吳俊忠(2009)。護理檢驗概論,華杏出版社。台北,台灣。
黃世偉(2010)。高分子材料與醫療器材,科學發展455 期14-19。
朱正明(2012)。食品藥物研究年報.3:26-30。
李佳恬(2016)。溫感型複合水凝膠系統作為傷口敷料之研究。淡江大學化學工
程與材料工程學系碩士論文。台北,台灣。
魏廷潔(2018)。溫感型複合薄膜控制藥物釋放之研究。國立臺灣海洋大學食品科學系碩士論文。基隆,台灣。Ahmad, U., Sohail, M., Ahmad, M., Minhas, M. U., Khan, S., Hussain, Z., Kousar, M., Mohsin, S., Abbasi, M., Shah, S. A., and Rashid, H. (2019). Chitosan based thermosensitive injectable hydrogels for controlled delivery of loxoprofen: development, characterization and in-vivo evaluation. International Journal of Biological Macromolecules 129, 233-245.
Berchane, N. S., Carson, K. H., Rice-Ficht, A. C., and Andrews, M. J. (2007). Effect of mean diameter and polydispersity of PLG microspheres on drug release: Experiment and theory. International Journal of Pharmaceutics 337, 118-126.
Bielefeld, K. A., Amini-Nik, S., and Alman, B. A. (2013). Cutaneous wound healing: recruiting developmental pathways for regeneration. Cellular and Molecular Life Sciences 70, 2059-2081.
Borena, B. M., Martens, A., Broeckx, S. Y., Meyer, E., Chiers, K., Duchateau, L., and Spaas, J. H. (2015). Regenerative skin wound healing in mammals: state-of-the-art on growth factor and stem cell based treatments. Cellular Physiology and Biochemistry 36, 1-23.
Bruschi, M. L. (2015).Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing.
Calejo, M. T., Sande, S. A., and Nyström, B. (2013). Thermoresponsive polymers as gene and drug delivery vectors: architecture and mechanism of action. Expert Opinion on Drug Delivery 10, 1669-1686.
Chen, H., Xing, X., Tan, H., Jia, Y., Zhou, T., Chen, Y., Ling, Z., and Hu, X. (2017). Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Materials Science and Engineering: C 70, 287-295.
Chen, L., Tian, Z., and Du, Y. (2004). Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 25, 3725-3732.
Chen, X.G., and Park, H.J. (2003). Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydrate Polymers 53, 355-359.
Chen, X.G., Wang, Z., Liu, W.S., and Park, H.J. (2002). The effect of carboxymethyl-chitosan on proliferation and collagen secretion of normal and keloid skin fibroblasts. Biomaterials 23, 4609-4614.
Chen, Y., Song, G., Yu, J., Wang, Y., Zhu, J., and Hu, Z. (2018). Mechanically strong dual responsive nanocomposite double network hydrogel for controlled drug release of asprin. Journal of the Mechanical Behavior of Biomedical Materials 82, 61-69.
Chen, Y. S., Chang, J. Y., Cheng, C. Y., Tsai, F. J., Yao, C. H., and Liu, B. S. (2005). An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials 26, 3911-8.
Chiappini, C., De Rosa, E., Martinez, J. O., Liu, X., Steele, J., Stevens, M. M., and Tasciotti, E. (2015). Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nature materials 14, 532-9.
Culler E.L.Diffusion: Mass Transfer inFluid Systems SecondEdition. America: Cambridge University Press 1997:467-478.
Dabiri, G., Damstetter, E., and Phillips, T. (2016). Choosing a wound dressing based on common wound characteristics. Advances in Wound Care 5, 32-41.
Dima, C., Patrascu, L., Cantaragiu, A., Alexe, P., and Dima, S. (2016). The kinetics of the swelling process and the release mechanisms of Coriandrum sativumL. essential oil from chitosan/alginate/inulin microcapsules. Food Chemistry 195, 39-48.
Ding, Z., Chen, G., and Hoffman, A. S. (1996). Synthesis and purification of thermally sensitive oligomer− enzyme conjugates of poly (N-isopropylacrylamide)− trypsin. Bioconjugate chemistry 7, 121-125.
Don, T.M., Huang, M.L., Chiu, A.C., Kuo, K.H., Chiu, W.Y., and Chiu, L.H. (2008). Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Materials Chemistry and Physics 107, 266-273.
