姚賢宗,2003。幾丁聚醣對大白鼠脂質代謝及腸道生理的影響。國立臺灣海洋大學食品科學系碩士論文,基隆。馮仕安,2016。幾丁聚醣及其衍生物對大白鼠血糖及血脂之研究。國立臺灣海洋大學食品科學系碩士論文,基隆。施景銘,2017。比較高、低分子量幾丁聚醣對於大白鼠脂質代謝與脂肪肝之研究。國立臺灣海洋大學食品科學系碩士論文,基隆。張恬嘉,2014。幾丁聚醣與魚油改善高脂飲食引起的大白鼠肥胖及脂肪肝之研究。國立臺灣海洋大學食品科學系碩士論文,基隆。陳艷琳,2013。幾丁聚醣改善高脂飲食誘發大白鼠肥胖及脂肪肝之機制探討。國立臺灣海洋大學食品科學系碩士論文,基隆。黃衫頁,2004。高、低分子量幾丁聚醣對 STZ 所誘發之糖尿病大白鼠糖代謝與脂質代謝之影響。國立臺灣海洋大學食品科學系碩士論文,基隆。
蔡敏郎,1993。不同分子量、不同去乙醯程度的幾丁聚醣溶液的流變性值與膠囊物性的關係。國立臺灣海洋大學食品科學系碩士論文,基隆。
Abu-Elheiga, L., Matzuk, M. M., Abo-Hashema, K. A. & Wakil, S. J. (2001). Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science, 291, 2613–2616.
Abumrad, N., Harmon, C. & Ibrahimi, A. (1998). Membrane transport of long-chain fatty acids: evidence for a facilitated process. Journal of Lipid Research, 39, 2309-2318.
Altmann, S. W., Davis, H. R. Jr., Zhu, L. J., Yao, X., Hoos, L. M., Tetzloff, G., Iyer, S. P., Maguire, M., Golovko, A., Zeng, M., Wang, L., Murgolo, N., Graziano, M. P. (2004). Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science, 303, 1201-1204.
Anderson, R. A., Joyce, C., Davis, M., Reagan, J. W., Clark, M., Shelness, G. S., Rudel, L. L. (1998). Identification of a form of acyl-CoA: cholesterol acyltransferase specific to liver and intestine in nonhuman primates. Journal of Biological Chemistry, 273, 26747-26754.
Baier, L. J., Bogardus, C., Sacchettini, J. C. (1996). A polymorphism in the human intestinal fatty acid binding protein alters fatty acid transport across Caco-2 cells. Journal of Biological Chemistry, 217, 10892-10896.
Balistreri, C.R., Caruso, C., Candore, G. (2010). The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediators of Inflammation, 2010, 1-19.
Bennekum, A. M., Nguyen, D. V., Schulthess, G., Hauser, H., Phillips, M. C. (2005). Mechanisms of cholesterol-lowering effects of dietary insoluble fibres: relationships with intestinal and hepatic cholesterol parameters. British Journal of Nutrition, 94, 331-337.
Berger, J. & Moller, D. E. (2002). The mechanisms of action of PPARs. Annual Review of Medicine, 53, 409-435.
Berger, J. J. and Barand, R. J. (1999). Effect of diet on fat cell size and hormone-sensitive lipase activity. Journal of Applied Physics, 87, 227-232.
Blaschke, F., Takata, Y., Caglayan, E., Law, R. E. & Hsueh, W. A. (2006). Obesity, peroxisome proliferator-activated receptor, and atherosclerosis in type 2 diabetes. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 28-40.
Blundell, J. E. and Stubbs, R. J. (1999). High and low carbohydrate and fat intake: limits imposed by appetite and palatability and their implications for energy balance. European Journal of Clinical Nutrition, 53, S148-S165.
Bomhard, E., Vogel, O. & Luckhaus, G. (1985). Chronisch-toxikologische undersuchungen an sprague-dawley-ratten zur frage einer kanzerogenen wirkung unter besonderer berücksichtigung der Genese epithelialer Tumoren des Nierenparenchyms. Bayer AG, Institut für Toxikologie. Wupperta1.
Bonen, A., Han, X. X., Habets, D. D. J., Febbraio, M., Glatz, J. F. C., Luiken, J. J. F. P. (2007). A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- and AICAR-stimulated fatty acid metabolism. American Journal of Physiology, 292, 1740-1749.
Brown, M. S. and Goldstein, J. L. (1976). Receptor-mediated control of cholesterol metabolism. Science, 191,150-154.
Buhman, K. K., Accad, M., Novak, S., Choi, R. S., Wong, J. S., Hamilton, R. L., Turley, S., Farese, R. V. (2000). Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nature Medicine, 6, 1341-1347.
Carlson, S. E. and Goldfarb, S. (1977). A sensitive enzymatic method for the determination of free and esterified tissue cholesterol. Clinica Chimica Acta, 79, 575-582.
Cawthorn, W. P., Sethi, J. K. (2008). TNF-alpha and adipocyte biology. FEBS Letters, 582, 117-131.
