孫歆語 (2023)。載有薑黃素的可溶性石蓴多醣微針協同 X 光放射療法用於皮膚癌之治療。海洋大學食品科學系碩士論文。基隆。台灣。Abd-El-Azim, H., Tekko, I. A., Ali, A., Ramadan, A., Nafee, N., Khalafallah, N., Rahman, T., Mcdaid, W., Aly, R. G., & Vora, L. K. (2022). Hollow microneedle assisted intradermal delivery of hypericin lipid nanocapsules with light enabled photodynamic therapy against skin cancer. Journal of Controlled Release, 348, 849-869.
Abraham, A. M., Anjani, Q. K., Adhami, M., Hutton, A. R., Larrañeta, E., & Donnelly, R. F. (2024). Novel SmartReservoirs for hydrogel-forming microneedles to improve the transdermal delivery of rifampicin. Journal of Materials Chemistry B, 12(18), 4375-4388.
Adelnia, H., Ensandoost, R., Shebbrin Moonshi, S., Gavgani, J. N., Vasafi, E. I., & Ta, H. T. (2022). Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. European Polymer Journal, 164.
Agüero, L. E. M., Lubambo, A. F., Saul, C. K., Silva, B. F., de Freitas, R. A., Colodi, F. G., Duarte, M. E. R., & Noseda, M. D. (2023). Poly (vinyl alcohol)/ulvan electrospun nanofibers thermallycrosslinked to produce a water stable biomaterial. Biotechnology Research and Innovation Journal, 7(2), 0-0.
Aggarwal, B. B. (2004). Nuclear factor-κB: the enemy within. Cancer cell, 6(3), 203-208.
Alves, A., Pinho, E. D., Neves, N. M., Sousa, R. A., & Reis, R. L. (2012). Processing ulvan into 2D structures: Cross-linked ulvan membranes as new biomaterials for drug delivery applications. International Journal of Pharmaceutics, 426(1-2), 76-81.
Anjani, Q. K., Permana, A. D., Cárcamo-Martínez, Á., Domínguez-Robles, J., Tekko, I. A., Larrañeta, E., Vora, L. K., Ramadon, D., & Donnelly, R. F. (2021). Versatility of hydrogel-forming microneedles in in vitro transdermal delivery of tuberculosis drugs. European Journal of Pharmaceutics and Biopharmaceutics, 158, 294-312.
Arda, O., Göksügür, N., & Tüzün, Y. (2014). Basic histological structure and functions of facial skin. Clinics in Dermatology, 32(1), 3-13.
Aruldass, S., Mathivanan, V., Mohamed, A., & Tye, C. (2019). Factors affecting hydrolysis of polyvinyl acetate to polyvinyl alcohol. Journal of Environmental Chemical Engineering, 7(5), 103238.
Aung, N. N., Myat, Y. Y., Ngawhirunpat, T., Rojanarata, T., Patrojanasophon, P., Opanasopit, P., & Pamornpathomkul, B. (2019). Evaluation of Thermally Crosslinked Poly(Acrylic Acid-Co-Maleic Acid) (PAMA)/Poly(Vinyl Alcohol) (PVA) Microneedle Arrays. Key Engineering Materials, 819, 45-50.
Barbani, N., P. Giusti, C. C., Ciardelli, G., & Lazzeri, L. (2001). Bioartificial polymeric materials based on polysaccharides. Journal of Biomaterials Science, Polymer Edition, 12(3), 267-281.
Barbosa, A. I., Serrasqueiro, F., Moniz, T., Costa Lima, S. A., & Reis, S. (2022). Marine polysaccharides for skin drug delivery: hydrogels and microneedle solutions. In Marine Biomaterials: Drug Delivery and Therapeutic Applications (pp. 209-250). Springer.
Baroni, A., Buommino, E., De Gregorio, V., Ruocco, E., Ruocco, V., & Wolf, R. (2012). Structure and function of the epidermis related to barrier properties. Clinics in Dermatology, 30(3), 257-262.
Baskar, R., Lee, K. A., Yeo, R., & Yeoh, K.-W. (2012). Cancer and radiation therapy: current advances and future directions. International Journal of Medical Sciences, 9(3), 193.
Behera, S. K., Mohanty, M. E., & Mohapatra, M. (2021). A fluorescence study of the interaction of anticancer drug molecule doxorubicin hydrochloride in pluronic P123 and F127 micelles. Journal of Fluorescence, 31(1), 17-27.
