柒、參考文獻
田中宗彦、黄俊儒、邱文貴、石崎松一郎、田口武。1993。 Effect of the Maillard Reaction on Functional Properties of Chitosan。日本水產學會誌,59,1915-1921。
吳彰哲、黃瀚寧。2010。蝦蟹殼中的寶貝 ─ 幾丁質。科學發展,448,12-19。
國家研究院環境毒物研究中心 ∘ 2010。丙烯醯胺毒性資料,台灣。
張鴻民、許祥純、傅慧音、田欽仁、洪連欉、楊明華、柯文慶、賴盈張、江文德、謝淳仁、江伯源、巢佳莉。2010。食品生物化學。臺中,臺灣。
陳怡儒。2015。幾丁聚醣與還原醣之梅納反應產物之抗氧化活性及其降低油脂氧化之效果。國立台灣海洋大學食品科學系碩士班碩士論文。基隆,臺灣。曾祥佑。2018。以葡萄糖 / 果糖 - 天門冬醯胺模型系統探討低分子量幾丁聚醣對梅納反應中丙烯醯胺生成之影響及產物功能特性。國立台灣海洋大學食品科學系碩士班碩士論文。基隆,臺灣。衛福部。2009。食品中游離胺基酸、葡萄糖胺及牛磺酸之檢驗方法。臺灣。
衛生福利部食品藥物管理署。(2017)。降低食品中丙烯醯胺含量加工參考手冊。衛生福利部食品藥物管理署。台北市。
闞建全、駱錫能、盧義發、邱思魁、陳振芳、吳柏青。2007。食品化學第二版。臺北,臺灣。
Açar, Ö. Ç., Pollio, M., Di Monaco, R., Fogliano, V., & Gökmen, V. (2012). Effect of calcium on acrylamide level and sensory properties of cookies. Food and Bioprocess Technology, 5, 519-526.
Ajandouz, E. H., & Puigserver, A. (1999). Nonenzymatic browning reaction of essential amino acids: effect of pH on caramelization and Maillard reaction kinetics. Journal of Agricultural and Food Chemistry, 47, 1786-1793.
Ajandouz, E. H., Tchiakpe, L. S., Ore, F. D., Benajiba, A., & Puigserver, A. (2001). Effects of pH on caramelization and Maillard reaction kinetics in fructose‐lysine model systems. Journal of Food Science, 66, 926-931.
Ameur, L. A., Trystram, G., & Birlouez-Aragon, I. (2006). Accumulation of 5-hydroxymethyl-2-furfural in cookies during the backing process: Validation of an extraction method. Food Chemistry, 98, 790-796.
Anraku, M., Gebicki, J. M., Iohara, D., Tomida, H., Uekama, K., Maruyama, T.,Hirayama, F., & Otagiri, M. (2018). Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies. Carbohydrate Polymers, 199, 141-149.
Ashoor, S. H., & Zent, J. B. (1984). Maillard browning of common amino acids and sugars. Journal of Food Science, 49, 1206-1207.
Bandarra, S., Fernandes, A. S., Magro, I., Guerreiro, P. S., Pingarilho, M., Churchwell, M. I., & Miranda, J. P. (2013). Mechanistic insights into the cytotoxicity and genotoxicity induced by glycidamide in human mammary cells. Mutagenesis, 28, 721-729.
Başkan, K. S., Tütem, E., Akyüz, E., Özen, S., & Apak, R. (2016). Spectrophotometric total reducing sugars assay based on cupric reduction. Talanta, 147, 162-168.
BeMiller, J. N. (2018). Nonenzymic Browning and Formation of Acrylamide and Caramel. In Carbohydrate Chemistry for Food Scientists (pp.351-370). Nederland : Elsevier.
Bhatnagar, A. (2015). Chitosan to platform chemicals. Doctoral Dissertation, The Energy and Resources Institute University, New Delhi.
Brands, C. M. J., Alink, G. M., van Boekel, M. J. S., & Jongen, W. M. F. (2000). Mutagenicity of heated sugar–casein systems: effect of the Maillard reaction. Journal of Agricultural and Food Chemistry, 48, 2271–2275
Brands, C. M., & van Boekel, M. A. (2001). Reactions of monosaccharides during heating of sugar− casein systems: Building of a reaction network model. Journal of Agricultural and Food Chemistry, 49, 4667-4675.
Brands, C. M., & van Boekel, M. A. (2002). Kinetic modeling of reactions in heated monosaccharide − casein systems. Journal of Agricultural and Food Chemistry, 50, 6725-6739.
