王銘駿,2013,Agrobacterium sp. ATCC 31750 菌株經基因重組後所產阿洛酮糖 表異構酶對於活性及特性之影響,國立臺灣海洋大學食品科學系碩士論 文,基隆。方弘懿,2016,以蛋白質工程及固定化提昇 Agrobacterium sp. ATCC 31750 來源 重組 D-阿洛酮糖表異構酶之熱穩定性,國立臺灣海洋大學食品科學系碩 士論文,基隆。
李旭傑,2017,以蛋白質工程提昇 Agrobacterium sp. ATCC 31750 來源重組 D- 阿洛酮糖表異構酶之熱穩定性與利用固定化菌體由果糖生產阿洛酮糖, 國立臺灣海洋大學食品科學系碩士論文,基隆。吳文騰,2003,生物產業技術概論,國立清華大學出版社,台北。
吳易皇,2015,Agrobacterium sp. ATCC 31750 D-阿洛酮糖表異構酶之蛋白質工 程及利用固定化菌體生產 D-阿洛酮糖,國立臺灣海洋大學食品科學系碩士論文,基隆。許仲霆,2014,利用蛋白質工程提昇 D-阿洛酮糖表異構酶之活性回收及熱穩定性,國立臺灣海洋大學食品科學系碩士論文,基隆。陳昭南,2012,Agrobacterium sp. ATCC 31750 菌株所產阿洛酮糖表異構酶之基因選殖、表現、純化及特性探討,國立臺灣海洋大學食品科學系碩士論文,基隆。Audet, P., Lacroix, C., & Paquin, C. (1992). Continuous fermentation of a supplemented whey permeate medium with immobilized Streptococcus salivarius subsp. thermophilus. International dairy journal, 2(1), 1-15.
Bilal, M., Iqbal, H. M., Hu, H., Wang, W., & Zhang, X. (2017). Metabolic engineering pathways for rare sugars biosynthesis, physiological functionalities, and applications–A review. Critical reviews in food science and nutrition(just-accepted), 00-00.
Burré, J., Sharma, M., Tsetsenis, T., Buchman, V., Etherton, M. R., & Südhof, T. C. (2010). α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science, 329(5999), 1663-1667.
Diao, J., Burré, J., Vivona, S., Cipriano, D. J., Sharma, M., Kyoung, M., Südhof, T. C., & Brunger, A. T. (2013). Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. Elife, 2, e00592.
Espinosa, I., & Fogelfeld, L. (2010). Tagatose: from a sweetener to a new diabetic medication? Expert opinion on investigational drugs, 19(2), 285-294.
Finka, A., Mattoo, R. U. H., & Goloubinoff, P. (2016). Experimental milestones in the discovery of molecular chaperones as polypeptide unfolding enzymes. Annual review of biochemistry, 85(1), 715-742.
Hossain, A., Yamaguchi, F., Hirose, K., Matsunaga, T., Sui, L., Hirata, Y., Noguchi, C., Katagi, A., Kamitori, K., & Dong, Y. (2015). Rare sugar D-psicose prevents progression and development of diabetes in T2DM model Otsuka Long-Evans Tokushima Fatty rats. Drug design, development and therapy, 9, 525.
Ibrahim, B. S., & Pattabhi, V. (2004). Role of weak interactions in thermal stability of proteins. Biochemical and biophysical research communications, 325(3), 1082-1089.
Izumori, K. (2006). Izumoring: a strategy for bioproduction of all hexoses. Journal of biotechnology, 124(4), 717-722.
Jia, M., Mu, W., Chu, F., Zhang, X., Jiang, B., Zhou, L. L., & Zhang, T. (2014). A D-psicose 3-epimerase with neutral pH optimum from Clostridium bolteae for D-psicose production: cloning, expression, purification, and characterization. Applied microbiology and biotechnology, 98(2), 717-725.
Kammann, M., Laufs, J. r., Schell, J., & Gronenborn, B. (1989). Rapid insertional mutagenesis of DNA by polymerase chain reaction (PCR). Nucleic acids research, 17(13), 5404.
Kim, H. J., Hyun, E. K., Kim, Y. S., Lee, Y. J., & Oh, D. K. (2006). Characterization of an Agrobacterium tumefaciens D-psicose 3-epimerase that converts D-fructose to D-psicose. Applied and environmental microbiology, 72(2), 981-985.
Kim, K., Kim, H. J., Oh, D. K., Cha, S. S., & Rhee, S. (2006). Crystal structure of D-psicose 3-epimerase from Agrobacterium tumefaciens and its complex with true substrate D-fructose: a pivotal role of metal in catalysis, an active site for the non-phosphorylated substrate, and its conformational changes. Journal of molecular biology, 361(5), 920-931.
Kim, Y. E., Hipp, M. S., Bracher, A., Hayer-Hartl, M., & Ulrich Hartl, F. (2013). Molecular chaperone functions in protein folding and proteostasis. Annual review of biochemistry, 82, 323-355.
Klibanov, A. M. (1983). Immobilized enzymes and cells as practical catalysts. Science, 219(4585), 722-727.
