行政院衛生福利部。2009。臺灣地區各類食品中丙烯醯胺含量背景值、風險評估暨降低食品中丙烯醯胺含量之研究。科技研究發展計畫研究報告。臺北,臺灣。
行政院衛生福利部。2011。國人膳食營養素參考攝取量。http://www.doh.gov.tw/。臺北,臺灣。
行政院衛生福利部。2017。食品中游離胺基酸、葡萄糖胺及牛磺酸之檢驗方法。臺北,臺灣。
吳彰哲、黃瀚寧。2010。蝦蟹殼中的寶貝 ─ 幾丁質。科學發展,448,12-19。基隆,臺灣。
張順憲。2009。不同分子量幾丁聚醣之抗菌及抗氧化活性。國立臺灣海洋大學食品科學系碩士班碩士論文。基隆,臺灣。莊雅婷。2008。台灣特色茶感官特性與電子舌及電子鼻分析之相關性。中臺科技大學食品科技研究所碩士班碩士論文。臺中,臺灣。許家齊。2012。降低黑糖中丙烯醯胺之方法。國立臺灣大學食品科技研究所學位論文。臺北,臺灣。
陳靜儀。2015。探討不同分子量幾丁聚醣抑制果糖與天門冬醯胺酸生成丙烯醯胺的效果及梅納反應產物於功能特性上的差異。國立臺灣海洋大學食品科學系碩士班碩士論文。基隆,臺灣。蕭光宏。2016。臺糖70週年紀念專刊。臺灣糖業股份有限公司出版。臺北,臺灣。
謝明哲、廖芳瑄、林士祥、陳金發、許重輝、鐘美玉、簡怡雯。2003。碳酸鈣與乳酸鈣補充劑之鈣質生物利用效性。臺灣營養學會雜誌,28(1),34-40。新北,臺灣。
謝曉雲。2003。「健康」的糖健康嗎?康健雜誌,52,66-73。臺北,臺灣。
A.O.A.C. (1998). Official Methods of Analysis of the Association of Official Analytical Chemists. 16th ed. Sidney, W. (Eds.), Washington D. C., USA.
Aam, B. B., Heggset, E. B., Norberg, A. L., Sørlie, M., Vårum, K. M., & Eijsink, V. G. (2010). Production of chitooligosaccharides and their potential applications in medicine. Marine Drugs, 8(5), 1482-1517.
Açar, Ö . Ç., Pollio, M., Di Monaco, R., Fogliano, V., & Gökmen, V. (2012). Effect of calcium on acrylamide level and sensory properties of cookies. Food and Bioprocess Technology, 5(2), 519-526.
Ames, J. M. (1990). Control of the Maillard reaction in food systems. Trends in Food Science and Technology, 1(1), 150-154.
Amrein, T. M., Schönbächler, B., Escher, F., & Amadò, R. (2004). Acrylamide in gingerbread: Critical factors for formation and possible ways for reduction. Journal of Agricultural and Food Chemistry, 52(13), 4282-4288.
Asikin, Y., Takahara, W., Takahashi, M., Hirose, N., Ito, S., & Wada, K. (2017). Compositional and electronic discrimination analyses of taste and aroma profiles of non-centrifugal cane brown sugars. Food Analytical Methods, 10(6), 1844-1856.
Austin, P. R., Brine, C. J., Castle, J. E., & Zikakis, J. P. (1981). Chitin: New facets of research. Science, 212(4496), 749-753.
Bahloul, N., Boudhrioua, N., Kouhila, M., & Kechaou, N. (2009). Effect of convective solar drying on colour, total phenols and radical scavenging activity of olive leaves (Olea europaea L.). International Journal of Food Science and Technology, 44(12), 2561-2567.
Barber, D. S., Hunt, J. R., Ehrich, M. F., Lehning, E. J., & LoPachin, R. M. (2001). Metabolism, toxicokinetics and hemoglobin adduct formation in rats following subacute and subchronic acrylamide dosing. Neurotoxicology, 22(3), 341-353.