Brown, T. M., & Krishnamurthy, K. (2018). Histology, dermis.
Cao, Y., Tao, Y., Zhou, Y., & Gui, S. (2016). Development of sinomenine hydrochloride-loaded polyvinylalcohol/maltose microneedle for transdermal delivery. Journal of Drug Delivery Science and Technology, 35, 1-7.
Cerqueira, R., Domingues, C., Veiga, F., Jarak, I., & Figueiras, A. (2024). Development and Characterization of Curcumin-Loaded TPGS/F127/P123 Polymeric Micelles as a Potential Therapy for Colorectal Cancer. International Journal of Molecular Sciences, 25(14).
Chamundeeswari, M., Jeslin, J., & Verma, M. L. (2019). Nanocarriers for drug delivery applications. Environmental Chemistry Letters, 17, 849-865.
Chen, L.-C., Chen, Y.-C., Su, C.-Y., Hong, C.-S., Ho, H.-O., & Sheu, M.-T. (2016). Development and characterization of self-assembling lecithin-based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study. International Journal of Nanomedicine, 1557-1566.
Chinembiri, T. N., Du Plessis, L. H., Gerber, M., Hamman, J. H., & Du Plessis, J. (2014). Review of natural compounds for potential skin cancer treatment. Molecules, 19(8), 11679-11721.
Damiri, F., Kommineni, N., Ebhodaghe, S. O., Bulusu, R., Jyothi, V. G. S., Sayed, A. A., Awaji, A. A., Germoush, M. O., Al-Malky, H. S., & Nasrullah, M. Z. (2022). Microneedle-based natural polysaccharide for drug delivery systems (DDS): progress and challenges. Pharmaceuticals, 15(2), 190.
Don, T.-M., Chen, M., Lee, I.-C., & Huang, Y.-C. (2022). Preparation and characterization of fast dissolving ulvan microneedles for transdermal drug delivery system. International Journal of Biological Macromolecules, 207, 90-99.
Don, T.-M., Liu, L.-M., Chen, M., & Huang, Y.-C. (2021). Crosslinked complex films based on chitosan and ulvan with antioxidant and whitening activities. Algal Research, 58, 102423.
Dutra, L. M. U., Ribeiro, M. E. N. P., Cavalcante, I. M., Brito, D. H. A. d., Semião, L. d. M., Silva, R. F. d., Fechine, P. B. A., Yeates, S. G., & Ricardo, N. M. P. S. (2015). Binary mixture micellar systems of F127 and P123 for griseofulvin solubilisation. Polímeros, 25, 433-439.
El-Nashar, D. E., Rozik, N. N., Soliman, A. M., & Helaly, F. (2016). Study the release kinetics of curcumin released from PVA/curcumin composites and its evaluation towards hepatocarcinoma. Journal of Applied Pharmaceutical Science, 6(7), 067-072.
Evens, T., Van Bael, A., Seveno, D., & Castagne, S. (2023). Injection moulding polymer microneedles using laser ablated moulds.
Farhood, B., Mortezaee, K., Goradel, N. H., Khanlarkhani, N., Salehi, E., Nashtaei, M. S., Najafi, M., & Sahebkar, A. (2019). Curcumin as an anti‐inflammatory agent: Implications to radiotherapy and chemotherapy. Journal of Cellular Physiology, 234(5), 5728-5740.
Farhoudi, L., Kesharwani, P., Majeed, M., Johnston, T. P., & Sahebkar, A. (2022). Polymeric nanomicelles of curcumin: Potential applications in cancer. International Journal of Pharmaceutics, 617, 121622.
Fuchs, J. R., Pandit, B., Bhasin, D., Etter, J. P., Regan, N., Abdelhamid, D., Li, C., Lin, J., & Li, P.-K. (2009). Structure–activity relationship studies of curcumin analogues. Bioorganic & Medicinal Chemistry Letters, 19(7), 2065-2069.
Ganguly, R., Kumar, S., Tripathi, A., Basu, M., Verma, G., Sarma, H., Chaudhari, D., Aswal, V., & Melo, J. (2020). Structural and therapeutic properties of Pluronic® P123/F127 micellar systems and their modulation by salt and essential oil. Journal of Molecular Liquids, 310, 113231.
