吳泰徵,2017,Actinotalea fermentans ATCC 43279 來源重組 L-核糖異構酶之特性與固定化並以蛋白質工程改變其熱穩定性,國立臺灣海洋大學食品科學系碩士學位論文,基隆林敬瑋,2008,新型單點及多點定位突變方法之開發與利用定向演化進行麥芽寡糖苷海藻糖水解酶的基因重組,國立臺灣海洋大學食品科學系碩士學位論文,基隆劉俞均,2018,以蛋白質工程及固定化菌體改變 Actinotalea fermentans ATCC 43279 來源重組 L-核糖異構酶之熱穩定性
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402.
Akbulut, N., Öztürk, M. T., Pijning, T., Öztürk, S. İ., and Gümüşel, F. (2013). Improved activity and thermostability of Bacillus pumilus lipase by directed evolution. Journal of Biotechnology,164(1), 123-129.
de Bakker, P. I.W., Hünenberger, P.H., and McCammon, J.A. (1999). Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability. Journal of Molecular Biology, 285, 1811-1830.
Beerens, K., Desmet, T., and Soetaert, W. (2012). Enzymes for the biocatalytic production of rare sugars. Journal of Industrial Microbiology & Biotechnology, 39(6), 823-834.
Borders, C., Broadwater, J. A., Bekeny, P. A., Salmon, J. E., Lee, A. S., Eldridge, A. M., and Pett, V. B. (1994). A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens. Protein Science, 3, 541–54.
Bosshard, H. R., Marti, D. N., and Jelesarov, I. (2004). Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings. Journal of Molecular Recognition, 17, 1-16.
Brayan, P. N., Rollence, M. L., Pantoliano, M. L., Wood, J., Finzel, B. C., Gilliland, G. L., Howard, A. J., and Poulos, T. L. (1986). Proteases of enhanced stability: characterization of a thermostable variant of subtilisin. Proteins: Structure, Function, and Bioinformatics, 1, 326-334.
Bryant, F. R. (1988). Construction of a recombinase-deficient mutant recA protein that retains single-stranded DNA-dependent ATPase activity. Journal of Biological Chemistry, 263(18), 8716-8723.
Chakravorty, D., Khan, M. F., and Patra, S. (2017). Multifactorial level of extremostability of proteins: can they be exploited for protein engineering? Extremophiles, 21, 419-444.
Chen, L., Drake, M. R., Resch, M. G., Greene, E. R., Himmel, M. E., Chaffey, P. K., Beckham, G.T., and Tan, Z. (2014).Specificity of O-glycosylation in enhancing the stability and cellulose binding affinity of Family 1 carbohydrate-binding modules. Proceedings of the National Academy of Sciences, 111(21), 7612-7617.
Chopra, N., Kumar, A., and Kaur, J. (2018). Structural and functional insights into thermostable and organic solvent stable variant Pro247-Ser of Bacillus lipase. International Journal of Biological Macromolecules, 108, 845-852.
Declerck, N., Machius, M., Wiegand, G., Huber, R., and Gaillardin, C. (2000). Probing structural determinants specifying high thermostability in Bacillus licheniformis α-amylase. Journal of Molecular Biology, 301, 1041-1057.
Deng, Z. M., Yang, H. Q., Shin, H. D., Li, J. H., and Liu, L. (2014). Structure-based rational design and introduction of arginines on the surface of an alkaline α-amylase from Alkalimonas amylolytica for improved thermostability. Applied Microbiology and Biotechnology, 98(21), 8937-8945.
Dhanoa, T. S. and Housner, J. A. (2007). Ribose: more than a simple sugar? Current Sports Medicine Reports, 6(4), 254-257.
Dombkowski, A. A., Sultana, K. Z., and Craig, D. B. (2014). Protein disulfide engineering. FEBS Letters, 588, 206-212.
Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70-77.
Feng, X. D., Tang, H., Han, B. J., Lv, B., and Li, C. (2016). Enhancing the thermostability of ß-glucuronidase by rationally redesigning the catalytic domain based on sequence alignment strategy. Industrial & Engineering Chemistry Research, 55, 5474-5483.
