin entrapped gelatin/ionically modified bacterial cellulose based self-healable hydrogel film: An eco-friendly sustainable synthesis method of wound healing patch. International Journal of Biological Macromolecules, 122, 940-953. Khan, A. M., Abid, O. U. R., & Mir, S. (2020). Assessment of biological activities of chitosan Schiff base tagged with medicinal plants. Biopolymers, 111(3), e23338. Kidgell, J. T., Magnusson, M., de Nys, R., & Glasson, C. R. (2019). Ulvan: a systematic review of extraction, composition and function. Algal Research, 39, 101422. Kikionis, S., Ioannou, E., Toskas, G., & Roussis, V. (2015). Electrospun biocomposite nanofibers of ulvan/PCL and ulvan/PEO. Journal of Applied Polymer Science, 132(26). Kim, J. K., Kim, H. J., Chung, J.-Y., Lee, J.-H., Young, S.-B., & Kim, Y.-H. (2014). Natural and synthetic biomaterials for controlled drug delivery. Archives of Pharmacal Research, 37, 60-68. Kolarsick, P. A., Kolarsick, M. A., & Goodwin, C. (2011). Anatomy and physiology of the skin. Journal of the Dermatology Nurses' Association, 3(4), 203-213. Kruse, C. R., Singh, M., Targosinski, S., Sinha, I., Sørensen, J. A., Eriksson, E., & Nuutila, K. (2017). The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study. Wound Repair and Regeneration, 25(2), 260-269. Kumar, Y., Tarafdar, A., & Badgujar, P. C. (2021). Seaweed as a source of natural antioxidants: Therapeutic activity and food applications. Journal of Food Quality, 2021, 5753391. Kuznetsova, T. A., Andryukov, B. G., Besednova, N. N., Zaporozhets, T. S., & Kalinin, A. V. (2020). Marine algae polysaccharides as basis for wound dressings, drug delivery, and tissue engineering: a review. Journal of Marine Science and Engineering, 8(7), 481. Lahaye, M., & Ray, B. (1996). Cell-wall polysaccharides from the marine green alga Ulva “rigida”(Ulvales, Chlorophyta)—NMR analysis of ulvan oligosaccharides. Carbohydrate Research, 283, 161-173. Lahaye, M., & Robic, A. (2007). Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules, 8(6), 1765-1774. Laudenslager, M. J., & Sigmund, W. M. (2012). Electrospinning. Encyclopedia of Nanotechnology; Bhushan, B., Ed.; Springer: Dordrecht, The Netherlands, 769-775. Li, Y., Zhu, J., Cheng, H., Li, G., Cho, H., Jiang, M., Gao, Q., & Zhang, X. (2021). Developments of advanced electrospinning techniques: A critical review. Advanced Materials Technologies, 6(11), 2100410. Liang, Y., He, J., & Guo, B. (2021). Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano. Lin, J. Y., & Fisher, D. E. (2007). Melanocyte biology and skin pigmentation. Nature, 445(7130), 843-850. Lin, Z., Chen, H., Li, S., Li, X., Wang, J., & Xu, S. (2023). Electrospun Food Polysaccharides Loaded with Bioactive Compounds: Fabrication, Release, and Applications. Polymers, 15(10), 2318. Liu, X., Xu, H., Zhang, M., & Yu, D.-G. (2021a). Electrospun medicated nanofibers for wound healing. Membranes, 11(10), 770. Liu, X., Xu, H., Zhang, M., & Yu, D.-G. (2021b). Electrospun medicated nanofibers for wound healing: review. Membranes, 11(10), 770. Liu, Z., Ju, K., Wang, Z., Li, W., Ke, H., & He, J. (2019). Electrospun jets number and nanofiber morphology effected by voltage value: Numerical simulation and experimental verification. Nanoscale Research Letters, 14, 1-9. Liu, Z., Ramakrishna, S., & Liu, X. (2020). Electrospinning and emerging healthcare and medicine possibilities. APL Bioengineering, 4(3). Loscertales, I. G., Barrero, A., Guerrero, I., Cortijo, R., Marquez, M., & Ganan-Calvo, A. (2002). Micro/nano encapsulation via electrified coaxial liquid jets. Science, 295(5560), 1695-1698. Lu, Y., Huang, J., Yu, G., Cardenas, R., Wei, S., Wujcik, E. K., & Guo, Z. (2016). Coaxial electrospun fibers: applications in drug delivery and tissue engineering. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 8(5), 654-677. Luyt, A., & Gasmi, S. (2016). Influence of blending and blend morphology on the thermal properties and crystallization behaviour of PLA and PCL in PLA/PCL blends. Journal of Materials Science, 51, 4670-4681. Luzio, A., Canesi, E. V., Bertarelli, C., & Caironi, M. (2014). Electrospun polymer fibers for electronic applications. Materials, 7(2), 906-947. Madany, M. A., Abdel-Kareem, M. S., Al-Oufy, A. K., Haroun, M., & Sheweita, S. A. (2021). The biopolymer ulvan from Ulva fasciata: Extraction towards nanofibers fabrication. International Journal of Biological Macromolecules, 177, 401-412. Madub, K., Goonoo, N., Gimié, F., Arsa, I. A., Schönherr, H., & Bhaw-Luximon, A. (2021). Green seaweeds ulvan-cellulose scaffolds enhance in vitro cell growth and in vivo angiogenesis for skin tissue engineering. Carbohydrate Polymers, 251, 117025. Maheshwari, M., & Shishu. (2010). Comparative bioavailability of curcumin, turmeric and Biocurcumax™ in traditional vehicles using non-everted rat intestinal sac model. Journal of Functional Foods, 2(1), 60-65. Majumder, S., Matin, M. A., Sharif, A., & Arafat, M. T. (2019). Understanding solubility, spinnability and electrospinning behaviour of cellulose acetate using different solvent systems. Bulletin of Materials Science, 42(4), 171. Maleki, H., Azimi, B., Ismaeilimoghadam, S., & Danti, S. (2022). Poly (lactic acid)-based electrospun fibrous structures for biomedical applications. Applied Sciences, 12(6), 3192. Matabola, K., & Moutloali, R. (2013). The influence of electrospinning parameters on the morphology and diameter of poly (vinyledene fluoride) nanofibers-effect of sodium chloride. Journal of Materials Science, 48, 5475-5482. McCarty, S. M., & Percival, S. L. (2013). Proteases and delayed wound healing. Advances in Wound Care, 2(8), 438-447. McKee, M. G., Wilkes, G. L., Colby, R. H., & Long, T. E. (2004). Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules, 37(5), 1760-1767. Megelski, S., Stephens, J. S., Chase, D. B., & Rabolt, J. F. (2002). Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 35(22), 8456-8466. Merrell, J. G., McLaughlin, S. W., Tie, L., Laurencin, C. T., Chen, A. F., & Nair, L. S. (2009). Curcumin loaded poly (ε-caprolactone) nanofibers: diabetic wound dressing with antioxidant and anti-inflammatory properties. Clinical and Experimental Pharmacology & Physiology, 36(12), 1149. Mihai, M. M., Dima, M. B., Dima, B., & Holban, A. M. (2019). Nanomaterials for wound healing and infection control. Materials, 12(13), 2176. Mochane, M. J., Motsoeneng, T. S., Sadiku, E. R., Mokhena, T. C., & Sefadi, J. S. (2019). Morphology and properties of electrospun PCL and its composites for medical applications: A mini review. Applied Sciences, 9(11), 2205. Moghe, A., & Gupta, B. (2008). Co‐axial electrospinning for nanofiber structures: preparation and applications. Polymer Reviews, 48(2), 353-377. Monavarian, M., Kader, S., Moeinzadeh, S., & Jabbari, E. (2019). Regenerative scar-free skin wound healing. Tissue Engineering Part B: Reviews, 25(4), 294-311. Morales-Hurtado, M., Zeng, X., Gonzalez-Rodriguez, P., Ten Elshof, J., & Van Der Heide, E. (2015). A new water absorbable mechanical Epidermal skin equivalent: The combination of hydrophobic PDMS and hydrophilic PVA hydrogel. Journal of the Mechanical Behavior of Biomedical Materials, 46, 305-317. Nauman, S., Lubineau, G., & Alharbi, H. F. (2021). Post processing strategies for the enhancement of mechanical properties of enms (Electrospun nanofibrous membranes): a review. Membranes, 11(1), 39. Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., & Walters, M. A. (2017). The essential medicinal chemistry of curcumin: miniperspective. Journal of Medicinal Chemistry, 60(5), 1620-1637. Pant, B., Park, M., & Park, S.-J. (2019). Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review. Pharmaceutics, 11(7), 305. Pelipenko, J., Kristl, J., Janković, B., Baumgartner, S., & Kocbek, P. (2013). The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. International Journal of Pharmaceutics, 456(1), 125-134. Pompa-Monroy, D. A., Figueroa-Marchant, P. G., Dastager, S. G., Thorat, M. N., Iglesias, A. L., Miranda-Soto, V., Pérez-González, G. L., & Villarreal-Gómez, L. J. (2020). Bacterial biofilm formation using pcl/curcumin electrospun fibers and its potential use for biotechnological applications. Materials, 13(23), 5556. Poshina, D., Tyshkunova, I., Petrova, V., & Skorik, Y. A. (2021). Electrospinning of polysaccharides for tissue engineering applications. Reviews and Advances in Chemistry, 11, 112-133. Prado-Prone, G., Silva-Bermudez, P., Almaguer-Flores, A., García-Macedo, J. A., García, V. I., Rodil, S. E., Ibarra, C., & Velasquillo, C. (2018). Enhanced antibacterial nanocomposite mats by coaxial electrospinning of polycaprolactone fibers loaded with Zn-based nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 14(5), 1695-1706. Proksch, E., Brandner, J. M., & Jensen, J. M. (2008). The skin: an indispensable barrier. Experimental Dermatology, 17(12), 1063-1072. Rüzgar, G., Birer, M., Tort, S., & Acartürk, F. (2013). Studies on improvement of water-solubility of curcumin with electrospun nanofibers. FABAD Journal of Pharmaceutical Sciences, 38(3), 143. Ramalingam, R., Fazil, M. H. U. T., Verma, N. K., & Arunachalam, K. D. (2019). Green synthesis, characterization and antibacterial evaluation of electrospun nickel oxide nanofibers. Materials Letters, 256, 126616. Ramazani, S., & Karimi, M. (2014). Investigating the influence of temperature on electrospinning of polycaprolactone solutions. e-Polymers, 14(5), 323-333. Ranjbar-Mohammadi, M., Rabbani, S., Bahrami, S. H., Joghataei, M., & Moayer, F. (2016). Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly (ε-caprolactone) electrospun nanofibers. Materials Science and Engineering: C, 69, 1183-1191. Rathinavel, S., Korrapati, P. S., Kalaiselvi, P., & Dharmalingam, S. (2021). Mesoporous silica incorporated PCL/Curcumin nanofiber for wound healing application. European Journal of Pharmaceutical Sciences, 167, 106021. Rathore, P., & Schiffman, J. D. (2020). Beyond the single-nozzle: Coaxial electrospinning enables innovative nanofiber chemistries, geometries, and applications. ACS Applied Materials & Interfaces, 13(1), 48-66. Reinke, J., & Sorg, H. (2012). Wound repair and regeneration. European Surgical Research, 49(1), 35-43. Robic, A., Gaillard, C., Sassi, J. F., Lerat, Y., & Lahaye, M. (2009). Ultrastructure of ulvan: a polysaccharide from green seaweeds. Biopolymers: Original Research on