Garbutcheon‐Singh, K. B., & Veness, M. J. (2019). The role of radiotherapy in the management of non‐melanoma skin cancer. Australasian Journal of Dermatology, 60(4), 265-272.
Gomaa, M., Al-Badaani, A. A., Hifney, A. F., & Adam, M. S. (2022). Utilization of cellulose and ulvan from the green seaweed Ulva lactuca in the development of composite edible films with natural antioxidant properties. Journal of Applied Phycology, 34(5), 2615-2626.
Gorantla, S., Dabholkar, N., Sharma, S., Rapalli, V. K., Alexander, A., & Singhvi, G. (2021). Chitosan-based microneedles as a potential platform for drug delivery through the skin: Trends and regulatory aspects. International Journal of Biological Macromolecules, 184, 438-453.
Gupta, S. C., Patchva, S., & Aggarwal, B. B. (2013). Therapeutic roles of curcumin: lessons learned from clinical trials. The AAPS Journal, 15, 195-218.
Hanukoglu, I., Boggula, V. R., Vaknine, H., Sharma, S., Kleyman, T., & Hanukoglu, A. (2017). Expression of epithelial sodium channel (ENaC) and CFTR in the human epidermis and epidermal appendages. Histochemistry and Cell Biology, 147, 733-748.
Hao, Y., Chen, Y., He, X., Yang, F., Han, R., Yang, C., Li, W., & Qian, Z. (2020). Near-infrared responsive 5-fluorouracil and indocyanine green loaded MPEG-PCL nanoparticle integrated with dissolvable microneedle for skin cancer therapy. Bioactive Materials, 5(3), 542-552.
He, R., Niu, Y., Li, Z., Li, A., Yang, H., Xu, F., & Li, F. (2020). A hydrogel microneedle patch for point‐of‐care testing based on skin interstitial fluid. Advanced Healthcare Materials, 9(4), 1901201.
Hong, X., Wu, Z., Chen, L., Wu, F., Wei, L., & Yuan, W. (2014). Hydrogel microneedle arrays for transdermal drug delivery. Nano-Micro Letters, 6, 191-199.
Hou, X., Li, J., Hong, Y., Ruan, H., Long, M., Feng, N., & Zhang, Y. (2023). Advances and Prospects for Hydrogel-Forming Microneedles in Transdermal Drug Delivery. Biomedicines, 11(8), 2119.
Hu, Y., Xu, B., Xu, J., Shou, D., Liu, E., Gao, J., Liang, W., & Huang, Y. (2015). Microneedle-assisted dendritic cell-targeted nanoparticles for transcutaneous DNA immunization. Polymer Chemistry, 6(3), 373-379.
Illanes, T. (2011). Synthesis of Novel Degradable Polymers for Tissue Engineering by Radical Polymerization: Synthesis and characterization of 2-methylene-1, 3-dioxepane and copolymerization thereof with vinyl acetate followed by polymer characterization and hydrolysis. In.
Jagetia, G. C. (2007). Radioprotection and radiosensitization by curcumin. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease, 301-320.
Karimi, M. (2011). Diffusion in polymer solids and solutions. In Mass Transfer in Chemical Engineering Processes. InTech.
Khafif, A., Hurst, R., Kyker, K., Fliss, D. M., Gil, Z., & Medina, J. E. (2005). Curcumin: a new radio-sensitizer of squamous cell carcinoma cells. Otolaryngology—Head and Neck Surgery, 132(2), 317-321.
Kidgell, J. T., Magnusson, M., de Nys, R., & Glasson, C. R. (2019). Ulvan: A systematic review of extraction, composition and function. Algal Research, 39, 101422.
Kim, A. R., Lee, S. L., & Park, S. N. (2018). Properties and in vitro drug release of pH- and temperature-sensitive double cross-linked interpenetrating polymer network hydrogels based on hyaluronic acid/poly (N-isopropylacrylamide) for transdermal delivery of luteolin. Int J Biol Macromol, 118(Pt A), 731-740.
Kim, E.-Y., Yim, S.-D., Bae, B., Yang, T.-H., Park, S.-H., & Choi, H.-S. (2016). Study of a highly durable low-humidification membrane electrode assembly using crosslinked polyvinyl alcohol for polymer electrolyte membrane fuel cells. Journal of Solid State Electrochemistry, 20, 1723-1730.