Bartolomeo, M. P. & Maisano, F. (2006). Validation of a reversed-phase HPLC method for quantitative amino acid analysis. Journal of Biomolecular Techniques, 17(2), 131.
Bezrodnykh, E. A., Blagodatskikh, I. V., Kulikov, S. N., Zelenikhin, P. V., Yamskov, I. A., & Tikhonov, V. E. (2018). Consequences of chitosan decomposition by nitrous acid: Approach to non-branched oligochitosan oxime. Carbohydrate Polymers, 195, 551-557.
Binkley, W. W., & Wolform, M. L. (1953). Composition of cane juice and cane final molasses. In Advances in Carbohydrate Chemistry, 8, 291-314.
Bong-Kyung, K. (2006). Determination of acrylamide content of food products in Korea. Journal of the Science of Food and Agriculture, 86(15), 2587-2591.
Buera, M., Chirife, J., Resnik, S. L., & Lozano, R. D. (1987). Nonenzymatic browning in liquid model systems of high water activity: Kinetics of color changes due to reaction between glucose and glycine peptides. Journal of Food Science, 52(4), 1068-1070.
Bull, R. J., Robinson, M., Laurie, R. D., Stoner, G. D., Greisiger, E., Meier, J. R., & Stober, J. (1984). Carcinogenic effects of acrylamide in Sencar and A/J mice. Cancer Research, 44(1), 107-111.
Burek, J. D., Albee, R. R., Beyer, J. E., Bell, T. J., Carreon, R. M., Morden, D. C., Wade, C. E., Hermann E. A., & Gorzinski, S. J. (1980). Subchronic toxicity of acrylamide administered to rats in the drinking water followed by up to 144 days of recovery. Journal of Environmental Pathology and Toxicology, 4(5-6), 157-182.
Capuano, E., & Fogliano, V. (2011). Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT-Food Science and Technology, 44(4), 793-810.
Chapin, R. E., Fail, P. A., George, J. D., Grizzle, T. B., Heindel, J. J., Harry, G. J., Collins, B. J., & Teague, J. (1995). The reproductive and neural toxicities of acrylamide and three analogues in Swiss mice, evaluated using the continuous breeding protocol. Fundamental and Applied Toxicology, 27(1), 9-24.
Chen, H., & Gu, Z. (2014). Effect of ascorbic acid on the properties of ammonia caramel colorant additives and acrylamide formation. Journal of Food Science, 79(9), C1678-1682.
Chen, T. Y., Luo, H. M., Hsu, P. H., & Sung, W. C. (2016). Effects of calcium supplements on the quality and acrylamide content of puffed shrimp chips. Journal of Food and Drug Analysis, 24(1), 164-172.
Chung, Y. C., Kuo, C. L., & Chen, C. C. (2005). Preparation and important functional properties of water-soluble chitosan produced through Maillard reaction. Bioresource Technology, 96 (13), 1473-1482.
Combs, E., Cinlar, B., Pagan-Torres, Y., Dumesic, J. A., & Shanks, B. H. (2013). Influence of alkali and alkaline earth metal salts on glucose conversion to 5-hydroxymethylfurfural in an aqueous system. Catalysis Communications, 30, 1-4.
Cruz-Romero, M., Kelly, A. L., & Kerry, J. P. (2007). Effects of high-pressure and heat treatments on physical and biochemical characteristics of oysters (Crassostrea gigas). Innovative Food Science and Emerging Technologies, 8(1), 30-38.
da Silveira Lemos, G., dos Santos, J. S., & dos Santos, M. L. P. (2010). Validação de método para a determinação de 5-hidroximetilfurfural em mel por cromatografia líquida e sua influência na qualidade do produto. Química Nova, 33(8), 1682-1685.
de Andrade, J. K., Komatsu, E., Perreault, H., Torres, Y. R., da Rosa, M. R., & Felsner, M. L. (2016). In house validation from direct determination of 5-hydroxymethyl-2-furfural (HMF) in Brazilian corn and cane syrups samples by HPLC–UV. Food Chemistry, 190, 481-486.