Biomolecules, 91(8), 652-664. Rodrigues, M., Kosaric, N., Bonham, C. A., & Gurtner, G. C. (2019). Wound healing: a cellular perspective. Physiological Reviews, 99(1), 665-706. Sandıkçı Altunatmaz, S., Yılmaz Aksu, F., Issa, G., Başaran Kahraman, B., Dülger Altıner, D., & Büyükünal, S. K. (2016). Antimicrobial effects of curcumin against L. monocytogenes, S. aureus, S. Typhimurium and E. coli O157: H7 pathogens in minced meat. Veterinární Medicína. Saraf, A., Baggett, L. S., Raphael, R. M., Kasper, F. K., & Mikos, A. G. (2010). Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. Journal of Controlled Release, 143(1), 95-103. Schreml, S., Szeimies, R. M., Karrer, S., Heinlin, J., Landthaler, M., & Babilas, P. (2010). The impact of the pH value on skin integrity and cutaneous wound healing. Journal of the European Academy of Dermatology and Venereology, 24(4), 373-378. Shi, T., Liu, Y., Wang, D., Xia, D., Li, B., Xu, R., Li, N., Liang, C., & Chen, M. (2024). Spatially engineering tri-layer nanofiber dressings featuring asymmetric wettability for wound healing. Nano Materials Science. Shin, S.-H., Purevdorj, O., Castano, O., Planell, J. A., & Kim, H.-W. (2012). A short review: Recent advances in electrospinning for bone tissue regeneration. Journal of Tissue Engineering, 3(1), 2041731412443530. Sill, T. J., & Von Recum, H. A. (2008). Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 29(13), 1989-2006. Simões, D., Miguel, S. P., Ribeiro, M. P., Coutinho, P., Mendonça, A. G., & Correia, I. J. (2018). Recent advances on antimicrobial wound dressing: a review. European Journal of Pharmaceutics and Biopharmaceutics, 127, 130-141. Solarte David, V. A., Güiza-Argüello, V. R., Arango-Rodríguez, M. L., Sossa, C. L., & Becerra-Bayona, S. M. (2022). Decellularized tissues for wound healing: towards closing the gap between scaffold design and effective extracellular matrix remodeling. Frontiers in Bioengineering and Biotechnology, 10, 821852. Su, Y., Li, X., Wang, H., He, C., & Mo, X. (2009). Fabrication and characterization of biodegradable nanofibrous mats by mix and coaxial electrospinning. Journal of Materials Science: Materials in Medicine, 20, 2285-2294. Sulastri, E., Zubair, M. S., Lesmana, R., Mohammed, A. F. A., & Wathoni, N. (2021). Development and characterization of ulvan polysaccharides-based hydrogel films for potential wound dressing applications. Drug Design, Development and Therapy, 4213-4226. Suresh, S., Becker, A., & Glasmacher, B. (2020). Impact of apparatus orientation and gravity in electrospinning—A review of empirical evidence. Polymers, 12(11), 2448. Tabarsa, M., You, S., Dabaghian, E. H., & Surayot, U. (2018). Water-soluble polysaccharides from Ulva intestinalis: Molecular properties, structural elucidation and immunomodulatory activities. Journal of Food and Drug Analysis, 26(2), 599-608. Tavares, T. D., Antunes, J. C., Padrão, J., Ribeiro, A. I., Zille, A., Amorim, M. T. P., Ferreira, F., & Felgueiras, H. P. (2020). Activity of specialized biomolecules against gram-positive and gram-negative bacteria. Antibiotics, 9(6), 314. Teo, W. E., & Ramakrishna, S. (2006). A review on electrospinning design and nanofibre assemblies. Nanotechnology, 17(14), R89. Thanh, T. T. T., Quach, T. M. T., Nguyen, T. N., Luong, D. V., Bui, M. L., & Van Tran, T. T. (2016). Structure and cytotoxic activity of ulvan extracted from green seaweed Ulva lactuca. International Journal of Biological Macromolecules, 93, 695-702. Toskas, G., Hund, R.