Erdem, A.K. and N.O.S. Yurudu, 2008.The evaluation of antibacterial activity of fabrics impregnated with dimethyltetradecyl (3-(trimethoxysilyl) propyl) ammonium chloride. IUFS Journal of Biology 67: 115-122.
Falanga, V., Isaacs, C., Paquette, D., Downing, G., Kouttab, N., Butmarc, J., Badiavas, E., and Hardin-Young, J. (2002). Wounding of bioengineered skin: cellular and molecular aspects after injury. Journal of Investigative Dermatology 119, 653-660.
Fredenberg, S., Wahlgren, M., Reslow, M., and Axelsson, A. (2011). The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems-A review. International Journal of Pharmaceutics 415, 34-52.
Gao, X., Cao, Y., Song, X., Zhang, Z., Xiao,C., He, C., and Chen, X. (2013). pH-and thermo-responsive poly(N-isopropylacrylamide-co-acrylic acid derivative) copolymers and hydrogelswith LCST dependent on pH and alkyl side groups. Journal of Materials Chemistry B1, 5578-5588.
Gil, E. S., and Hudson, S. M. (2004). Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science 29, 1173-1222.
He, H., Cao, X., & Lee, L. J. (2004). Design of a novel hydrogel-based intelligent system for controlled drug release. Journal of Controlled Release 95, 391-402.
Hu, S., Cai, X., Qu, X., Yu, B., Yan, C., Yang,J., Li, F., Zheng, Y., and Shi, X. (2019). Preparation of biocompatible wound dressings with long-term antimicrobial activity through covalent bonding of antibiotic agents to natural polymers. International Journal of Biological Macromolecules 123, 1320-1330.
Huang, X., and Brazel, C. S. (2001). On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. Journal of Controlled Release 73, 121-136.
Huang, X., Zhang, Y., Zhang, X., Xu, L., Chen, X., and Wei, S. (2013). Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Materials Science and Engineering: C 33, 4816-4824.
Jayakumar, R., Prabaharan, M., Nair, S. V., and Tamura, H. (2010). Novel chitin and chitosan nanofibers in biomedical applications. Biotechnology Advances 28, 142-150.
Jochum, F. D., and Theato, P. (2013). Temperature-and light-responsive smart polymer materials. Chemical Society Reviews 42, 7468-7483.
Kamaly, N., Yameen, B., Wu, J., and Farokhzad, O. C. (2016). Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chemical Reviews 116, 2602-63.
Karimi, M. (2011). Diffusion in polymer solids and solutions. Mass Transfer in Chemical Engineering Processes, 17-41.
Khan, F., and Tanaka, M. (2017). Designing smart biomaterials for tissue engineering. International journal of molecular sciences19,17.
Kim, A. R., Lee, S. L., and Park, S. N. (2018). Properties and in vitro drug release of pH-and temperature-sensitive double cross-linked interpenetrating polymer network hydrogels based on hyaluronic acid/poly (N-isopropylacrylamide) for transdermal delivery of luteolin. International Journal of Biological Macromolecules 118, 731-740.
Kurniasih, M., Purwati, Cahyati, T., and Dewi, R. S. (2018). Carboxymethyl chitosan as an antifungal agent on gauze. International Journal of Biological Macromolecules 119, 166-171.
Lavertu, M., Xia, Z., Serreqi, A. N., Berrada, M., Rodrigues, A., Wang, D., & Gupta, A. (2003). A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. Journal of Pharmaceutical and Biomedical Analysis 32, 1149-1158.
Li, Y., Jiang, H., Zheng, W., Gong, N., Chen, L., Jiang, X., & Yang, G. (2015). Bacterial cellulose–hyaluronan nanocomposite biomaterials as wound dressings for severe skin injury repair. Journal of Materials Chemistry B 3, 3498-3507.
Lin, W. C., Lien, C. C., Yeh, H. J., Yu, C. M., and Hsu, S. H. (2013). Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydrate Polymers 94, 603-611.
Luo, W., Bai, Z., & Zhu, Y. (2017). Comparison of Co (ii) adsorption by a crosslinked carboxymethyl chitosan hydrogel and resin: behaviourand mechanism. New Journal of Chemistry 41,3487-3497.
Ma, Y., Xin, L., Tan, H., Fan, M., Li, J., Jia, Y., Ling, Z., Chen, Y., and Hu, X. (2017). Chitosan membrane dressings toughened by glycerol to load antibacterial drugs for wound healing. Materials Science and Engineering: C 81, 522-531.