Fuchs, P. F. J. and Alix, A. (2005). High accuracy prediction of ß-turns and their types using propensities and multiple alignments. Proteins, 59, 828-839.
Gromiha, M. M., Pathak, M. C, Saraboji, K., Ortlund, E. A., and Gaucher, E. A. (2013). Hydrophobic environment is a key factor for the stability of thermophilic proteins. Proteins, 81, 715-721.
Grunberg-Manago, M. (1999). Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annual Review of Genetics, 33(1), 193-227.
Helanto, M., Kiviharju, K., Granström, T., Leisola, M., and Nyyssölä, A. (2009). Biotechnological production of L-ribose from L-arabinose. Applied Microbiology and Biotechnology, 83(1), 77-83.
Higuchi, R., Krummel, B., and Saiki, R. K. (1988). A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Research, 16(15), 7351-7367.
Hu, C., Li, L., Zheng, Y., Rui, L., and Hu, C. (2011). Perspectives of biotechnological production of L-ribose and its purification. Applied Microbiology and Biotechnology, 92(3), 449-455.
Huang, J., Xie, D. F., and Feng, Y. (2017). Engineering thermostable (R)-selective amine transaminase from Aspergillus terreus through in silico design employing B-factor and folding free energy calculations. Biochemical and Biophysical Research Communications, 483, 397-402.
Hung, X. G., Yu, M. Y., Chen, Y. C., and Fang, T. Y. (2015). Characterization of a recombinant L-ribose isomerase from" Geodermatophilus obscurus" DSM 43160 and application of this enzyme to the production of L-ribose from L-arabinose. Journal of Marine Science and Technology, 23(4), 558-566.
Jo, B.H., Park, T. Y., Park, H. J., Yeon, Y. J., Yoo, Y. J., and Cha, H. J. (2016). Engineering de novo disulfide bond in bacterial ɑ-type carbonic anhydrase for thermostable carbon sequestration. Scientific Reports, 6, Article number: 29322.
Kammann, M., Laufs, J. R., Schell, J., and Gronenborn, B. (1989). Rapid insertional mutagenesis of DNA by polymerase chain reaction (PCR). Nucleic Acids Research, 17(13), 5404.
Ke, S. H. & Madison, E. L. (1997). Rapid and efficient site-directed mutagenesis by single-tube ‘megaprimer’PCR method. Nucleic Acids Research, 25(16), 3371-3372.
King, N. P., Lee, T. M., Sawaya, M. R., Cascio, D., and Yeates, T. O. (2008). Structures and functional implications of an AMP-binding cystathionine b-synthase domain protein from a hyperthermophilic archaeon. Journal of Molecular Biology, 380, 181-192.
Koudelakova, T., Chaloupkova, R., Brezovsky, J., Prokop, Z., Sebestova, E., Hesseler, M., Khabiri, M., Plevaka, M., Kulik, D., Smatanova, I. K., Rezacova, P., Ettrich, R., Bornscheuer, U. T., and Damborskyet, J. (2013). Engineering enzyme stability and resistance to an organic cosolvent by modification of residues in the access tunnel. Angewandte Chemie International Edition, 52, 1959-1963.
Kumar, S., Tsai, C. J., and Nussinov, R. (2000). Factors enhancing protein thermostability. Protein Engineering, 13, 179-191.
Larsen, D. M., Nyffenegger, C., Swiniarska, M. M., Thygesen, A., Strube, M. L., Meyer, A. S., and Mikkelsen, J. D. (2015). Thermostability enhancement of an endo-1,4-ß-galactanase from Talaromyces stipitatus by site-directed mutagenesis. Applied Microbiology and Biotechnology, 99(10) , 4245-4253.
Lee, C. W., Wang, H. J., Hwang, J. K., and Tseng, C. P. (2014). Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study. PLOS One, 9, e112751.