De Vleeschouwer, K., Van der Plancken, I., Van Loey, A., & Hendrickx, M. E. (2006). Impact of pH on the kinetics of acrylamide formation/elimination reactions in model systems. Journal of Agricultural and Food Chemistry, 54(20), 7847-7855.
DeMan, J. M. (1999). Proteins. In: Principles of Food Chemistry. 3rd ed. An AVI Book, New York, USA.
Doerge, D. R., Twaddle, N. C., Boettcher, M. I., McDaniel, L. P., & Angerer, J. (2007). Urinary excretion of acrylamide and metabolites in Fischer 344 rats and B6C3F 1 mice administered a single dose of acrylamide. Toxicology Letters, 169(1), 34-42.
Doroshyenko, O., Fuhr, U., Kunz, D., Frank, D., Kinzig, M., Jetter, A., Reith, Y., Lazar, A., Taubert, D., Kirchheiner, J., Baum, M., Eisenbrand, G., Berger, F., Bertow, D., Berkessel, A., Sörgel, F., Schömig, E., & Tomalik-Scharte, D. (2009). In vivo role of cytochrome P450 2E1 and glutathione-S-transferase activity for acrylamide toxicokinetics in humans. Cancer Epidemiology and Prevention Biomarkers, 18(2), 433-443.
Dybing, E., & Sanner, T. (2003). Risk assessment of acrylamide in foods. Toxicological Sciences, 75(1), 7-15.
Eichner, K., & Karel, M. (1972). Influence of water content and water activity on the sugar-amino browning reaction in model systems under various conditions. Journal of Agricultural and Food Chemistry, 20(2), 218-223.
Endo, H., Kittur, S., & Sabri, M. I. (1994). Acrylamide alters neurofilament protein gene expression in rat brain. Neurochemical Research, 19(7), 815-820.
FAO/WHO. Health Implications of Acrylamide in Food; 2002 June 25-27. World Health Organization, Geneva, Switzerland.
Franke, K., Sell, M., & Reimerdes, E. H. (2005). Quality related minimization of acrylamide formation-An integrated approach. In Chemistry and Safety of Acrylamide in Food. (pp. 357-369). Springer, Boston, MA, USA.
Friedman, M. (2003). Chemistry, biochemistry, and safety of acrylamide. A review. Journal of Agricultural and Food Chemistry, 51(16), 4504-4526.
Fuhr, U., Boettcher, M. I., Kinzig-Schippers, M., Weyer, A., Jetter, A., Lazar, A., Harlfinger, S.; Klaassen, T.; Berkessel, A.; Angerer, J.; Sorgel, F.; & Schomig, E. (2006). Toxicokinetics of acrylamide in humans after ingestion of a defined dose in a test meal to improve risk assessment for acrylamide carcinogenicity. Cancer Epidemiology and Prevention Biomarkers, 15(2), 266-271.
Gama-Baumgartner, F., Grob, K., & Biedermann, M. (2004). Citric acid to reduce acrylamide formation in French fries and roasted potatoes? Mitteilungen aus Lebensmitteluntersuchung und Hygiene. 95(1), 110-117.
García, M. A., de la Paz, N., Castro, C., Rodríguez, J. L., Rapado, M., Zuluaga, R., Gañán, P., & Casariego, A. (2015). Effect of molecular weight reduction by gamma irradiation on the antioxidant capacity of chitosan from lobster shells. Journal of Radiation Research and Applied Sciences, 8(2), 190-200.
Ghanayem, B. I., McDaniel, L. P., Churchwell, M. I., Twaddle, N. C., Snyder, R., Fennell, T. R., & Doerge, D. R. (2005). Role of CYP2E1 in the epoxidation of acrylamide to glycidamide and formation of DNA and hemoglobin adducts. Toxicological Sciences, 88(2), 311-318.
