|
吳俊忠 (2009). 護理檢驗概論, 華杏出版社. Acuña-Castroviejo, D., Escames, G., Venegas, C., Díaz-Casado, M.E., Lima-Cabello, E., López, L.C., Rosales-Corral, S., Tan, D.X., and Reiter, R.J. (2014). Extrapineal melatonin: sources, regulation, and potential functions. Cellular and molecular life sciences, 71, 2997-3025. Andrade, F., Goycoolea, F., Chiappetta, D.A., Neves, J., Sosnik, A., and Sarmento, B. (2011). Chitosan-Grafted Copolymers and Chitosan-Ligand Conjugates as Matrices for Pulmonary Drug Delivery. International Journal of Carbohydrate Chemistry, 2011, 14. Badwan, A.A., Abumalooh, A., Sallam, E., Abukalaf, A., and Jawan, O. (1985). A sustained release drug delivery system using calcium alginate beads. Drug Development and Industrial Pharmacy, 11, 239-256. Bae, Y.H., Okano, T., Hsu, R., and Kim, S.W. (1987). Thermo-sensitive polymers as on-off switches for drug release. Die Makromolekulare Chemie Rapid Communications, 8, 481-485. Bae, Y.H., Okano, T., and Kim, S.W. (1991a). On-off thermo control of solute transport. I. Temperature dependence of swelling of N-isopropylacrylamide networks modified with hydrophobic components in water. Pharmaceutical research, 8, 531-537. Bae, Y.H., Okano, T., and Kim, S.W. (1991b). On-off thermocontrol of solute transport. II. Solute release from thermosensitive hydrogels, Pharmaceutical research, 8, 624-628. Bae, Y.H., Okano, T., and Kim, S.W. (1988). A new thermo‐sensitive hydrogel: Interpenetrating polymer networks from N‐acryloylpyrrolidine and poly(oxyethylene). Die Makromolekulare Chemie Rapid Communications, 9, 185-189. Bolton, L.L., Johnson, C.L., and Van, R.L. (1991). Occlusive dressings: therapeutic agents and effects on drug delivery. Clinics in dermatology, 9, 573-583. Bonilla, J., Atarés, L., Vargas, M., and Chiralt, A. (2013). Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. Journal of Food Engineering, 114, 303-312. Borena, B.M., Martens, A., Broeckx, S.Y., Meyer, E., Chiers, K., Duchateau, L., and Spaas, J.H. (2015). Regenerative skin wound healing in mammals: state-of-the-art on growth factor and stem cell based treatments. Cellular Physiology and Biochemistry, 36, 1-23. Bromberg, L.E., and Ron, E.S. (1998). Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Advanced drug delivery reviews, 31, 197–221. Burdukova, E., Li, H., Ishida, N., O’Shea, J.P., and Franks, G.V. (2010). Temperature controlled surface hydrophobicity and interaction forces induced by poly (N-isopropylacrylamide). Journal of colloid and interface science, 342, 586-592. Cai, Z., Yang, C., and Zhu, X. (2010). Preparation of quaternized carboxymethyl chitosan and its capacity to flocculate COD from printing waste water. Journal of applied polymer science, 118, 299-305. Chen, Y.S., Chang, J.Y., Cheng, C.Y., Tsai, F.J., Yao, C.H., and Liu, B.S. (2005). An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials. 26. 3911-3918. Chen, Y.W., Chiou, S.H., Wong, T.T., Ku, H.H., Lin, H.T., Chung, C.F., Yen, S.H., and Kao, C.L. (2006). Using gelatin scaffold with coated basic fibroblast growth factor as a transfer system for transplantation of human neural stem cells. Transplantation proceedings, 38, 1616-1617. Chen, G.H., and Hoffman, A.S. (1995). Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature, 373, 49-52. Chen, X.G., and Park, H.J. (2003). Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydrate Polymers, 53, 355-359. Chen, L., Tian, Z., and Du, Y. (2004). Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials, 25, 3725-3732. Chen, X.G., Wang, Z., Liu, W.S., and Park, H.J. (2002). The effect of carboxymethyl-chitosan on proliferation and collagen secretion of normal and keloid skin fibroblasts. Biomaterials, 23, 4609-4614. Chu, L. Y., Li, Y., Zhu, J. H., Wang, H. D., & Liang, Y. J. (2004). Control of pore size and permeability of a glucose-responsive gating membrane for insulin delivery. Journal of Controlled Release, 97, 43-53. Clark, R.A., Lanigan, J.M., DellaPelle, P., Manseau, E., Dvorak, H.F., and Colvin, R.B. (1982). Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. Journal of Investigative Dermatology, 79, 264-269. Cuero, R., Osuji, G., and Washington, A. (1991). N-carboxymethylchitosan inhibition of aflatoxin production: role of zinc. Biotechnology Letters, 13, 441-444. Dai, L.T., Gia, D.P., Xuan, P.N., Dinh, H.V., Ngoc, T.N., Vinh, H.T., Thi, T.T.M., Hai, B.N., Quang, D.L., Thi, N.N., and Thi, C.B. (2011). Some biomedical applications of chitosan-based hybrid nanomaterials. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2, 045004-045010. Dimitrov, I., Trzebicka, B., Mueller, A.H.E., Dworak, A., and Tsvetanov, C.B. (2007). Thermosensitive water soluble copolymers with doubly responsive reversibly interacting entities. Progress in Polymer Science, 1, 1275–1343. Ding, Z., Chen, G., and Hoffman, A.S. (1996). Synthesis and purification of thermally sensitive oligomer− enzyme conjugates of poly (N-isopropylacrylamide)− trypsin. Bioconjugate chemistry, 7, 121-125. Díez‐Peña, E., Quijada‐Garrido, I., Barrales‐Rienda, J.M., Wilhelm, M., and Spiess, H.W. (2002). NMR Studies of the Structure and Dynamics of Polymer Gels Based on N‐Isopropylacrylamide (NiPAAm) and Methacrylic Acid (MAA). Macromolecular Chemistry and Physics, 203, 491-502. Dörnenburg, H., and Knorr, D. (1997). Evaluation of elicitor-and high-pressure-induced enzymatic browning utilizing potato (Solanum tuberosum) suspension cultures as a model system for plant tissues. Journal of Agricultural and Food Chemistry, 45, 4173-4177. Don, T.M., Huang, M.L., Chiu, A.C., Kuo, K.H., Chiu, W.Y., and Chiu, L.H. (2008). Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Materials Chemistry and Physics, 107, 266-273. Drobnik, J., and Dabrowski, R. (1996). Melatonin suppresses the pinealectomy-induced elevation of collagen content in a wound. Cytobios, 85, 51-58. Drobnik, J., and Dabrowski, R. (1999). Pinealectomy-induced elevation of collagen content in the intact skin is suppressed by melatonin application. Cytobios, 100, 49-55. Enoch, S., and Price, P. (2004). Cellular, molecular and biochemical differences in the pathophysiology of healing between acute wounds, chronic wounds and wounds in the aged. World Wide Wounds, 13, 1-16. Etxabide, A., Vairo, C., Santos-Vizcaino, E., Guerrero, P., Pedraz, J.L., Igartua, M., de la Caba, K., and MariaHernandez, R. (2017). Ultra Thin Hydro-Films Based on Lactose-Crosslinked Fish Gelatin for Wound Healing Applications. International journal of pharmaceutics, 530, 455-467. Falanga, V., Isaacs, C., Paquette, D., Downing, G., Kouttab, N., Butmarc, J., Badiavas, E., and Hardin-Young, J. (2002). Wounding of bioengineered skin: cellular and molecular aspects after injury. Journal of investigative dermatology, 119, 653-660. Fu, J., Zhao, S. D., Liu, H. J., Yuan, Q. H., Liu, S. M., Zhang, Y. M., Ling, E. A., and Hao, A. J. (2011). Melatonin promotes proliferation and differentiation of neural stem cells subjected to hypoxia in vitro. Journal of pineal research, 51, 104-112. Gao, X., Cao, Y., Song, X., Zhang, Z., Xiao, C., He, C., and Chen, X. (2013). pH- and thermo-responsive poly(N-isopropylacrylamideco-acrylic acid derivative) copolymers and hydrogels with LCST dependent on pH and alkyl side groups. Journal of Materials Chemistry B, 1, 5578-5588. Gao, S., Wang, Z.L., Di, K.Q., Chang, G., Tao, L., An, L., Wu, F.J., Xu, J.Q., Liu, Y.W., and Wu, Z.H. (2013). Melatonin improves the reprogramming efficiency of murine‐induced pluripotent stem cells using a secondary inducible system. Journal of pineal research, 55, 31-39. Helander, I., Nurmiaho-Lassila, E.L., Ahvenainen, R., Rhoades, J., and Roller, S. (2001). Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. International journal of food microbiology, 71, 235-244. Hoare, T.R. and Kohane, D.S. (2008). Hydrogels in drug delivery: Progress and challenges. Polymer, 49, 1993-2007. Hoffman, A.S. (1987). Application of thermally reversible polymers and hydrogels in therapeutics and diagnostics. Journal of Controlled Release, 6, 297–305. Hoffman, A.S., Afrassiabi, A. and Dong, L.C. (1986). Thermally reversible hydrogels: II. Delivery and selective removal of substances from aqueous solutions, Journal of Controlled Release, 4, 213–222. Hosny, E.A., and Al-Helw, A.A.R.M. (1998). Effect of coating of aluminum carboxymethylcellulose beads on the release and bioavailability of diclofenac sodium. Pharmaceutica Acta Helvetiae, 72, 255-261. Hjerde, R.J.N., Vårum, K.M., Grasdalen, H., Tokura, S., and Smidsrød, O. (1997). Chemical composition of O-(carboxymethyl)-chitins in relation to lysozyme degradation rates. Carbohydrate Polymers, 4, 131-139. Huang, X., Zhang, Y., Zhang, X., Xu, L., Chen, X., and Wei, S. (2013). Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Materials Science and Engineering: C, 33, 4816-4824. Idol, W.K. and Anderson, J.L. (1986). Effects of adsorbed polyelectrolytes on convective flow and diffusion in porous membranes. Journal of membrane science, 28, 269–286. Jochum, F.D., and Theato, P. (2013). Temperature-and light-responsive smart polymer materials. Chemical Society Reviews, 42, 7468-7483. Kamoun, E.A., Kenawy, E.R.S., Tamer, T.M., El-Meligy, M.A., and Eldin, M.S.M. (2015). Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arabian Journal of Chemistry, 8, 38-47. Karimi, M. (2011). Diffusion in polymer solids and solutions. In Mass transfer in chemical engineering processes. InTech. Krause, T.J., Zazanis, G., Malatesta, P., and Solina, A. (2001). Prevention of pericardial adhesions with NO carboxymethylchitosan in the rabbit model. Journal of Investigative Surgery, 14, 93-97. Lamke, L.O., Nilsson, G.E. and Reithner, H.L. (1977). The Evaporative Water Loss from Burns and the Water-Vapor Permeability of Grafts and Artificial Membranes Used in the Treatment of Burns, Burns, 3:159. Lavertu, M., Xia, Z., Serreqi, A.N., Berrada, M., Rodrigues, A., Wang, D., Buschmann, M.D. and Gupta, A. (2003). A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. Journal of Pharmaceutical and Biomedical Analysis, 32, 1149-1158. Lee, S.J., Heo, D.N., Moon, J.H., Ko, W.K., Lee, J.B., Bae, M.S., Park, S.W., Kim, J.E., Lee, D.H., Kim, E.C., Lee, C.H., and Kwon, I.K. (2014). Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydrate polymers, 111, 530-537. Lee, Y.M., and Shim, J.K. (1997). Preparation of pH/temperature responsive polymer membrane by plasma polymerization and its riboflavin permeation. Polymer, 38, 1227-1232. Lin, W.C., Lien, C.C., Yeh, H.J., Yu, C.M., and Hsu, S.H. (2013). Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydrate polymers, 94, 603-611. Liu, X., Gong, Y., Xiong, K., Ye, Y., Xiong, Y., Zhuang, Z., Luo, Y., Jiang, Q., and He, F. (2013). Melatonin mediates protective effects on inflammatory response induced by interleukin‐1 beta in human mesenchymal stem cells. Journal of pineal research, 55, 14-25. Liu, Y.Y., Shao, Y.H. and Lu, J., (2006), Preparation, properties and controlled release behaviors of pH-induced thermosensitive amphiphilic gels. Biomaterials, 27, 4016-4024. Liu, R., Xu, X., Zhuang, X., and Cheng, B. (2014). Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohydrate polymers, 101, 1116-1121. Maestroni, G.J. (1995). T‐Helper‐2 lymphocytes as a peripheral target of melatonin. Journal of pineal research, 18, 84-89. Maharjan, P., Woonton, B.W., Bennett, L.E., Smithers, G.W., DeSilva, K., and Hearn, M.T. (2008). Novel chromatographic separation—The potential of smart polymers. Innovative food science & emerging technologies, 9, 232-242. Mohamed, F., and van der Walle, C.F. (2008). Engineering biodegradable polyester particles with specific drug targeting and drug release properties. Journal of pharmaceutical sciences, 97, 71-87. Molina, R., Ligero, C., Jovančić, P., and Bertran, E. (2013). In situ polymerization of aqueous solutions of NIPAAm initiated by atmospheric plasma treatment. Plasma Processes and Polymers, 10, 506-516. Nagahama, H., Maeda, H., Kashiki, T., Jayakumar, R., Furuike, T., and Tamura, H. (2009). Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydrate polymers, 76, 255-260. Ngadaonye, J.I., Geever, L.M., McEvoy, K.E., Killion, J., Brady, D.B., and Higginbotham, C.L. (2014). Evaluation of novel antibiotic-eluting thermoresponsive chitosan-PDEAAm based wound dressings. International Journal of Polymeric Materials and Polymeric Biomaterials, 63, 873-883. Nokhodchi, A., and Tailor, A. (2004). In situ cross-linking of sodium alginate with calcium and aluminum ions to sustain the release of theophylline from polymeric matrices. Il Farmaco, 59, 999-1004. Okano, T., Bae, Y.H., Jacobs, H., and Kim, S.W. (1990). Thermally on–off switching polymers for drug permeation and release. Journal of Controlled Release, 11, 255–265. Pal, K., Banthia, A., and Majumdar, D. (2006). Polyvinyl alcohol—gelatin patches of salicylic acid: preparation, characterization and drug release studies. Journal of biomaterials applications, 21. 75-91. Prasannan, A, Tsai, H.C. Chen, Y.S, and Hsiu, G.H. (2014). A thermally triggered in situ hydrogel from poly(acrylic acid-co-N isopropylacrylamide) for controlled release of anti-glaucoma drugs. Journal of Materials Chemistry B, 2, 1988-1997. Pugazhenthi, K., Kapoor, M., Clarkson, A.N., Hall, I., and Appleton, I. (2008). Melatonin accelerates the process of wound repair in full‐thickness incisional wounds. J Pineal Res. 44. 387-396. Ramos, V., Rodrıguez, N., Dıaz, M., Rodrıguez, M., Heras, A., and Agullo, E. (2003). N-methylene phosphonic chitosan. Effect of preparation methods on its properties. Carbohydrate Polymers, 52, 39-46. Reddy, M.B., Arul, J., Ait-Barka, E., Angers, P., Richard, C., and Castaigne, F. (1998). Effect of Chitosan on Growth and Toxin Production by Alternaria alternata f. sp. lycopersici. HortScience, 8, 33-43. Regiel, A., Irusta, S., Kyziol, A., Arruebo, M., and Santamaria, J. (2013). Preparation and characterization of chitosan-silver nanocomposite films and their antibacterial activity against Staphylococcus aureus. Nanotechnology, 24, 015101-015114. Reiter, R.J., Calvo, J.R., Karbownik, M., Qi, W., and Tan, D.X. (2000). Melatonin and its relation to the immune system and inflammation. Annals of the New York Academy of Sciences, 917, 376-386. Ronghua, H., Yumin, D., and Jianhong, Y. (2003). Preparation and anticoagulant activity of carboxybutyrylated hydroxyethyl chitosan sulfates. Carbohydrate Polymers, 51, 431-438. Schild, H.G. (1992). Poly(N-isopropylacrylamide): Experiment theory and application. Progress in polymer science, 17, 163–249. Shida, C.S., Castrucci, A. M.L., and Lamy‐Freund, M.T. (1994). High melatonin solubility in aqueous medium. Journal of pineal research, 16, 198-201. Shieh, Y.T., Lin, P.Y., Chen, T., and Kuo, S.W. (2016). Temperature-, pH- and CO2-Sensitive Poly(N-isopropylacryl amide-co-acrylic acid) Copolymers with High Glass Transition Temperatures. Polymers, 8, 434-450. Signini, R., and Campana Filho, S.P. (1999). On the preparation and characterization of chitosan hydrochloride. Polymer Bulletin, 42, 159-166. Singh, P.S., Joshi, S., Trivedi, J., Devmurari, C., Rao, A.P., and Ghosh, P. (2006). Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions. Journal of Membrane Science, 278, 19-25. Slominski, A., Baker, J., Rosano, T.G., Guisti, L.W., Ermak, G., Grande, M., and Gaudet, S.J. (1996). Metabolism of serotonin to N-acetylserotonin, melatonin, and 5-methoxytryptamine in hamster skin culture. Journal of Biological Chemistry, 271, 12281-12286. Soybİr, G., Topuzlu, C., OdabaŞ, Ö., Dolay, K., Bİlİr, A., and KÖksoy, F. (2003). The effects of melatonin on angiogenesis and wound healing. Surgery today, 33, 896-901. Sudarshan, N., Hoover, D., and Knorr, D. (1992). Antibacterial action of chitosan. Food Biotechnology, 6, 257-272. Tan, D.X., Hardeland, R., Manchester, L.C., Poeggeler, B., Lopez‐Burillo, S., Mayo, J.C., Sainz, R.M. and Reiter, R.J. (2003). Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical. Journal of pineal research, 34, 249-259. Than, U.T.T., Guanzon, D., Leavesley, D., and Parker, T. (2017). Association of Extracellular Membrane Vesicles with Cutaneous Wound Healing. International journal of molecular sciences, 18, 956-976. Thanou, M., Nihot, M., Jansen, M., Verhoef, J.C., and Junginger, H. (2001). Mono‐N‐carboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo. Journal of pharmaceutical sciences, 90, 38-46. Tocharus, C., Puriboriboon, Y., Junmanee, T., Tocharus, J., Ekthuwapranee, K., and Govitrapong, P. (2014). Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor. Neuroscience, 275, 314-321. Tsaih, M.L., and Chen, R.H. (1999). Molecular weight determination of 83% degree of decetylation chitosan with non‐Gaussian and wide range distribution by high‐performance size exclusion chromatography and capillary viscometry. Journal of Applied Polymer Science, 71, 1905-1913. Venegas, C., García, J.A., Escames, G., Ortiz, F., López, A., Doerrier, C., García‐Corzo, L., López, L.C., Reiter, R.J., and Acuña‐Castroviejo, D. (2012). Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. Journal of pineal research, 52, 217-227. Wheeland, R.G. (1987). The newer surgical dressings and wound healing. Dermatologic clinics, 5, 393-407. Winter, G.D. (1962). Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature, 193, 293-294. Winter, G.D., and Scales, J.T. (1963). Effect of air drying and dressings on the surface of a wound. Nature, 197, 91-92. Wu, X.S., Hoffman, A.S. and Yager, P. (1992). Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels. Journal of Polymer Science Part A: Polymer Chemistry, 30, 2121–2129. Yan, X., He, G., Gu, S., Wu, X., Du, L., and Wang, Y. (2012). Imidazolium-functionalized polysulfone hydroxide exchange membranes for potential applications in alkaline membrane direct alcohol fuel cells. International journal of hydrogen energy, 37, 5216-5224. Yanagioka, M., Kurita, H., Yamaguchi, T., and Nakao, S. I. (2003). Development of a molecular recognition separation membrane using cyclodextrin complexation controlled by thermosensitive polymer chains. Industrial & engineering chemistry research, 42, 380-385. Yang, C., Xu, L., Zhou, Y., Zhang, X., Huang, X., Wang, M., Han, Y., Zhai, M., Wei, S., and Li, J. (2010). A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydrate Polymers, 82, 1297-1305. Yin, X., Hoffman, A.S., and Stayton, P.S. (2006). Poly (N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules, 7, 1381-1385. Zeng, Z., and Zhu, B.H. (2014). Arnebin-1 promotes the angiogenesis of human umbilical vein endothelial cells and accelerates the wound healing process in diabetic rats. Journal of ethnopharmacology, 154, 653-662. Zhang, X.Z., Zhuo, R.X., Cui, J.Z. and Zhang, J.T. (2001). A novel thermo-responsive drug delivery system with positive controlled release. International journal of pharmaceutics, 235, 43–50.
|