May, S. R., & DeClement, F. A. (1981). Skin banking: Part III. Cadaveric allograft skin viability. The Journal of Burn Care & Rehabilitation 2, 128-141.
Mirani, B., Pagan, E., Currie, B., Siddiqui, M. A., Hosseinzadeh, R., Mostafalu, P.,& Akbari, M. (2017). An advanced multifunctional hydrogel‐based dressing for wound monitoring and drug delivery. Advanced Healthcare Materials 6, 1700718.
Molina, R., Ligero, C., Jovančić, P., and Bertran, E. (2013). In situ polymerization of aqueous solutions of NIPAAm initiated by atmospheric plasma treatment. Plasma Processes and Polymers 10, 506-516.
Motoyama, K., Tanida, Y., Hata, K., Hayashi, T., Higashi,T., Ishitsuka, Y., ... & Arima, H. (2014). Potential use of a megamolecular polysaccharide sacran as a hydrogel-based sustainedrelease system. Chemical and Pharmaceutical Bulletin, c14-00053.
Muttaqien, S. E., Nomoto, T., Takemoto, H., Matsui, M., Tomoda, K., and Nishiyama, N. (2019). Poly( N-isopropylacrylamide)-based polymer-inducing isothermal hydrophilic-to-hydrophobic phase transition via detachment of hydrophilic acid-labile moiety. Biomacromolecules 20, 1493-1504.
Ngadaonye, J. I., Geever, L. M., McEvoy, K. E., Killion, J., Brady, D. B., and Higginbotham, C. L. (2014). Evaluation of novel antibiotic-eluting thermoresponsive chitosan-PDEAAm based wound dressings. International Journal of Polymeric Materials and Polymeric Biomaterials 63, 873-883.
Ni Annaidh, A., Bruyere, K., Destrade, M., Gilchrist, M. D., and Ottenio, M. (2012). Characterization of the anisotropic mechanical properties of excised human skin. Journal of the Mechanical Behavior of Biomedical Materials 5, 139-48.
Nilsen-Nygaard, J., Strand, S., Vårum, K., Draget, K., and Nordgård, C. (2015). Chitosan: gels and interfacialproperties. Polymers 7, 552-579.
Nouri, S., Sharif, M. R., Panahi, Y., Ghanei, M., and Jamali, B. (2015). Efficacy and safety of aluminum chloride in controlling external hemorrhage: an animal model study. Iranian Red Crescent Medical Journal 17, e19714.
Nokhodchi, A., andTailor, A. (2004). In situ cross-linking of sodium alginate with calcium and aluminum ions to sustain the release of theophylline from polymeric matrices. Il Farmaco 59, 999-1004.
Percival, S. L., McCarty, S., Hunt, J. A., and Woods, E. J. (2014). The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair and Regeneration 22, 174-186.
Regiel, A., Irusta, S., Kyziol, A., Arruebo, M., and Santamaria, J. (2013). Preparation and characterization of chitosan-silver nanocomposite films and their antibacterial activity against Staphylococcus aureus. Nanotechnology 24, 015101.
Rokhade, A. P., Agnihotri, S. A., Patil, S. A., Mallikarjuna, N. N., Kulkarni, P. V., & Aminabhavi, T. M. (2006). Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydrate Polymers 65, 243-252.
Saghazadeh, S., Rinoldi, C., Schot, M., Kashaf, S. S.,Sharifi,F., Jalilian, E., Nuutila, K., Giatsidis, G., Mostafalu, P., Derakhshandeh, H., Yue, K., Swieszkowski, W., Memic, A., Tamayol, A., and Khademhosseini, A. (2018). Drug delivery systems and materials for wound healing applications. Advanced Drug Delivery Reviews 127, 138-166.
Schilli, C. M., Zhang, M., Rizzardo, E., Thang, S. H., Chong, Y., Edwards, K., & Müller, A. H. (2004). A new double-responsive block copolymer synthesized via RAFT polymerization: poly (N-isopropylacrylamide)-b lock-poly (acrylic acid). Macromolecules 37, 7861-7866.
Shahidi, F., Arachchi, J. K. V., & Jeon, Y. J. (1999). Food applications of chitin and chitosans.Trends in Food Science & Technology 10, 37-51.