Chan, J. C., Chan, K. W., Ho, L. L., Fuh, M. M., Horn, L. C., Sheaves, R., Panelo, A. A., Kim, D. K. & Embong, M. (1998). An Asian multicenter clinical trial to assess the efficacy and tolerability of acarbose compared with placebo in type 2 diabetic patients previously treated with diet. Asian Acarbose Study Group. Diabetes Care, 21, 1058-1061.
Chang, H. P., Yao, H. T., Chiang, M. T. (2012). Effects of high and low molecular weight chitosan on plasma cholesterol, glucose and adipocytokines in diabetic rats induced by streptozotocin and nicotinamide. Journal of Food and Drug Analysis, 20, 661-667.
Chang, T. Y., Chang, C. C. Y., Lin, S., Yu, C., Li, B. L. and Miyazaki, A. (2001). Roles of acyl-coenzyme A : cholesterol acyltransferase-1 and -2. Current Opinion in Lipidology, 12, 289-296.
Chen, M., Yang, Y., Braunstein, E., Georgeson, K. E., Harmon, C. M. (2001). Gut expression and regulation of FAT/CD36: possible role in fatty acid transport in rat enterocytes. American Journal of Physiology, 218, 916-923.
Chiang, M. T., Yao, H. T., Chen, H. C. (2000). Effect of dietary chitosans with different viscosity on plasma lipids and lipid peroxidation in rats fed on a diet enriched with cholesterol. Biosci Biotechnol Biochem, 64, 965-971.
Chiu, C. Y., Chang, T. C., Liu, S. H., Chiang, M. T. (2016). The regulatory effects of fish oil and chitosan on hepatic lipogenic signals in high-fat diet-induced obese rats. Journal of Food and Drug Analysis, 2017, 1-12.
Chiu, C. Y., Feng, S. A., Liu, S. H. & Chiang, M. T. (2017). Functional comparison for lipid metabolism and intestinal and fecal microflora enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Marine Drugs, 15, 1-11.
Cho, E. J., Rahman, A., Kim, S. W., Baek, Y. M., Hwang, H. J., Oh, J. Y., Hwang, H. S., Lee, S. H., & Yun, J. W. (2007). Chitosan oligosaccharides inhibit adipogenesis in 3T3-L1 adipocytes. Journal of Microbiology and Biotechnology, 18, 80-87.
Clearfield, M. B. (2003). A novel therapeutic approach to dyslipidemia. Journal of the American Osteopathic Association, 103, 16-20.
Clissold, S. & Edwards, C. (1988). Acarbose. Drugs, 35, 214-243.
Cockcroft, J. R., Chowienczyk, P. J., Ritter, J. M., Lehmann, E. D., Hopkins, K. D., Parker, J. R. & Gosling, R. G. (1995). Hyperlipidaemia, hypertension, and coronary heart disease. Lancet, 345, 862-863.
Coleman, R. A. and Haynes, E. B. (1986). Monoacylglycerol acyltransferase. Evidence that the activities from rat intestine and suckling liver are tissue-specific isoenzymes. Journal of Biological Chemistry, 261, 224-228.
Costa, M. A., Mehta, T., Males, J. R. (1989). Effects of dietary cellulose, psyllium husk and cholesterol level on fecal and colonic microbial metabolism in monkeys. Journal of Nutrition, 119, 986-992.
Cremers, J., Drent, M., Driessen, A., Nieman, F., Wijnen, P., Baughman, R. & Koek, G. (2012). Liver-test abnormalities in sarcoidosis. European Journal of Gastroenterology & Hepatology, 24, 17-24.
Darimont, C., Gradoux, N. & de Pover, A. (1999). Epidermal growth factor regulates fatty acid uptake and metabolism in Caco-2 cells. American Journal of Physiology, 276, 606-612.
Darlington, G. J., Ross, S. E., MacDougald, O. A. (1998). The role of C/EBP gene in adipocyte differentiation. The Journal of Biological Chemistry, 273, 30057-30060.
Davies, D. H. and Hayes, E. R. (1988). Determination of the degree of acetylation of chitin and chitosan. Methods in Enzymology, 161, 442-446.
Davis, H. R., Zhu, L. J., Hoos, L. M., Tetzloff, G., Maguire, M., Liu, J., Yao, X., Iyer, S. P. N., Lam, M. H., Lund, E. G., Detmers, P. A., Graziano, M. P. & Altmann, S. W. (2004). Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. Journal of Biological Chemistry, 279, 33586-33592.
Department of Health and Humam Services and Department of Agriculture. (2015). 2015-2020 Dietary guidelines for Americans 8th edition. http://health.gov/dietaryguidelines/2015/guidelines/ download on 2017/07/30.
Derosa, G. and Maffioli, P. (2012). α-Glucosidase inhibitors and their use in clinical practice. Archives of Medical Science, 5, 899-906.
Desvergne, B. & Wahli, W. (1999). Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocrine Reviews, 20, 649-688.
DiNicolantonio, J. J., Bhutani, J., O’Keefe, J. H. (2015). Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Hert BMJ, 2, 1-13.
Donnelly, K. L., Smith, C. I., Schwarzenberg, S. J., Jessurun, J., Boldt, M. D. & Parks, E. J. (2005). Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. Journal of Clinical Investigation, 115, 1343-1351.