Li, L., Liao, H., Yang, Y., Gong, J., Liu, J., Jiang, Z., Zu, Y., Xiao, A., and Ni, H. (2018). Improving the thermostability by introduction of arginines on the surface of α-L-rhamnosidase (L-Rha1) from Aspergillus niger. International Journal of Biological Macromolecules, 112, 14-21.
Loladze, V. V. and Makhatadze, G. I. (2004). Both helical propensity and side-chain hydrophobicity at a partially exposed site in ɑ-helix contribute to the thermodynamic stability of ubiquitin. Proteins, 58, 1-6.
Lopez, P. J., Marchand, I., Joyce, S.A., and Dreyfus, M. (1999). The C‐terminal half of RNAse, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo. Molecular Microbiology, 33(1), 188-199.
Lu, Y., Levin, G. V., and Donner, T. W. (2007). Tagatose, a new antidiabetic and obesity control drug. Diabetes Obesity and Metabolism, 10(2), 109-134.
Luedemann, G. M. (1968). Geodermatophilus, a new genus of the Dermatophilaceae (Actinomycetales). Journal of Bacteriology, 96(5), 1848-1858.
Nguyen, V., Wilson, C., Hoemberger, M., Stiller, J. B., Agafonov, R. V., Kutter, S., English, J., Theobald, D. L., and Kern, D. (2017). Evolutionary drivers of thermoadaptation in enzyme catalysis. Science, 355, 289-294.
Mabrouk, S. B., Aghajari, N., Ali, M. B., Messaoud, E. B., Juy, M., Haser, R., and Bejar, S. (2011). Enhancement of the thermostability of the maltogenic amylase MAUS149 by Gly312Ala and Lys436Arg substitutions. Bioresource Technology, 102, 1740-1746.
Mahmood, S., Iqbal, M. W., Riaz, T., Hassanin, H. A. M., Zhu, Y., Ni, D., and Mu, W. (2020a). Characterization of a recombinant L-ribose isomerase from Mycetocola miduiensis and its application for the production of L-ribulose. Enzyme and Microbial Technology, 109510.
Mahmood, S., Iqbal, M. W., Riaz, T., Zhang, W., and Mu, W. (2020b). Characterization of recombinant L-ribose isomerase acquired from Cryobacterium sp. N21 with potential application in L-ribulose production. Process Biochemistry, 97, 1-10.
Matthews, B. W., Nicholson, H., and Becktel, W. J. (1987). Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proceedings of the National Academy of Sciences of the United States of America, 84(19), 6663-6667.
Milgrom, P., Ly, K. A., Roberts, M. C., Rothen, M., Mueller, G., and Yamaguchi, D. K. (2006). Mutans streptococci dose response to xylitol chewing gum. Journal of Dental Research, 85(2), 177-181.
Mizanur, R. M., Takata, G., and Izumori, K. (2001). Cloning and characterization of a novel gene encoding L-ribose isomerase from Acinetobacter Sp. Strain Dl-28 in Escherichia Coli. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1521(1), 141-145.
Merkl, R. and Sterner, R. (2016). Reconstruction of ancestral enzymes. Perspectives in Science, 9, 17-23.
Morimoto, K., Terami, Y., Maeda, Y., Yoshihara, A., Takata, G., and Izumori, K. (2013). Cloning and characterization of the L-ribose isomerase gene from Cellulomonas parahominis MB426. Journal of Bioscience and Bioengineering, 115(4), 377-381.
Okano, K. (2009). Synthesis and pharmaceutical application of L-ribose. Tetrahedron, 65, 1937-1949.
Ordu, E. B., Sessions, R. B., Clarke, A. R., and Karagüler, N. G. (2013). Effect of surface electrostatic interactions on the stability and folding of formate dehydrogenase from Candida methylica. Journal of Molecular Catalysis B: Enzymatic, 95, 23-28.
Pantoliano, M.W., Whitlow, M., Wood, J. F., Dodd, S. W., Hardman, K. D., Rollence, M. L., and Bryan, P. N. (1989). Large increases in general stability for subtilisin BPN’ through incremental changes in the free energy of unfolding. Biochemistry, 28, 7205-7213.