Kim, H., Seong, K.-Y., Lee, J. H., Park, W., Yang, S. Y., & Hahn, S. K. (2019). Biodegradable microneedle patch delivering antigenic peptide–hyaluronate conjugate for cancer immunotherapy. ACS Biomaterials Science & Engineering, 5(10), 5150-5158.
Kim, M. J., Park, Y. I., Youm, K. H., & Lee, K. H. (2004). Gas permeation through water‐swollen polysaccharide/poly (vinyl alcohol) membranes. Journal of Applied Polymer Science, 91(5), 3225-3232.
Kim, Y.-C., Park, J.-H., & Prausnitz, M. R. (2012). Microneedles for drug and vaccine delivery. Advanced Drug Delivery Reviews, 64(14), 1547-1568.
Kulthe, S., Inamdar, N., Choudhari, Y., Shirolikar, S., Borde, L., & Mourya, V. (2011). Mixed micelle formation with hydrophobic and hydrophilic Pluronic block copolymers: implications for controlled and targeted drug delivery. Colloids and Surfaces B: Biointerfaces, 88(2), 691-696.
Lee, J., van der Maaden, K., Gooris, G., O'Mahony, C., Jiskoot, W., & Bouwstra, J. (2021). Engineering of an automated nano-droplet dispensing system for fabrication of antigen-loaded dissolving microneedle arrays. International Journal of Pharmaceutics, 600, 120473.
Lee, K., Kim, J. D., Lee, C. Y., Her, S., & Jung, H. (2011). A high-capacity, hybrid electro-microneedle for in-situ cutaneous gene transfer. Biomaterials, 32(30), 7705-7710.
Leiter, U., & Garbe, C. (2008). Epidemiology of melanoma and nonmelanoma skin cancer—the role of sunlight. Sunlight, Vitamin D and Skin Cancer, 89-103.
Li, C., Tang, T., Du, Y., Jiang, L., Yao, Z., Ning, L., & Zhu, B. (2023). Ulvan and Ulva oligosaccharides: a systematic review of structure, preparation, biological activities and applications. Bioresources and Bioprocessing, 10(1), 66.
Lu, Z., Bu, C., Hu, W., Zhang, H., Liu, M., Lu, M., & Zhai, G. (2018). Preparation and in vitro and in vivo evaluation of quercetin-loaded mixed micelles for oral delivery. Bioscience, Biotechnology, and Biochemistry, 82(2), 238-246.
Ma, Q., Du, L., Yang, Y., & Wang, L. (2017). Rheology of film-forming solutions and physical properties of tara gum film reinforced with polyvinyl alcohol (PVA). Food Hydrocolloids, 63, 677-684.
Ma, W., Zhang, P., Zhao, B., Wang, S., Zhong, J., Cao, Z., Liu, C., Gong, F., & Matsuyama, H. (2019). Swelling Resistance and Mechanical Performance of Physical Crosslink‐Based Poly(Vinyl Alcohol) Hydrogel Film with Various Molecular Weight. Journal of Polymer Science Part B: Polymer Physics, 57(24), 1673-1683.
Madany, M. A., Abdel-Kareem, M. S., Al-Oufy, A. K., Haroun, M., & Sheweita, S. A. (2021). The biopolymer ulvan from Ulva fasciata: Extraction towards nanofibers fabrication. International Journal of Biological Macromolecules, 177, 401-412.
Mansur, H. S., Sadahira, C. M., Souza, A. N., & Mansur, A. A. (2008). FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering: C, 28(4), 539-548.
McAlister, E., Dutton, B., Vora, L. K., Zhao, L., Ripolin, A., Zahari, D. S. Z. B. P. H., Quinn, H. L., Tekko, I. A., Courtenay, A. J., & Kelly, S. A. (2021). Directly compressed tablets: A novel drug‐containing reservoir combined with hydrogel‐forming microneedle arrays for transdermal drug delivery. Advanced Healthcare Materials, 10(3), 2001256.
McGrath, M. G., Vucen, S., Vrdoljak, A., Kelly, A., O’Mahony, C., Crean, A. M., & Moore, A. (2014). Production of dissolvable microneedles using an atomised spray process: Effect of microneedle composition on skin penetration. European Journal of Pharmaceutics and Biopharmaceutics, 86(2), 200-211.
Migdadi, E. M., Courtenay, A. J., Tekko, I. A., McCrudden, M. T., Kearney, M.-C., McAlister, E., McCarthy, H. O., & Donnelly, R. F. (2018). Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. Journal of Controlled Release, 285, 142-151.