Drewnowski, A. (1998). Energy density, palatability, and satiety: implications for weight control. Nutrition Review, 56, 347-353.
Drover, V. A., Ajmal, M., Nassir, F., Davidson, N. O., Nauli, A. M., Sahoo, D., Tso, P., Abumrad, N. A. (2005). CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood. Journal of Clinical Investigation, 115, 1290-1297.
Fabbrini, E., Mohammed, B. S., Magkos, F., Korenblat, K. M., Patterson, B. W. & Klein, S. (2008). Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology, 134, 424-431.
Fabbrini, E., Sullivan, S. & Klein, S. (2010). Obesity and nonalcoholic fatty liver disease: biochemical, metabolic and clinical implications. Hepatology, 51, 679-689.
Fernandes, J. C., Spindola, H., De Sousa, V., Santos-Silva, A., Pintado, M. E., Malcata, F. X., Carvalho, J. E. (2010). Anti-Inflammatory activity of chitooligosaccharides in vivo. Marine Drugs, 8, 1763-1768.
Folch, J., Lees, M., Sloane-Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 226, 497-509.
Fonseca-Alaniz, M. H., Takada, J., Alonso-Vale, M. I., Lima, F. B. (2007). Adipose tissue as an endocrine organ: from theory to practice. Jornal de Pediatria, 83, 192-203.
Fox, S. I. (2008). Human Physiology (10th ed.). New York: McGraw-Hill Co., Inc.
Fukada, Y., Kimura, K., Ayaki, Y. (1991). Effect of chitosan feeding on intestinal bile acid metabolism in rats. Lipids, 26, 395-399.
Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Tobe, T., Clarke, J. M., Topping, D. L., Suzuki, T., Taylor, T. D., Itoh, K., Kikuchi, J., Morita, H., Hattori, M. & Ohno, H. (2011). Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature, 469, 543-547.
Fungwe, T. V., Cagen, L., Wilcox, H. G., Heimberg, M. (1992). Regulation of hepatic secretion of very low density lipoprotein by dietary cholesterol. Journal of Lipid Research, 33,179-191.
Gajda, A. M., Zhou, Y. X., Agellon, L. B., Fried, S. K., Kodukula, S., Fortson, W., Patel, K. & Storch, J. (2013). Direct comparison of mice null for liver- or intestinal fatty acid binding proteins reveals highly divergent phenotypic responses to high-fat feeding. Journal of Biological Chemistry, 288, 30330-30344.
Gallaher, D. D., Gallaher, C. M., Mahrt, G. J., Carr, T. P., Hollingsaesd, C. H., Hesslink, R., Wise, J. (2002). A glucomannan and chitosan fiber supplement decreases plasma cholesterol and increases cholesterol excretion in overweight normocholesterolemic humans. Journal of the American College of Nutrition, 21, 428-433.
Gavrilova, O., Haluzik, M., Matsusue, K., Cutson, J. J., Johnson, L., Dietz, K. R., Nicol, C. J., Vinson, C., Gonzalez, F. J. & Reitman, M. L. (2003). Liver peroxisome proliferator-activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. Journal of Biological Chemistry, 278, 34268-34276.
Gimeno, R. E. (2007). Fatty acid transport proteins. Current Opinion in Lipidology, 18, 271-276.
Gleeson, A., Anderton, K., Owens, D., Bennett, A., Collins, P., Johnson, A., White, D., Tomkin, G. H. (1999). The role of microsomal triglyceride transfer protein and dietary cholesterol in chylomicron production in diabetes. Diabetologia, 42, 944-948.
Goldstein, J. L. and Brown, M. S. (2009). The LDL receptor. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 431-438.
Gorboulev, V., Schürmann, A., Vallon, V., Kipp, H., Jaschke, A., Klessen, D., Friedrich, A., Scherneck, S., Rieg, T., Cunard, R., Veyhl-Wichmann, M., Srinivasan, A., Balen, D., Breljak, D., Rexhepaj, R., Parker, H. E., Gribble, F. M., Reimann, F., Lang, F., Wiese, S., Sabolic, I., Sendtner, M., Koepsell, H. (2012). Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes, 61, 187–196.
Greenwalt, D. E., Scheck, S. H., Rhinehart-Jones, T. (1995). Heart CD36 expression is increased in murine models of diabetes and in mice fed a high fat diet. The Journal of Clinical Investigation, 96, 1382-1388.
Grygiel-Gόrniak, B. (2014). Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implicationse - a review. Nutrition Journal, 13, 1-10.
Guo, J., Jou, W., Gavrilova, O. & Hall, K. D. (2009). Persistent diet-induced obesity in male C57BL/6 mice resulting from temporary obesigenic diets. PLoS One, 4, 1-9.
Hague, A., Elder, D. J., Hicks, D. J. & Paraskeva, C. (1995). Apotosis in colonrectal tumor cell: induction by the short chain fatty acid butyrate, propionate, and acetate, and the bile salt deoxycholate. International Journal of Cancer, 60, 400-406.