Pauly, D. F. and Pepine, C. J. (2000). D-Ribose as a supplement for cardiac energy metabolism. Journal of Cardiovascular Pharmacology and Therapeutics, 5, 249-258.
Perry, L. and Wetzel, R. (1984). Disulfide bond engineered into T4 lysozyme: stabilization of the protein toward thermal inactivation. Science, 226, 555-557.
Prabhu, P., Tiwari, M. K., Jeya, M., Gunasekaran, P., Kim, I., and Lee, J. (2008). Cloning and characterization of a novel L-arabinose isomerase from Bacillus licheniformis. Applied Microbiology and Biotechnology, 81(2), 283-290
Rahimzadeh, M., Khajeh, K., Mirshahi, M., Khayatian, M., and Schwarzenbacher, R. (2012). Probing the role of asparagine mutation in thermostability of Bacillus KR-8104 α-amylase. International Journal of Biological Macromolecules, 50, 1175-1182.
Riordan, J. F., McElvany, K. D., and Borders, C. L. (1977). Arginyl residues: anion recognition sites in enzymes. Science, 195(4281), 884-886.
Séraphin, B. and Kandels-Lewis, S. (1996). An efficient PCR mutagenesis strategy without gel purificiation step that is amenable to automation. Nucleic Acids Research, 24(16), 3276-3277.
Shenoy, A. R. and Visweswariah, S. S. (2003). Site-directed mutagenesis using a single mutagenic oligonucleotide and Dpn I digestion of template DNA. Analytical Biochemistry, 319(2), 335-336.
Shimonishi, T. and Izumori, K. (1996). A new enzyme, L-ribose isomerase from Acinetobacter sp. strain DL-28. Journal of Fermentation and Bioengineering, 81(6), 493-497.
Shivange, A.V., Roccatano, D., and Schwaneberg, U. (2016). Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution. Applied Microbiology and Biotechnology, 100, 227-242.
Siddiqui, K.S., Poljak, A., Guilhaus, M., Feller, G., D'Amico, S., Gerday, C., and Cavicchioli, R. (2005). Role of disulfide bridges in the activity and stability of a coldactive ɑ-amylase. Journal of Bacteriology, 187, 6206-6212.
Szilágyi, A. and Závodszky, P., (2000). Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure, 8, 493-504.
Tatko, C. D. and Waters, M. L. (2002). Selective aromatic interactions in ß-hairpin peptides. Journal of the American Chemical Society, 124, 9372-9373.
Terami, Y., Yoshida, H., Uechi, K., Morimoto, K., Takata, G., and Kamitori, S. (2015). Essentiality of tetramer formation of Cellulomonas parahominis L-ribose isomerase involved in novel L-ribose metabolic pathway. Applied Microbiology and Biotechnology, 99(15), 6303-6313.
Trimbur, D. E. and Mortlock, R. P. (1991). Isolation and characterization of Escherichia coli mutants able to utilize the novel pentose L-ribose. Journal of Bacteriology, 173(8), 2459-2464.
Tsai, C. H., Chan, C.H., Chen, B. J., Kao, C. Y., Liu, H. L., and Hsu, J. P. (2007). Bioinformatics approaches for disulfide connectivity prediction. Current Protein & Peptide Science, 8, 243-260.
Tseng, W. C., Lin, J. W., Hung, X. G., and Fang, T. Y. (2010). Simultaneous mutations up to six distal sites using a phosphorylation-free and ligase-free polymerase chain reaction-based mutagenesis. Analytical Biochemistry, 401(2), 315-317.
Tseng, W. C., Lin, J. W., Wei, T. Y., and Fang, T. Y. (2008). A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method. Analytical Biochemistry, 375(2), 376-378.
Tseng, W. C., Wu, T.J., Chang, Y. J., Cheng, H. W., and Fang, T. Y. (2017). Overexpression and characterization of a recombinant L-ribose isomerase from Actinotalea fermentans ATCC 43279. Journal of Biotechnology, 259, 168-174.