Milborne, B., Arafat, A., Layfield, R., Thompson, A., & Ahmed, I. (2020). The Use of Biomaterials in Internal Radiation Therapy. Recent Progress in Materials, 2(2).
Moreci, R. S., & Lechler, T. (2020). Epidermal structure and differentiation. Current Biology, 30(4), R144-R149.
Mukerjee, E., Collins, S., Isseroff, R., & Smith, R. (2004). Microneedle array for transdermal biological fluid extraction and in situ analysis. Sensors and Actuators A: Physical, 114(2-3), 267-275.
Narayanan, D. L., Saladi, R. N., & Fox, J. L. (2010). Ultraviolet radiation and skin cancer. International Journal of Dermatology, 49(9), 978-986.
Nguyen, T. T., & Park, J. H. (2018). Human studies with microneedles for evaluation of their efficacy and safety. Expert Opinion on Drug Delivery, 15(3), 235-245.
Nurul Fitri, A. M., Elim, D., Sya'ban Mahfud, M. A., Fitri Sultan, N. A., Saputra, M. D., Afika, N., Friandini, R. A., Natsir Djide, N. J., & Permana, A. D. (2023). Polymeric hydrogel forming microneedle-mediated transdermal delivery of sildenafil citrate from direct-compressed tablet reservoir for potential improvement of pulmonary hypertension therapy. Int J Pharm, 631, 122549.
Oh, N. G., Hwang, S. Y., & Na, Y. H. (2022). Fabrication of a PVA-Based hydrogel microneedle patch. American Chemical Society Omega, 7(29), 25179-25185.
Park, S. C., Kim, M. J., Baek, S.-K., Park, J.-H., & Choi, S.-O. (2019). Spray-formed layered polymer microneedles for controlled biphasic drug delivery. Polymers, 11(2), 369.
Pastore, M. N., & Roberts, M. S. (2017). Selection of topically applied chemical candidates: transdermal drug delivery systems. Skin Permeation and Disposition of Therapeutic and Cosmeceutical Compounds, 251-262.
Patil, S., Choudhary, B., Rathore, A., Roy, K., & Mahadik, K. (2015). Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells. Phytomedicine, 22(12), 1103-1111.
Patra, A., Satpathy, S., Shenoy, A. K., Bush, J. A., Kazi, M., & Hussain, M. D. (2018). Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers. International Journal of Nanomedicine, 13, 2869.
Pitto-Barry, A., & Barry, N. P. (2014). Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polymer Chemistry, 5(10), 3291-3297.
Prausnitz, M. R. (2004). Microneedles for transdermal drug delivery. Advanced Grug Delivery Reviews, 56(5), 581-587.
Prausnitz, M. R., & Langer, R. (2008). Transdermal drug delivery. Nature Biotechnology, 26(11), 1261-1268.
Prausnitz, M. R., Mikszta, J. A., Cormier, M., & Andrianov, A. K. (2009). Microneedle-based vaccines. Vaccines for Pandemic Influenza, 369-393.
Pulido-Moran, M., Moreno-Fernandez, J., Ramirez-Tortosa, C., & Ramirez-Tortosa, M. (2016). Curcumin and health. Molecules, 21(3), 264.
Sabbagh, F., & Kim, B. S. (2023). Ex Vivo Transdermal Delivery of Nicotinamide Mononucleotide Using Polyvinyl Alcohol Microneedles. Polymers (Basel), 15(9).
Sabri, A. H., Ogilvie, J., Abdulhamid, K., Shpadaruk, V., McKenna, J., Segal, J., Scurr, D. J., & Marlow, M. (2019). Expanding the applications of microneedles in dermatology. European Journal of Pharmaceutics and Biopharmaceutics, 140, 121-140.
Sak, K. (2020). Radiosensitizing potential of curcumin in different cancer models. Nutrition and Cancer, 72(8), 1276-1289.
Santos, C., Silva, C. J., Büttel, Z., Guimarães, R., Pereira, S. B., Tamagnini, P., & Zille, A. (2014). Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method. Carbohydrate Polymers, 99, 584-592.
Shabeeb, D., Musa, A. E., Abd Ali, H. S., & Najafi, M. (2020). Curcumin protects against radiotherapy-induced oxidative injury to the skin. Drug Design, Development and Therapy, 3159-3163.