Hamosh, M. (1990). Lingual and gastric lipases. Nutrition, 6, 421-428.
Hanefeld, M. (2007). Cardiovascular benefits and safety profile of acarbose therapy in prediabetes and established type 2 diabetes. Cardiovasc Diabetol, 6, 1-10.
Harada, N. and Inagaki, N. (2012). Role of sodium-glucose transporters in glucose uptake of the intestine and kidney. Journal of Diabetes Investigation, 3, 352-353.
Hardie, D. G. (2004). The AMP-activated protein kinase pathway – new players upstream and downstream. Journal of Cell Science, 117, 5479-5487.
Hardie, D. G. (2014). AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annual Review of Nutrition, 34, 31-55.
Hashimoto, T., Cook, W. S., Qi, C., Yeldandi, A. V., Reddy, J. K. & Rao, M. S. (2000). Defect in peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. Journal of Biological Chemistry, 275, 28918-28928.
Hayashi, K. and Ito, M. (2002). Antidiabetic action of low molecular weight chitosan in genetically obese diabetic KK-Ay mice. Biological and Pharmaceutical Bulletin, 25, 188-192.
Hillebrand, I., Boehme, K., Frank, G., Fink, H. & Berchtold, P. (1979). The effects of the alpha-glucosidase inhibitor BAY g 5421 (Acarbose) on postprandial blood glucose, serum insulin, and triglyceride levels: dose-time-response relationships in man. Research in Experimental Medicine, 175, 87-94.
Hofmann , A. F. and Borgström, B. (1963). Hydrolysis of long-chain monoglycerides in micellar solution by pancreatic lipase. Biochimica et Biophysica Acta, 70, 317-331.
Horton, J.D., Goldstein, J. L. & Browm, M. S. (2002). SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in liver. Journal of Clinical Investigation, 109, 1125-1131.
Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. (1993). Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulinresistance. Science, 259, 87-91.
Hsieh, Y. L., Yao, H. T., Cheng, R. S. & Chiang, M. T. (2012). Chitosan reduces plasma adipocytokines and lipid accumulation in liver and adipose tissues and ameliorates insulin resistance in diabetic rats. Journal of Medicinal Food, 15, 453-460.
Huang, R., Mendis, E., Rajapakse, N., Kim, S. K. (2006). Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sciences, 78, 2399-2408.
Hussain, M. M., Shi, J., Dreizen, P. (2003). Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. Journal of Lipid Research, 44, 22-32.
Iqbal, J., Dai, K., Seimon, T., Jungreis, R., Oyadomari, M., Kuriakose, G., Ron, D., Tabas, I., Hussain, M. M. (2008). IRE1beta inhibits chylomicron production by selectively degrading MTP mRNA. Cell Metabolism, 7,445-455.
Islam, S., Rahman Bhuiyan, M. A., Islam, M. N. (2016). Chitin and chitosan: structure, properties and applications in biomedical engineering. Journal of Polymers and the Environment, 25, 1-13.
Iyer, S. P., Yao, X., Crona, J. H., Hoos, L. M., Tetzloff, G., Davis, H. R. Jr., Graziano, M. P., Altmann, S. W. (2005). Characterization of the putative native and recombinant rat sterol transporter Niemann-Pick C1 Like 1 (NPC1L1) protein. Biochimica et Biophysica Acta, 1722, 282-292.
Jennings, C. D., Boleyn, K., Bridges, S. R., Wood, P. J., Anderson, J. W. (1988). A comparison of the lipid-lowering and intestinal morphological effects of cholestyramine, chitosan, and oat gum in rats. Proceedings of the Society for Experimental Biology and Medicine, 189, 13-20.
Jocken, J. W. E., Langin, D., Smit, E., Saris, W. H., Valle, C., Hul, G. B., Holm, C., Arner, P., Blaak, E. E. (2007). Adipose triglyceride lipase and hormone-sensitive lipase protein expression is decreased in the obese insulin-resistant state. The Journal of Clinical Endocrinology & Metabolism, 92, 2292-2299.
Ju, C., Yue, W., Yang, Z., Zhang, Q., Yang, X., Liu, Z., Zhang, F. (2010). Antidiabetic effect and mechanism of chitooligosaccharides. Biological and Pharmaceutical Bulletin, 33, 1511-1516.
Jung, E. J., Youn, D. K., Lee, S. H., No, H. K., Ha, J. G., Prinyawiwatkul, W. (2010). Antibacterial activity of chitosans with different degrees of deacetylation and viscosities. International Journal of Food Science and Technology, 45, 676-682.
Jung, T. H., Park, J. H., Jeon, W. M., & Han, K. S. (2015). Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway. Nutrition Research and Practic, 9, 343-349.
Kanauchi, O., Deuchi, K., Imasato, Y., Shizukuishi, M. & Kobayash, E. (1995). Mechanism for the inhibition of fat digestion by chitosan and for the synergistic effect of ascorbate. Bioscience Biotechnology and Biochemistry, 59, 786-790.