Buera, M. D. P., Chirife, J., Resnik, S. L., & Wetzler, G. (1987). Nonenzymatic browning in liquid model systems of high water activity: kinetics of color changes due to Maillard's reaction between different single sugars and glycine and comparison with caramelization browning. Journal of Food Science, 52, 1063-1067.
Bunn, H. F., & Higgins, P. J. (1981). Reaction of monosaccharides with proteins: possible evolutionary significance. Science, 213, 222-224.
Cai, Y., Zhang, Z., Jiang, S., Yu, M., Huang, C., Qiu, R., Zou, Y., Zhang Q., Ou. S., Zhou. H., Wang. Y., Bai. W & Li, Y. (2014). Chlorogenic acid increased acrylamide formation through promotion of HMF formation and 3-aminopropionamide deamination. Journal of Hazardous Materials, 268, 1-5.
Capuano, E., & Fogliano, V. (2011). Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. Lebensmittel-Wissenschaft and Technologie-Food Science and Technology, 44, 793-810.
Charoenprasert, S., Zweigenbaum, J. A., Zhang, G., & Mitchell, A. E. (2017). The Influence of pH and Sodium Hydroxide Exposure Time on Glucosamine and Acrylamide Levels in California‐Style Black Ripe Olives. Journal of Food Science, 82, 1574-1581
Chang, Y. W., Sung, W. C., & Chen, J. Y. (2016). Effect of different molecular weight chitosans on the mitigation of acrylamide formation and the functional properties of the resultant Maillard reaction products. Food Chemistry, 199, 581-589.
Chen, Y., Lin, H., Li, Y., Lin, M., & Chen, J. (2019). Non-enzymatic browning and the kinetic model of 5-hydroxymethylfurfural formation in residual solution of vinegar soaked-soybean. Industrial Crops and Products, 135, 146-152.
De Alvarenga, E. S. (2011). Characterization and properties of chitosan. Biotechnology of Biopolymers, 91, 48-53.
De Vleeschouwer, K., Van der Plancken, I., Van Loey, A., & Hendrickx, M. E. (2006). Impact of pH on the kinetics of acrylamide formation/elimination reactions in model systems. Journal of Agricultural and Food Chemistry, 54, 7847-7855.
De Vleeschouwer, K., Van der Plancken, I., Van Loey, A., & Hendrickx, M. E. (2008). The kinetics of acrylamide formation/elimination in asparagine–glucose systems at different initial reactant concentrations and ratios. Food Chemistry, 111, 719-729.
Desbrieres, J. (2002). Viscosity of semiflexible chitosan solutions: influence of concentration, temperature, and role of intermolecular interactions. Biomacromolecules, 3, 342-349.
Deshavath, N. N., Mukherjee, G., Goud, V. V., Dasu, V. V., & Sastri, C. V. (2020). Pitfalls in the 3, 5-dinitrosalicylic acid DNS assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. International Journal of Biological Macromolecules.
Dinis, T. C., Madeira, V. M., & Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315, 161-169.
Dogan, I. S., Steenken, D., & Icli. S. (1990). Electron spin resonance and pulse radiolysis studies on the reaction of OH and SO4-with five-membered heterocyclic compounds in aqueous solution. Journal of Physical Chemistry, 94, 1887-1894.
EFSA Panel on Contaminants in the Food Chain (CONTAM). (2015). Scientific opinion on acrylamide in food. European Food Safety Authority Journal, 13, 4104.
Eichner, K., & Karel, M. (1972). Influence of water content and water activity on the sugar-amino browning reaction in model systems under various conditions. Journal of Agricultural and Food Chemistry, 20, 218-223.
Fan, T. (2001). Viscosity Measurement Using CANNON-FENSKE Viscometers.
Falcone, P. M., Tagliazucchi, D., Verzelloni, E., & Giudici, P. (2010). Sugar conversion induced by the application of heat to grape must. Journal of Agricultural and Food Chemistry, 58, 8680-8691.
Franzen, K., Singh, R. K., & Okos, M. R. (1990). Kinetics of nonenzymatic browning in dried skim milk. Journal of Food Engineering, 11 , 225-239.
Friedman, M., & Juneja, V. K. (2010). Review of antimicrobial and antioxidative activities of chitosans in food. Journal of Food Protection, 73 , 1737-1761.
Gentry, T. S., & Roberts, J. S. (2004). Formation kinetics and application of 5-hydroxymethylfurfural as a time–temperature indicator of lethality for continuous pasteurization of apple cider. Innovative Food Science & Emerging Technologies, 5, 327-333.