-D., Laourine, E., Cherif, C., Smyrniotopoulos, V., & Roussis, V. (2011). Nanofibers based on polysaccharides from the green seaweed Ulva rigida. Carbohydrate Polymers, 84(3), 1093-1102. Tottoli, E. M., Dorati, R., Genta, I., Chiesa, E., Pisani, S., & Conti, B. (2020). Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics, 12(8), 735. Ujjwal, R. R., Yadav, A., Tripathi, S., & Krishna, S. (2022). Polymer-based nanotherapeutics for burn wounds. Current Pharmaceutical Biotechnology, 23(12), 1460-1482. Valizadeh, A., & Mussa Farkhani, S. (2014). Electrospinning and electrospun nanofibres. IET Nanobiotechnology, 8(2), 83-92. Van De Water, L., Varney, S., & Tomasek, J. J. (2013). Mechanoregulation of the myofibroblast in wound contraction, scarring, and fibrosis: opportunities for new therapeutic intervention. Advances in Wound Care, 2(4), 122-141. Wallace, H. A., Basehore, B. M., & Zito, P. M. (2017). Wound healing phases. Wang, Q., Yu, D.-G., Zhang, L.-L., Liu, X.-K., Deng, Y.-C., & Zhao, M. (2017). Electrospun hypromellose-based hydrophilic composites for rapid dissolution of poorly water-soluble drug. Carbohydrate Polymers, 174, 617-625. Wang, W., Yu, Q., Shao, Z., Guo, Y., Wang, Y., Yang, Y., Zhao, W., & Zhao, C. (2024). Exudate‐Induced Gelatinizable Nanofiber Membrane with High Exudate Absorption and Super Bactericidal Capacity for Bacteria‐Infected Wound Management. Advanced Healthcare Materials, 13(9), 2303293. Wei, L., Sun, R., Liu, C., Xiong, J., & Qin, X. (2019). Mass production of nanofibers from needleless electrospinning by a novel annular spinneret. Materials & Design, 179, 107885. Wynn, T. A., & Barron, L. (2010). Macrophages: master regulators of inflammation and fibrosis. Seminars in liver disease, Yang, L., Gao, S., Asghar, S., Liu, G., Song, J., Wang, X., Ping, Q., Zhang, C., & Xiao, Y. (2015). Hyaluronic acid/chitosan nanoparticles for delivery of curcuminoid and its in vitro evaluation in glioma cells. International Journal of Biological Macromolecules, 72, 1391-1401. Yao, Z. C., Chen, S. C., Ahmad, Z., Huang, J., Chang, M. W., & Li, J. S. (2017). Essential oil bioactive fibrous membranes prepared via coaxial electrospinning. Journal of Food Science, 82(6), 1412-1422. Ye, K., Liu, D., Kuang, H., Cai, J., Chen, W., Sun, B., Xia, L., Fang, B., Morsi, Y., & Mo, X. (2019). Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. Journal of Colloid and Interface Science, 534, 625-636. Yoon, J., Yang, H. S., Lee, B. S., & Yu, W. R. (2018). Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications. Advanced Materials, 30(42), 1704765. Yu, P., Zhang, J., & Long, J. (2023). Coaxial mechano‐electrospinning of oriented fibers with core‐shell structure for tactile sensing. Polymers for Advanced Technologies, 34(3), 821-831. Zhang, Y., Feng, Y., Huang, Z., Ramakrishna, S., & Lim, C. (2006). Fabrication of porous electrospun nanofibres. Nanotechnology, 17(3), 901. Zhu, C., Li, Y., Su, Q., Lu, B., Pan, J., Zhang, J., Xie, E., & Lan, W. (2013). Electrospinning direct preparation of SnO2/Fe2O3 heterojunction nanotubes as an efficient visible-light photocatalyst. Journal of Alloys and Compounds, 575, 333-338. Zong, H., Xia, X., Liang, Y., Dai, S., Alsaedi, A., Hayat, T., Kong, F., & Pan, J. H. (2018). Designing function-oriented artificial nanomaterials and membranes via electrospinning and electrospraying techniques. Materials Science and Engineering: C, 92, 1075-1091.
|