Kang, M. J., Kwon, E. B., Ryu, H. W., Lee, S., Lee, J. W., Kim, D. Y., Lee, M. K., Oh, S. R., Lee, H. S., Lee, S. U. & Kim, M. O. (2018). Polyacetylene from dendropanax morbifera alleviates diet-induced obesity and hepatic steatosis by activating AMPK signaling pathway. Frontiers in Pharmacology, 9, 1-11.
Kim, H. J., Ahn, H. Y., Kwak, J. H., Shin, D. Y., Kwon, Y. I., Oh, C. G. & Lee, J. H. (2014). The effects of chitosan oligosaccharide (GO2KA1) supplementation on glucose control in subjects with prediabetes. Food Function, 5, 2662-2669.
Kim, J. G., Jo, S. H., Ha, K. S., Kim, S. C., Kim, Y. C., Apostolidis, E. & Kwon, Y. I. (2014). Effect of long-term supplementation of low molecular weight chitosan oligosaccharide (GO2KA1) on fasting blood glucose and HbA1c in db/db mice model and elucidation of mechanism of action. BMC Complementary and Alternative Medicine, 14, 272.
Kim, J., Yang, G., Kim, Y., Kim, J. & Ha, J. (2016). AMPK activators: mechanisms of action and physiological activities. Experimental and Molecular Medicine, 48, 1-12.
Kondo, Y., Nakatani, A., Hayashi, K., Ito, M. (2000). Low molecular chitosan prevents the progression of low dose stretozotocin-induced slowly progressive diabetes mellitus in mice. Biological and Pharmaceutical Bulletin, 23, 1458-1464.
Kraemer, F. B. and Shen, W. J. (2002). Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. Journal of Lipid Research, 43, 1585-1594.
Kurita, K. (2006). Chitin and chitosan: functional biopolymers from marine crustaceans. Marine Biotechnology, 8, 203-226.
Lalor, P. F., Faint, J., Aarbodem, Y., Hubscher, S. G. & Adams, D. H. (2007). The role of cytokines and chemokines in the development of steatohepatitis. Seminars in Liver Disease, 27, 173-93.
Ledwig, D., Müller, H., Bischoff, H. & Eckel, J. (2002). Early acarbose treatment ameliorates resistance of insulin-regulated GLUT4 trafficking in obese Zucker rats. European Journal of Pharmacology, 445, 141-148.
Lee, H. W., Park, Y. S., Choi, J. W., Yi, S. Y., Shin, W. S. (2003). Antidiabetic effects of chitosan oligosaccharides in neonatal streptozotocin-induced noninsulin-dependent diabetes mellitus in rats. Biological and Pharmaceutical Bulletin, 26, 1100-1103.
Lee, M. H., Lu, K., Hazard, S., Yu, H., Shulenin, S., Hidaka, H., Kojima, H., Allikmets, R., Sakuma, N., Pegoraro, R., Srivastava, A. K., Salen, G., Dean, M., Patel, S.B. (2001). Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nature Genetics, 27, 79-83.
Lee, R. G., Willingham, M. C., Davis, M. A., Skinner, K. A., Rudel, L. L. (2000). Differential expression of ACAT1 and ACAT2 among cells within liver, intestine, kidney, and adrenal of nonhuman primates. Journal of Lipid Research, 41, 1991-2001.
Lefebvre, P., Chinetti, G., Fruchart, J. C. & Staels, B. (2006). Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. Journal of Clinical Investigation, 116, 571-580.
Lehoux, J. G. and Grondin, F. (1993). Some effect of chitosan on live function in the rat. Endocrinogy, 132, 1078-1084.
Leren, T. P. (2014). Sorting an LDL receptor with bound PCSK9 to intracellular degradation. Atherosclerosis, 237,76-81.
Leuschner, F. (1982): Chronic oral toxicity of Bay g 5421 (Bat- ches No:s 491 837 and 568 643) in Sprague-Dawley rats (repeated dosage over 104 weeks) - With special attention to possible neoplastogenic properties - Laboratorium fur Pharmakologie und Toxikologie, Hamburg.
Lichtenstein, L., Mattijssen, F., de Wit, N. J., Georgiadi, A., Hooiveld, G. J., van der Meer, R., He Y., Qi, L., Köster, A., Tamsma, J. T., Tan, N. S., Müller, M. & Kersten, S. (2010). Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metabolism, 12, 580-592.
Lim, B. O., Yamada, K., Nonaka, M., Kuramoto, Y., Hung,P., Sugano, M. (1997). Dietary fibers modulate indices of intestinal immune function in rats. Journal of Nutrition, 127, 663-667.
Liu, J., Zhang, J., Xia, W. (2008). Hypocholesterolaemic effects of different chitosan samples in vitro and in vivo. Food Chemistry, 107, 419-425.
Liu, L. and Ouyang, D. (2009). Function and clinical significance of microsomal triglyceride transfer protein. International Journal of Clinical and Experimental Pathology, 29, 152-154.
Liu, S. H., Chang, Y. H. & Chiang, M. T. (2010). Chitosan reduces gluconeogenesis and increases glucose uptake in skeletal muscle in streptozotocin-induced diabetic rats. Journal of Agricultural and Food Chemistry, 58, 5795-5800.