Gökmen, V., Açar, Ö. Ç., Köksel, H., & Acar, J. (2007). Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formation in cookies. Food Chemistry, 104, 1136-1142.
Gökmen, V., Kocadağlı, T., Göncüoğlu, N., & Mogol, B. A. (2012). Model studies on the role of 5-hydroxymethyl-2-furfural in acrylamide formation from asparagine. Food Chemistry, 132, 168-174.
Gökmen, V., & Şenyuva, H. Z. (2006). Improved Method for the Determination of Hydroxymethylfurfural in Baby Foods Using Liquid Chromatography− Mass Spectrometry. Journal of Agricultural and Food Chemistry, 54, 2845-2849.
Gökmen, V., & Şenyuva, H. Z. (2007). Effects of some cations on the formation of acrylamide and furfurals in glucose–asparagine model system. European Food Research and Technology, 225, 815-820.
Gu, F., Kim, J. M., Hayat, K., Xia, S., Feng, B., & Zhang, X. (2009a). Characteristics and antioxidant activity of ultrafiltrated Maillard reaction products from a casein–glucose model system. Food Chemistry, 117, 48-54.
Gu, F. L., Abbas, S., & Zhang, X. M. (2009b). Optimization of Maillard reaction products from casein–glucose using response surface methodology. LWT-Food Science and Technology, 42, 1374-1379.
Hagmar, L., Tornqvist, M., Nordander, C., Rosén, I., Bruze, M., Kautiainen, A., Magnusson, A, L., Malmberg, B., Aprea, P., Granath, F., & Axmon, A & Axmon, A. (2001). Health effects of occupational exposure to acrylamide using hemoglobin adducts as biomarkers of internal dose. Scandinavian Journal of Work Environment and Health, 27, 219-226.
Hayase, F., Hirashima, S., Okamoto, G., & Kato, H. (1989). Scavenging of active oxygens by melanoidins. Agricultural and Biological Chemistry, 53, 3383-3385.
Hodge, J. E. (1953). Dehydrated foods, chemistry of browning reactions in model systems. Journal of Agricultural and Food Chemistry, 1, 928-943.
International Agency for Research on Cancer (IARC). (1994). IARC monographs on the evaluation of carcinogenic risks to humans. Some industrial chemicals, acrylamide, 389–433. Lyon, France: WHO.
Jun, M., Shao, Y., Ho, C. T., Koetter, U., & Lech, S. (2003). Structural identification of nonvolatile dimerization products of glucosamine by gas chromatography− mass spectrometry, liquid chromatography− mass spectrometry, and nuclear magnetic resonance analysis. Journal of Agricultural and Food Chemistry, 51, 6340-6346.
Kanatt, S. R., Chander, R., & Sharma, A. (2008). Chitosan glucose complex–A novel food preservative. Food Chemistry, 106, 521-528.
Kavousi, P., Mirhosseini, H., Ghazali, H., & Ariffin, A. A. (2015). Formation and reduction of 5-hydroxymethylfurfural at frying temperature in model system as a function of amino acid and sugar composition. Food Chemistry, 182, 164-170.
Kim, J. S., & Lee, Y. S. (2009). Study of Maillard reaction products derived from aqueous model systems with different peptide chain lengths. Food Chemistry, 116, 846-853.
Kwak, E. J., & Lim, S. I. (2004). The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control. Amino acids, 27, 85-90.
Laroque, D., Inisan, C., Berger, C., Vouland, É., Dufossé, L., & Guérard, F. (2008). Kinetic study on the Maillard reaction. Consideration of sugar reactivity. Food Chemistry, 111 , 1032-1042.
Lee, C. H., Chen, K. T., Lin, J. A., Chen, Y. T., Chen, Y. A., Wu, J. T., & Hsieh, C. W. (2019). Recent advances in processing technology to reduce 5-hydroxymethylfurfural in foods. Trends in Food Science & Technology, 93,271-280.
Lee, H. S., & Nagy, S. (1990). Relative reactivities of sugars in the formation of 5‐hydroxymethylfurfural in sugar-catalyst model system 1. Journal of Food Processing and Preservation, 14, 171-178.
Li, S. L., Lin, J., & Chen, X. M. (2014). Effect of chitosan molecular weight on the functional properties of chitosan-maltose Maillard reaction products and their application to fresh-cut Typha latifolia L. Carbohydrate Polymers, 102, 682-690.
Liu, H. M., Han, Y. F., Wang, N. N., Zheng, Y. Z., & Wang, X. D. (2020). Formation and Antioxidant Activity of Maillard Reaction Products Derived from Different Sugar-amino Acid Aqueous Model Systems of Sesame Roasting. Journal of Oleo Science, 69, 391-401.