Shieh, Y. T., Lin, P. Y., Chen, T., and Kuo, S. W. (2016). Temperature-, pH-and CO(2)-sensitive poly(N-isopropylacryl amide-co-acrylic acid) copolymers with high glass transition temperatures. Polymers (Basel) 8, 434.
Subha, M. C. S., Mallikarjuna, B., Pallavi, K., Rao, K., and Rao, K. (2015). Biodegradable interpenetrating polymer network hydrogel membranes for controlled release of anticancer drug. Asian Journal of Pharmaceutics 9, 129-136.
Sun, X., Shen, J., Yu, D., and Ouyang, X. K. (2019). Preparation of pH-sensitive Fe3O4@C/carboxymethyl cellulose/chitosan composite beads for diclofenac sodium delivery. International Journal of Biological Macromolecules 127, 594-605.
Tan, H., & Marra, K. G. (2010). Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3, 1746-1767.
Than, U. T. T., Guanzon, D., Leavesley, D., and Parker, T. (2017). Association of extracellular membrane vesicles with cutaneous wound healing. International Journal of Molecular Sciences 18, 956.
Theia’a, N., Dhamra, M. Y., & Al-Ghabsha, T. S. (2017). Spectrofluorimetric determination of tetracycline and terbutaline sulphate in its pure and dosage forms using eosin Y Reagent. European Chemical Bulletin 6, 336-342..
Tsaih, M.L., and Chen, R.H. (1999). Molecular weight determination of 83% degreeof decetylation chitosan with non‐Gaussian and wide range distribution by high‐performance size exclusion chromatography and capillary viscometry. Journal of Applied Polymer Science 71, 1905-1913.
Van, T. D., Tran, N. Q., Nguyen, D. H., Nguyen, C. K., Tran, D. L., and Nguyen, P. T. (2016). Injectable hydrogel composite based gelatin-PEG and biphasic calcium phosphate nanoparticles for bone regeneration. Journal of Electronic Materials 45, 2415-2422.
Verlee, A., Mincke, S., & Stevens, C. V. (2017). Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydrate Polymers 164, 268-283.
Winnik, F. M. (1990). Phase transition of aqueous poly-(N-isopropylacrylamide) solutions: a study by non-radiative energy transfer. Polymers 31, 2125-2134.
Xie, H., Chen, X., Shen, X., He, Y., Chen, W., Luo, Q., Ge, W., Yuan, W., Tang, X., Hou, D., Jiang, D., Wang, Q., Liu, Y., Liu, Q., and Li, K. (2018). Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing. International Journal of Biological Macromolecules 107, 93-104.
Xiong, W., Wang, W., Wang, Y., Zhao, Y., Chen, H., Xu, H., and Yang,X. (2011). Dual temperature/pH-sensitive drug delivery of poly(N-isopropylacrylamide-co-acrylic acid) nanogels conjugated with doxorubicin for potential application in tumor hyperthermia therapy. Colloids and Surfaces B: Biointerfaces 84, 447-53.
Xu, R., Xia, H., He, W., Li, Z., Zhao, J., Liu, B., & Yao, Z. (2016). Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Scientific Reports 6, 24596
Yan, X., He, G., Gu, S., Wu, X., Du, L., and Wang, Y. (2012). Imidazolium-functionalized polysulfone hydroxide exchange membranes for potential applications in alkaline membrane direct alcohol fuel cells. International Journal of Hydrogen Energy 37, 5216-5224.
Yang, C., Xu, L., Zhou, Y., Zhang, X., Huang, X., Wang, M., Han, Y., Zhai, M., Wei, S., and Li, J. (2010). A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydrate Polymers 82, 1297-1305.
Zeng, Z., and Zhu, B.-H. (2014). Arnebin-1 promotes the angiogenesis of human umbilical vein endothelial cells and accelerates the wound healing process in diabetic rats. Journal of Ethnopharmacology 154, 653-662.
Zhang, L., Wang, L., Guo, B., and Ma, P. X. (2014). Cytocompatible injectable carboxymethyl chitosan/N-isopropylacrylamide hydrogels for localized drug delivery. CarbohydrtePolymers 103, 110-118.
Zhang, W., Zhong, D., Liu, Q., Zhang, Y., Li, N., Wang, Q., Liu, Z., and Xue, W. (2013). Effect of chitosan and carboxymethyl chitosan on fibrinogen structure and blood coagulation. Journal of Biomaterials Science, Polymer Edition 24, 1549-1563.