Lodhi, G., Kim, Y., Hwang, J., Kim, S., Jeon, Y., Je, J., Ahn, C., Moon, S., Jeon, B., Park, P. (2014). Chitooligosaccharide and its derivatives: preparation and biological applications. BioMed Research International, 2014, 1-13.
Lowe, M. E. (1997). Structure and function of pancreatic lipase and colipase. Annual Review of Nutrition, 17, 141-158.
Macfarlane, G. T., & Macfarlane, S. (2012). Bacteria, colonic fermentation, and gastrointestinal health. Journal of AOAC International, 95, 50-60.
Maezaki, Y., Keisuke, T., Nakagawa, Y., Kawai, Y., Akimoto, M., Tsugita, T., Takekawa, W., Terada, A., Hara, H., Mitsuoka, T. (1993). Hypocholesterolemic effect of chitosan in adult males. Bioscience, Biotechnology, and Biochemistry, 57, 1439-1444.
Makowski, L. and Hotamisligil, G. S. (2004). Fatty acid binding proteins—the evolutionary crossroads of inflammatory and metabolic responses. The Journal of Nutrition, 134, 2464-2468.
Manoj, G., Thampi, B. S. H., Leelamma, S., Menon, P. V. G. (2001). Effect of dietary fiber on the activity of intestinal and fecal beta-glucuronidase activity during 1,2-dimethylhydrazine induced colon carcinogenesis. Plant Foods for Human Nutrition, 56, 13-21.
Mattijssen, F., Alex, S., Swarts, H. J., Groen, A. K., van Schothorst, E. M. & Kersten, S. (2014). Angptl4 serves as an endogenous inhibitor of intestinal lipid digestion. Molecular Metabolism, 3, 135-144.
Mattson, F. H. and Volpenhein, R. A. (1964). The digestion and absorption of triglycerides. Journal of Biological Chemistry, 239, 2772-2777.
Medina-Gomez, G., Gray, S. L., Yetukuri, L., Shimomura, K., Virtue, S., Campbell, M., Curtis, R. K., Jimenez-Linan, M., Blount, M., Yeo, G. S. H., Lopez, M., Seppänen-Laakso, T., Ashcroft, F. M., Orešič, M. & Vidal-Puig, A. (2007). PPARγ2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genetics, 3, 634-647.
Meugnier, E., Bossu, C., Oliel, M., Jeanne, S., Michaut, A., Sothier, M., Brozek, J., Rome, S., Laville, M. & Vidal, H. (2007). Changes in gene expression in skeletal muscle in response to fat overfeeding in lean men. Obesity (Silver Spring), 15, 2583-2594.
Milger, K., Herrmann, T., Becker, C., Gotthardt, D., Zickwolf, J., Ehehalt, R., Watkins, P. A., Stremmel, W. & Füllekrug, J. (2006). Cellular uptake of fatty acids driven by the ER-localized acyl-CoA synthetase FATP4. Journal of Cell Science, 119, 4678-4688.
Miyake, S. (1979). The mechanism of release of hepatic enzymes in various liver diseases. II. Altered activity ratios of GOT to GPT in serum and liver of patients with liver diseases. Acta Medica Okayama, 33, 343-358.
Mohamed-Ali, V., Goodrick, S., Rawesh, A., Katz, D. R., Miles, J. M., Yudkin, J. S., Klein, S., Coppack, S. W. (1997). Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. The Journal of Clinical Endocrinology & Metabolism, 82, 4196-4200.
Moreau, R. A., Whitaker, B. D., Hicks, K. B. (2002) Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Progress in Lipid Research, 41, 457-500.
Mosca, C. L., Marshall, J. A., Grunwald, G. K., Cornier, M. A., Baxter, J. (2004). Insulin resistance as a modifier of the relationship between dietary fat intake and weight gain. International Journal of Obesity, 28, 803-812.
Mourya, V. K., Inamdar, N. N., Choudhari, Y. M. (2011). Chitooligosaccharides: synthesis, characterization and applications. Polymer Science Series A, 53, 583-612.
Mu, H. and Høy, C. E. (2004). The digestion of dietary triacylglycerols. Progress in Lipid Research, 43, 105-133.
Nauss, J. L., Thompson, J. L. & Nagyvary, J. (1983). The binding of micellar lipids to chitosan. Lipid, 18, 714-719.
Ngo, D. N., Lee, S. H., Kim, M. M., Kim, S. K. (2009). Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells. Journal of Functional Foods, 1, 188-198.
Nguyen , T. M., Sawyer, J. K., Kelley, K. L., Davis, M. A. & Rudel, L. L. (2012). Cholesterol esterification by ACAT2 is essential for efficient intestinal cholesterol absorption: evidence from thoracic lymph duct cannulation. Journal of Lipid Research, 53, 95-104.
Oliveira, M. C., Menezes-Garcia, Z., Henriques, M. C., Soriani, F. M., Pinho, V., Faria, A. M., Santiago, A. F., Cara, D. C., Souza, D. G., Teixeira, M. M. & Ferreira, A. V. (2013). Acute and sustained inflammation and metabolic dysfunction induced by high refined carbohydrate-containing diet in mice. Obesity (Silver Spring), 21, 396-406.