Shehzad, A., Park, J.-W., Lee, J., & Lee, Y. S. (2013). Curcumin induces radiosensitivity of in vitro and in vivo cancer models by modulating pre-mRNA processing factor 4 (Prp4). Chemico-biological interactions, 206(2), 394-402.
Tomono, T. (2019). A new way to control the internal structure of microneedles: a case of chitosan lactate. Materials Today Chemistry, 13, 79-87.
Toskas, G., Hund, R.-D., Laourine, E., Cherif, C., Smyrniotopoulos, V., & Roussis, V. (2011). Nanofibers based on polysaccharides from the green seaweed Ulva rigida. Carbohydrate Polymers, 84(3), 1093-1102.
Turner, J. G., White, L. R., Estrela, P., & Leese, H. S. (2021). Hydrogel-Forming Microneedles: Current Advancements and Future Trends. Macromol Biosci, 21(2), e2000307.
Vargas, C. G. (2022). Flory-huggins interaction parameter for pva-water in hydrogels prepared by two methods: freezing/thawing and crosslinking with citric acid. Revista Colombiana de Materiales, 1(19), 64-74.
Verma, V. (2016). Relationship and interactions of curcumin with radiation therapy. World Journal of Clinical Oncology, 7(3), 275.
Vollono, L., Falconi, M., Gaziano, R., Iacovelli, F., Dika, E., Terracciano, C., Bianchi, L., & Campione, E. (2019). Potential of curcumin in skin disorders. Nutrients, 11(9), 2169.
Vora, L. K., Moffatt, K., Tekko, I. A., Paredes, A. J., Volpe-Zanutto, F., Mishra, D., Peng, K., Thakur, R. R. S., & Donnelly, R. F. (2021). Microneedle array systems for long-acting drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 159, 44-76.
Walters, K. A., & Roberts, M. S. (2002). The structure and function of skin. In Dermatological and Transdermal Formulations (pp. 19-58). CRC press.
Wang, Q. L., Ren, J. W., Chen, B. Z., Jin, X., Zhang, C. Y., & Guo, X. D. (2018). Effect of humidity on mechanical properties of dissolving microneedles for transdermal drug delivery. Journal of Industrial and Engineering Chemistry, 59, 251-258.
Xu, N., Zhang, M., Xu, W., Ling, G., Yu, J., & Zhang, P. (2022). Swellable PVA/PVP hydrogel microneedle patches for the extraction of interstitial skin fluid toward minimally invasive monitoring of blood glucose level. Analyst, 147(7), 1478-1491.
Yang, K.-Y., Lin, L.-C., Tseng, T.-Y., Wang, S.-C., & Tsai, T.-H. (2007). Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC–MS/MS. Journal of Chromatography B, 853(1-2), 183-189.
Yang, S., Feng, Y., Zhang, L., Chen, N., Yuan, W., & Jin, T. (2012). A scalable fabrication process of polymer microneedles. International Journal of Nanomedicine, 1415-1422.
Yousef, H., Alhajj, M., & Sharma, S. (2017). Anatomy, skin (integument), epidermis.
Yu, W., Jiang, G., Zhang, Y., Liu, D., Xu, B., & Zhou, J. (2017). Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Materials Science and Engineering: C, 80, 187-196.
Zhang, X. P., Wang, B. B., Li, W. X., Fei, W. M., Cui, Y., & Guo, X. D. (2021). In vivo safety assessment, biodistribution and toxicology of polyvinyl alcohol microneedles with 160-day uninterruptedly applications in mice. European Journal of Pharmaceutics and Biopharmaceutics, 160, 1-8.
Zhao, L., Shi, Y., Zou, S., Sun, M., Li, L., & Zhai, G. (2011). Formulation and in vitro evaluation of quercetin loaded polymeric micelles composed of pluronic P123 and Da-tocopheryl polyethylene glycol succinate. Journal of Biomedical Nanotechnology, 7(3), 358-365.
Zhi, D., Yang, T., Zhang, T., Yang, M., Zhang, S., & Donnelly, R. F. (2021). Microneedles for gene and drug delivery in skin cancer therapy. Journal of Controlled Release, 335, 158-177.
Zoi, V., Galani, V., Tsekeris, P., Kyritsis, A. P., & Alexiou, G. A. (2022). Radiosensitization and radioprotection by curcumin in glioblastoma and other cancers. Biomedicines, 10(2), 312.