Krasaekoopt, W., Bhandari, B., & Deeth, H. (2003). Evaluation of encapsulation techniques of probiotics for yoghurt. International dairy journal, 13(1), 3-13.
Lacroix, C., Paquin, C., & Arnaud, J.-P. (1990). Batch fermentation with entrappedgrowing cells of Lactobacillus casei. Applied microbiology and biotechnology,32(4), 403-408.
Lee, E. N., Kim, Y. M., Lee, H. J., Park, S. W., Jung, H. Y., Lee, J. M., Ahn, Y.-H., &Kim, J. (2005). Stabilizing peptide fusion for solving the stability and solubility problems of therapeutic proteins. Pharmaceutical research, 22(10), 1735-1746.
Li, Z., & Srivastava, P. (2004). Heat‐shock proteins. Current protocols in immunology, A. 1T. 1-A. 1T. 6.
Liu, Z., Zhang, J., Chen, X., & Wang, P. G. (2002). Combined biosynthetic pathway for de novo production of UDP-galactose: catalysis with multiple enzymes immobilized on agarose beads. ChemBiochem, 3(4), 348-355.
Lupo, B., Maestro, A., Porras, M., Gutiérrez, J. M., & González, C. (2014). Preparation of alginate microspheres by emulsification/internal gelation to encapsulate cocoa polyphenols. Food hydrocolloids, 38, 56-65.
Machida, S., Yu, Y., Singh, S. P., Kim, J.-D., Hayashi, K., & Kawata, Y. (1998). Overproduction of β-glucosidase in active form by an Escherichia coli system coexpressing the chaperonin GroEL/ES. FEMS microbiology letters, 159(1), 41-46.
Mercuri, A., Passalacqua, A., Wickham, M. S., Faulks, R. M., Craig, D. Q., & Barker, S. A. (2011). The effect of composition and gastric conditions on the self-emulsification process of ibuprofen-loaded self-emulsifying drug delivery systems: a microscopic and dynamic gastric model study. Pharmaceutical research, 28(7), 1540-1551.
Mofidi, N., Aghai-Moghadam, M., & Sarbolouki, M. (2000). Mass preparation and characterization of alginate microspheres. Process biochemistry, 35(9), 885-888.
Mu, W., Chu, F., Xing, Q., Yu, S., Zhou, L., & Jiang, B. (2011). Cloning, expression, and characterization of a D-psicose 3-epimerase from Clostridium cellulolyticum H10. Journal of agricultural and food chemistry, 59(14), 7785-7792.
Mu, W., Zhang, W., Feng, Y., Jiang, B., & Zhou, L. (2012). Recent advances on applications and biotechnological production of D-psicose. Applied microbiology and biotechnology, 94(6), 1461-1467.
Park, S. M., Jung, H. Y., Chung, K. C., Rhim, H., Park, J. H., & Kim, J. (2002). Stress-induced aggregation profiles of GST α-Synuclein fusion proteins: role of the C-terminal acidic tail of α-Synuclein in protein thermosolubility and stability. Biochemistry, 41(12), 4137-4146.
Prasad, S., Khadatare, P. B., & Roy, I. (2011). Effect of chemical chaperones in improving the solubility of recombinant proteins in Escherichia coli. Applied and environmental microbiology, 77(13), 4603-4609.
Rinas, U., Tsai, L. B., Lyons, D., Fox, G. M., Stearns, G., Fieschko, J., Fenton, D., & Bailey, J. E. (1992). Cysteine to serine substitutions in basic fibroblast growth factor: effect on inclusion body formation and proteolytic susceptibility during in vitro refolding. Nature biotechnology, 10(4), 435-440.
Ruzicka, J., Carroll, A. D., & Lähdesmäki, I. (2006). Immobilization of proteins on agarose beads, monitored in real time by bead injection spectroscopy. Analyst, 131(7), 799-808.
Smidsrød, O., & Skja, G. (1990). Alginate as immobilization matrix for cells. Trends in biotechnology, 8, 71-78.
Stănciuc, N., Ardelean, A., Diaconu, V., Râpeanu, G., Stanciu, S., & Nicolau, A. (2011). Kinetic and thermodynamic parameters of alkaline phosphatase and γ—glutamyl transferase inactivation in bovine milk. Dairy science & technology, 91(6), 701-717.
Szilágyi, A., & Závodszky, P. (2000). Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure, 8(5), 493-504.
Tseng, W.-C., Lin, J.-W., Wei, T.-Y., & Fang, T.-Y. (2008). A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method. Analytical biochemistry, 375(2), 376-378.
Walter, S., & Buchner, J. (2002). Molecular chaperones—cellular machines for protein folding. Angewandte Chemie International Edition, 41(7), 1098-1113.
Zhang, W., Zhang, T., Jiang, B., & Mu, W. (2017). Enzymatic approaches to rare sugar production. Biotechnology advances, 35(2), 267-274.
Zhu, Y., Men, Y., Bai, W., Li, X., Zhang, L., Sun, Y., & Ma, Y. (2012). Overexpression of D-psicose 3-epimerase from Ruminococcus sp. in Escherichia coli and its potential application in D-psicose production. Biotechnology letters, 34(10), 1901-1906.