Pan, C. Y., Gao, Y., Chen, J. W., Luo, B. Y., Fu, Z. Z., Lu, J. M., Guo, X. H. & Cheng, H. (2003). Efficacy of acarbose in Chinese subjects with impaired glucose tolerance. Diabetes Research and Clinical Practice, 61, 183-190.
Phillips, C., Owens, D., Collins, P., Tomkin, G. H. (2002). Microsomal triglyceride transfer protein: does insulin resistance play a role in the regulation of chylomicron assembly? Atherosclerosis, 160, 355-360.
Poirier, H., Degrace, P., Niot, I., Bernard, A. & Besnard, P. (1996). Localization and regulation of the putative membrane fatty-acid transporter (FAT) in the small intestine. Comparison with fatty acid-binding proteins (FABP). European Journal of Biochemistry, 238, 368-373.
Qi, C., Pekala, P. H. (2000). Tumor necrosis factor-alpha-induced insulin resistance in adipocytes. Proceedings of the Society for Experimental Biology and Medicine, 223, 128-135.
Ravi Kumar, M. N. V. (2000). A review of chitin and chitosan applications. Reactive & Functional Polymers, 46, 1-27.
Reddy, B. S., Mangat, S., Weisburger, J. H. & Wynder, E. L. (1977). Effect of diets for colon carcinogenesis on intestinal mucosa and β-glucuronidase activity in the F544 rats. Cancer Research, 37, 3533-3566.
Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31, 603-632.
Roth, G. & Leitzmann, C. (1985). Fiber and the large gut. In: Dietary perspectives reviews and bibliography. Libbey, J. publ., London. pp. 3-22.
Rutter, G. A., Xavier, G. D. S. & Leclerc, I. (2003). Role of 5-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostais. Biochemical Journal, 375, 1-16.
Sakata, T. (1986). Effects of indigestible dietary bulk and short chain fatty acids on the tissue weight and epithelial cell proliferation rate of the digestive tract in rats. Journal of Nutritional Science and Vitaminology, 32, 355-362.
Salminen, S., Isolauri, E., Salminen, E. (1996). Probiotics and stabilisation of the gut mucosal barrier. Asia Pacific Journal of Clinical Nutrition, 5, 53-56.
Santulli, G. (2014). Angiopoietin-like proteins: a comprehensive look. Frontiers in Endocrinology, 5,1-6.
Schoonjans, K., Peinado-Onsurbe, J., Lefebvre, A. M., Heyman, R. A., Briggs, M., Deeb, S., Staels, B. & Auwerx, J. (1996). PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO Journal, 15, 5336-5348.
Shiau, S. Y. and Chang, G. W. (1983). Effect of dietary fiber on fecal mucinase and β-glucuronidase activity in rats. Journal of Nutrition, 113, 138-144.
Smithson, K. W., Millar, D. B., Jacobs, L. R., Gray, G. M. (1981). Intestinal diffusion barrier: unstirred water layer or membrane surface mucous coat ? Science, 214, 1241-1244.
Somogyi, M. (1952). Notes on sugar determination. Journal of Biological Chemistry, 195, 19-23.
Staels, B., Dallongeville, J., Auwerx, J., Schoonjans, K., Leitersdorf, E. & Fruchart, J. C. (1998). Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation, 98, 2088-2093.
Stahl, A., Hirsch, D. J., Gimeno, R. E., Punreddy, S., Ge, P., Watson, N., Patel, S., Kotler, M., Raimondi, A., Tartaglia, L. A. & Lodish, H. F. (1999). Identification of the major intestinal fatty acid transport protein. Molecular Cell, 4, 299-308.
Stryer, L. (1998). Biochemistry 3rd edn. Academic press, USA.
Sugano, M., Fujikawa, T., Hiratsuji, Y., Nakashima, K., Fukuda, N., Hasegawa, Y. (1980). A novel use of chitosan as a hypocholesterolemic agent in rats. The American Journal of Clinical Nutrition, 33, 787-793.
Sukonina, V., Lookene, A., Olivecrona, T., Olivecrona, G. (2006). Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proceedings of the National Academy of Sciences of U. S. A.,103, 17450-17455.
Sun, K. & Scherer, P. E. (2012). The PPARγ-FGF1 axis: an unexpected mediator of adipose tissue homeostasis. Cell Research, 22, 1416-1418.
Toei, K. and Kohara, T. (1976). A conductometric method for colloid titrations. Analytica Chimica Acta, 83, 59-62.
Tontonoz, P. & Spiegelman, B. M. (2008). Fat and beyond: the diverse biology of PPARγ. Annual Review of Biochemistry, 77, 289-312.
Van de Velde, K. and Kiekens, P. (2004). Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state 13C NMR. Carbohydrate Polymers, 58, 409-416.
Van Heek, M., Farley, C., Compton, D. S., Hoos, L., Alton, K. B., Sybertz, E. J., Davis, H. R. Jr. (2000). Comparison of the activity and disposition of the novel cholesterol absorption inhibitor, SCH58235, and its glucuronide, SCH60663. British Journal of Pharmacology, 129, 1748-1754.