Liu, L., Yang, J. P., Ju, X. J., Xie, R., Liu, Y. M., Wang, W., Zhang, J. J., Niu, C. H., & Chu, L. Y. (2011). Monodisperse core-shell chitosan microcapsules for pH-responsive burst release of hydrophobic drugs. Soft Matter, 7, 4821-4827.
Manzocco, L., & Maltini, E. (1999). Physical changes induced by the Maillard reaction in a glucose–glycine solution. Food Research International, 32, 299-304.
Michalska, A., Amigo-Benavent, M., Zielinski, H., & del Castillo, M. D. (2008). Effect of bread making on formation of Maillard reaction products contributing to the overall antioxidant activity of rye bread. Journal of Cereal Science, 48 , 123-132.
Mogol, B. A., & Gökmen, V. (2016). Effect of chitosan on the formation of acrylamide and hydroxymethylfurfural in model, biscuit and crust systems. Food & Function, 7, 3431-3436.
Morales, F. J., & Jiménez-Pérez, S. (2001). Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chemistry, 72, 119-125.
Mottram, D. S., Wedzicha, B. L., & Dodson, A. T. (2002). Food Chemistry: acrylamide is formed in the Maillard reaction. Nature, 419, 448-449.
Muzzarelli, R. A., & Pariser, E. R. (1978). Proceedings of the First International Conference on Chitin/Chitosan, United States : National Technical Information Service.
Nässberger, L. (1990). Influence of 5-hydroxymethylfurfural (5-HMF) on the overall metabolism of human blood cells. Human & Experimental Toxicology, 9, 211-214.
Nguyen, H. T., Peters, R. J., & Van Boekel, M. A. (2016). Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: Part I: Effects of sugar type. Food Chemistry, 192, 575-585.
No, H. K., Nah, J. W., & Meyers, S. P. (2003). Effect of time/temperature treatment parameters on depolymerization of chitosan. Journal of Applied Polymer Science, 87, 1890-1894.
Nooshkam, M., Varidi, M., & Bashash, M. (2019). The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chemistry, 275, 644-660.
Osada, Y., & Shibamoto, T. (2006). Antioxidative activity of volatile extracts from Maillard model systems. Food Chemistry, 98, 522-528.
Paulsson, B., Granath, F., Grawe, J., Ehrenberg, L., & Tornqvist, M. (2001). The multiplicative model for cancer risk assessment: applicability to acrylamide. Carcinogenesis, 22, 817-819.
Phisut, N., & Jiraporn, B. (2013). Characteristics and antioxidant activity of Maillard reaction products derived from chitosan-sugar solution. International Food Research Journal, 20, 1077.
Qi, Y., Zhang, H., Zhang, H., Wu, G., Wang, L., Qian, H., & Qi, X. (2018). Epicatechin Adducting with 5-Hydroxymethylfurfural as an Inhibitory Mechanism against Acrylamide Formation in Maillard Reactions. Journal of Agricultural and Food Chemistry, 66, 12536-12543
Rada-Mendoza, M., Sanz, M. L., Olano, A., & Villamiel, M. (2004). Formation of hydroxymethylfurfural and furosine during the storage of jams and fruit-based infant foods. Food Chemistry, 85, 605-609.
Rinaudo, M., Pavlov, G., & Desbrières, J. (1999) Influence of acetic acid concentration on the solubilization of chitosan. Polymer, 40, 7029-7032.
Rinaudo, M. (2006). Chitin and chitosan: properties and applications. Progress in Polymer Science, 31, 603-632.
Rizzi, G. P. (2004). Role of phosphate and carboxylate ions in Maillard browning. Journal of Agricultural and Food Chemistry, 52 , 953-957.
Serpen, A., & Gökmen, V. (2009). Evaluation of the Maillard reaction in potato crisps by acrylamide, antioxidant capacity and color. Journal of Food Composition and Analysis, 22, 589-595.
Shapla, U. M., Solayman, M., Alam, N., Khalil, M. I., & Gan, S. H. (2018). 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. Chemistry Central Journal, 12 , 35.
Spark, A. A. (1969). Role of amino acids in non-enzymatic browning. Journal of the Science of Food and Agriculture, 20, 308–316.
Stadler, R. H., Blank, I., Varga, N., Robert, F., Hau, J., Guy, P. A.,Robert M-C., & Riediker, S. (2002). Acrylamide from Maillard reaction products. Nature, 419, 449-450.