Veno, J., Ahmad Kamarudin, N. H., Mohamad Ali, M. S., Masomian, M., Zaliha, R. N., and Rahman, R. A. (2017). Directed evolution of recombinant C-terminal truncated Staphylococcus epidermidis lipase AT2 for the enhancement of thermostability. International Journal of Molecular Sciences, 18(11), 2202.
Vogt, G., Woell, S., and Argos, P. (1997). Protein thermal stability, hydrogen bonds, and ion pairs. Journal of Molecular Biology, 269, 631-643.
Waldburger, C. D., Schildbach, J. F., and Sauer, R. T. (1995). Are buried salt bridges important for protein stability and conformational specificity? Nature Structural & Molecular Biology, 2, 122-128.
Wang, P., Hong, J. H., Cooperwood, J. S., and Chu, C. K. (1998). Recent advances in L-nucleosides: chemistry and biology. Antiviral Research, 40, 19-44.
Wolfenden, R. (1983). Waterlogged molecules. Science, 222(4628), 1087-1093.
Xu, Z., Cai, T., Xiong, N., Zou, S. P., Xue, Y. P., and Zheng, Y. G. (2018). Engineering the residues on “A” surface and C-terminal region to improve thermostability of nitrilase. Enzyme and Microbial Technology, 113, 52-58.
Yeom, S., Ji, J., Yoon, R., and Oh, D. (2008). L-ribulose production from L-arabinose by an L-arabinose isomerase mutant from Geobacillus thermodenitrificans. Biotechnology Letters, 30(10), 1789-1793.
Yeom, S., Kim, N., Park, C., and Oh, D. (2009). L-ribose production from L-arabinose by using purified L-arabinose isomerase and mannose-6-phosphate isomerase from Geobacillus thermodenitrificans. Applied and Environmental Microbiology, 75(21), 6941-6943.
Yeom, S. J., Seo, E. S., Kim, B. N., Kim, Y. S., and Oh, D. K. (2011). Characterization of a mannose-6-phosphate isomerase from Thermus thermophilus and increased L-ribose production by its r142n mutant. Applied and Environmental Microbiology, 77(3), 762-767
Yi, H., Schumann, P., and Chun, J. (2007). Demequina aestuarii gen. nov., sp. nov., a novel actinomycete of the suborder Micrococcineae, and reclassification of Cellulomonas fermentans Bagnara et al. 1985 as Actinotalea fermentans gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 57(1), 151-156.
Yokota, K., Satou, K., and Ohki, S. Y. (2006). Comparative analysis of protein thermostability: differences in amino acid content and substitution at the surfaces and in the core regions of thermophilic and mesophilic proteins. Science and Technology of Advanced Materials, 7, 255-262.
Yun, M., Moon, H. R., Kim, H. O., Choi, W. J., Kim, Y. C., Park, C. S., and Jeong, L.S. (2005). A highly efficient synthesis of unnatural L-sugars from D-ribose. Tetrahedron Letters, 46, 5903-5905.
Zeng, Y., Zhang, H., Guan, Y., Zhang, L., and Sun, Y. (2013). Comparative study on the effects of D-psicose and D-fructose in the Maillard reaction with beta-lactoglobulin. Food Science and Biotechnology, 22, 341-346.
Zhang, Y. W., Prabhu, P., and Lee, J. K. (2009). Immobilization of Bacillus licheniformis L-arabinose isomerase for semi-continuous L-ribulose production. Bioscience, Biotechnology, and Biochemistry, 73(10), 2234-2239.
Zhang, X., Zhang, Y., Yang, G., Xie, Y., Xu, L., An, J., Cui, L., and Feng, Y. (2016). Modulation of the thermostability and substrate specificity of Candida rugosa lipase1 by altering the acyl-binding residue Gly414 at the ɑ-helix-connecting bend. Enzyme and Microbial Technology, 8, 34-41.
Zheng, J. X, Yang, T. W., Zhou, J. P., Xu, M. J. Zhang, X., and Rao, Z. M. (2017). Elimination of a free cysteine by creation of a disulfide bond increases the activity and stability of Candida boidinii formate dehydrogenase. Applied and Environmental Microbiology, 83, 12.