Vårum, K. M., Ottøy, M. H., Smidsorød, O. (2001). Acid hydrolysis of chitosan. Carbohydrate Polymers, 46, 89-98.
Vu-Dac, N., Chopin-Delannoy, S., Gervois, P., Bonnelye, E., Martin, G., Fruchart, J. C., Laudet, V. & Staels, B. (1998). The nuclear receptors peroxisome proliferator-activated receptor alpha and Rev-erbalpha mediate the species-specific regulation of apolipoprotein A-I expression by fibrates. Journal of Biological Chemistry, 273, 25713-25720.
Wang, T. Y., Liu, M., Portincasa, P., Wang, D. Q.-H. (2014). New insights into the molecular mechanism of intestinal fatty acid absorption. European Journal of Clinical Investigation, 43,1203-1223.
Wang, W., Bo, S. Q., Li, S. Q., Qin, W. (1991). Determination of the Mark-Houwink equation for chitosan with different degrees of deacetylation. International Journal of Biological Macromolecules, 13, 281-285.
Watanabe, S., Lee, K. Y., Chang, T. M., Berger-Ornstein, L., Chey, W. Y. (1988). Role of pancreatic enzymes on release of cholecystokinin-pancreozymin in response to fat. American Journal of Physiology, 254, 837-842.
Westerterp-Plantenga, M. S. (2001). Analysis of energy density of food in relation to energy intake regulation in human subjects. British Journal of Nutrition, 85, 351-361.
Williams, S. E. and Turnberg, L. A. (1980). Retardation of acid diffusion by pig gastric mucosa: a potential role in mucosal protection. Gastroenterology, 79, 299-304.
Wilson, M. D., Rudel, L. L. (1994). Review of cholesterol absorption with emphasis on dietary and biliary cholesterol. Journal of Lipid Research, 35, 943-955.
Wu, Q., Lin, D., Yao, S. (2014). Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes. Marine Drugs, 12, 6236-6253.
Xu, G., Huang, X., Qiu, L., Wu, J. & Hu, Y. (2007). Mechanism study of chitosan on lipid metabolism in hyperlipidemic rats. Asia Pacific Journal of Clinical Nutrition, 16, 313-317.
Xu, J., Xiao, G., Trujillo, C., Chang, V., Blanco, L., Joseph, S. B., Bassilian, S., Saad, M. F., Tontonoz, .P, Lee, W. N. & Kurland, I. J. (2002). Peroxisome proliferator-activated receptor alpha (PPARalpha) influences substrate utilization for hepatic glucose production. Journal of Biological Chemistry, 52, 50237-50244.
Yao, H. T. & Chiang, M. T. (2006). Chitosan shifts the fermentation site toward the distal colon and increases the fecal short-chain fatty acid concentrations in rats. International Journal of Vitamin and Nutrition Research, 76, 57-64.
Yao, H. T., Huang, S. Y., Chiang, M. T. (2008). A comparative study on hypoglycemic and hypocholesterolemic effects of high and low molecular weight chitosan in streptozotocin-induced diabetic rats. Food and Chemical Toxicology, 46, 1525-1534.
Yen, C. L., Stone, S. J., Koliwad, S., Harris, C., Farese, R. V. Jr. (2008). Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. Journal of Lipid Research, 49, 2283-2301.
Yu, L., Bharadwaj, S., Brown, J. M., Ma, Y., Du, W., Davis, M. A., Michaely, P., Liu, P., Willingham, M. C., Rudel, L. L. (2006). Cholesterol-regulated translocation of NPC1L1 to the cell surface facilitates free cholesterol uptake. Journal of Biological Chemistry, 281, 6616-6624.
Zeng, L., Qin, C., Wang, W., Chi, W., Li, W. (2008). Absorption and distribution of chitosan in mice after oral administration. Carbohydrate Polymers, 71, 435-440.
Zhang, J., Kelley, K. L., Marshall, S. M., Davis, M. A., Wilson, M. D., Sawyer, J. K., Farese, R. V., Brown, J. M. & Rudel, L. L. (2012). Tissue-specific knockouts of ACAT2 reveal that intestinal depletion is sufficient to prevent diet-induced cholesterol accumulation in the liver and blood. Journal of Lipid Research, 53, 1144-1152.
Zhang, L., Chen, Q., Li, L., Kwong, J. S. W., Jia, P., Zhao, P., Wang, W., Zhou, X., Zhang, M. & Sun, X. (2016). Alpha-glucosidase inhibitors and hepatotoxicity in type 2 diabetes: a systematic review and metaanalysis. Scientific Reports, 6, 1-8.
Zong, C., Yu, Y., Song, G., Luo, T., Li, L., Wang, X., Qin, S. (2012). Chitosan oligosaccharides promote reverse cholesterol transport and expression of scavenger receptor BI and CYP7A1 in mice. Experimental Biology and Medicine, 237, 194-200.
Zou, P., Yang, X., Wang, J., Li, Y., Yu, H., Zhang, Y., Liu, G. (2016). Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chemistry, 190, 1174-1181.