Turkmen, N., Sari, F., Poyrazoglu, E. S., & Velioglu, Y. S. (2006). Effects of prolonged heating on antioxidant activity and colour of honey. Food Chemistry, 95, 653-657.
Tyl RW, Friedman MA, Losco PE, Fisher LC, Johnson KA, Strother DE an Wolf CH, 2000. Rat two-generation reproduction and dominant lethal study of acrylamide in drinking water. Reproductive Toxicology, 14, 385–401.
Van Putten, R. J., Van Der Waal, J. C., De Jong, E. D., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chemical Reviews, 113, 1499-1597.
Wang, H., Lee, A. W., Shuang, S., & Choi, M. M. (2008). SPE/HPLC/UV studies on acrylamide in deep-fried flour-based indigenous Chinese foods. Microchemical Journal, 89, 90-97.
Wei Q, Li J, Li X, Zhang L and Shi F, 2014. Reproductive toxicity in acrylamide-treated female mice. Reproductive Toxicology, 46, 121–128.
Weißhaar, R. (2004). Acrylamide in heated potato products–analytics and formation routes. European Journal of Lipid Science and Technology, 106, 786-792.
Wijewickreme, A. N., Kitts, D. D., & Durance, T. D. (1997). Reaction conditions influence the elementary composition and metal chelating affinity of nondialyzable model Maillard reaction products. Journal of Agricultural and Food Chemistry, 45, 4577-4583.
Wu, S., Hu, J., Wei, L., Du, Y., Shi, X., & Zhang, L. (2014). Antioxidant and antimicrobial activity of Maillard reaction products from xylan with chitosan/chitooligomer/glucosamine hydrochloride/taurine model systems. Food Chemistry, 148, 196-203.
Xu, C., Yagiz, Y., Marshall, S., Li, Z., Simonne, A., Lu, J., & Marshall, M. R. (2015). Application of muscadine grape (Vitis rotundifolia Michx.) pomace extract to reduce carcinogenic acrylamide. Food Chemistry, 182, 200-208.
Xu, Z. Z., Huang, G. Q., Xu, T. C., Liu, L. N., & Xiao, J. X. (2019). Comparative study on the Maillard reaction of chitosan oligosaccharide and glucose with soybean protein isolate. International Journal of Biological Macromolecules, 131, 601-607.
Xue, C., Shi, Z., He, Z., Wang, Z., Qin, F., Chen, J., & Zeng, M. (2020). Formation of Three Selected AGEs and their Corresponding Intermediates in Aldose-and Ketose-lysine Systems. eFood.
Yan, X., & Evenocheck, H. M. (2012). Chitosan analysis using acid hydrolysis and HPLC/UV. Carbohydrate Polymers, 87, 1774-1778.
Yasuhara, A., Tanaka, Y., Hengel, M., & Shibamoto, T. (2003). Gas chromatographic investigation of acrylamide formation in browning model systems. Journal of Agricultural and Food Chemistry, 51, 3999-4003.
Yayalayan, V. A., Ismail, A. A., & Mandeville, S. (1993). Quantitative determination of the effect of pH and temperature on the keto form of DD-fructose by FTIR spectroscopy. Carbohydrate Research, 248, 355-360.
Yeboah, F. K., Alli, I., & Yaylayan, V. A. (1999). Reactivities of DD-glucose and DD-fructose during glycation of bovine serum albumin. Journal of Agricultural and Food Chemistry, 47, 3164–3172.
Zamani, E., Shokrzadeh, M., Fallah, M., & Shaki, F. (2017). A review of acrylamide toxicity and its mechanism. Pharmaceutical and Biomedical Research, 3, 1-7.
Zenick, H., Hope, E., & Smith, M. K. (1986). Reproductive toxicity associated with acrylamide treatment in male and female rats. Journal of Toxicology and Environmental Health, Part A Current Issues, 17, 457-472.
Zhang, X., Li, N., Lu, X., Liu, P., & Qiao, X. (2016). Effects of temperature on the quality of black garlic. Journal of the Science of Food and Agriculture, 96, 2366-2372.
Zhang, Z., Zou, Y., Wu, T., Huang, C., Pei, K., Zhang, G., Lin, X., Bai. Weibin., & Ou, S. (2016). Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels. Food Chemistry, 190, 832-835.
Zhu, K. X., Li, J., Li, M., Guo, X. N., Peng, W., & Zhou, H. M. (2013). Functional properties of chitosan–xylose Maillard reaction products and their application to semi-dried noodle. Carbohydrate Polymers, 92, 1972-1977.