Gökmen, V., & Şenyuva, H. Z. (2006). Study of colour and acrylamide formation in coffee, wheat flour and potato chips during heating. Food Chemistry, 99(2), 238-243.
Gökmen, V., & Şenyuva, H. Z. (2007). Effects of some cations on the formation of acrylamide and furfurals in glucose–asparagine model system. European Food Research and Technology, 225(5-6), 815-820.
Gökmen, V., Açar, Ö. Ç., Köksel, H., & Acar, J. (2007). Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formation in cookies. Food Chemistry, 104(3), 1136-1142.
Gökmen, V., Açar, Ö. Ç., Serpen, A., & Morales, F. J. (2008). Effect of leavening agents and sugars on the formation of hydroxymethylfurfural in cookies during baking. European Food Research and Technology, 226(5), 1031-1037.
Granvogl, M., Jezussek, M., Koehler, P., & Schieberle, P. (2004). Quantitation of 3-aminopropionamide in potatoes A minor but potent precursor in acrylamide formation. Journal of Agricultural and Food Chemistry, 52(15), 4751-4757.
Hoenicke, K., & Gatermann, R. (2005). Studies on the stability of acrylamide in food during storage. Journal of AOAC International, 88(1), 268-273.
Hoenicke, K., Gatermann, R., Harder, W., & Hartig, L. (2004). Analysis of acrylamide in different foodstuffs using liquid chromatography–tandem mass spectrometry and gas chromatography–tandem mass spectrometry. Analytica Chimica Acta, 520(1-2), 207-215.
Holland, N., Ahlborn, T., Turteltaub, K., Markee, C., Moore, D., Wyrobek, A. J., & Smith, M. T. (1999). Acrylamide causes preimplantation abnormalities in embryos and induces chromatin-adducts in male germ cells of mice. Reproductive Toxicology, 13(3), 167-178.
IARC. International Agency for Reserch on Cancer. (1994). Acrylamide. IARC Monographs on the evaluation of the carcinogenic risk of chemicals to humans, vol. 60. (pp. 389-433). IARC, Lyon, France.
Jaffe, W. R. (2015). Nutritional and functional components of non-centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis, 43, 194-202.
James, C.S. (1995). Analytical Chemistry of Foods. Chapman and Hall, New York, USA.
Jin, C., Wu, X., & Zhang, Y. (2013). Relationship between antioxidants and acrylamide formation: A review. Food Research International, 51(2), 611-620.
Johnson, K. A., Gorzinski, S. J., Bodner, K. M., Campbell, R. A., Wolf, C. H., Friedman, M. A., & Mast, R. W. (1986). Chronic toxicity and oncogenicity study on acrylamide incorporated in the drinking water of Fischer 344 rats. Toxicology and Applied Pharmacology, 85(2), 154-168.
Jung, J. & Zhao, Y. (2012). Comparison in antioxidant action between α-chitosan and β-chitosan at a wide range of molecular weight and chitosan concentration. Bioorganic and Medicinal Chemistry, 20(9), 2905-2911.
Jung, M. Y., Choi, D. S., & Ju, J. W. (2003). A novel technique for limitation of acrylamide formation in fried and baked corn chips and in French fries. Journal of Food Science, 68(4), 1287-1290.
Kanatt, S. R., Chander, R., & Sharma, A. (2008). Chitosan glucose complex–A novel food preservative. Food Chemistry, 106(2), 521-528.
Kemplay, S., & Cavanagh, J. B. (1984). Effects of acrylamide and other sulfhydryl compounds in vivo and in vitro on staining of motor nerve terminals by the zinc iodide‐osmium technique. Muscle and Nerve, 7(2), 94-100.
Kim, H. Y., Jeong, Y. T., Bae, I. H., & Kwak, H. S. (2014). Physicochemical and sensory properties of nanopowdered chitosan-added Maribo cheese during ripening. Korean Journal for Food Science of Animal Resources, 34(1), 57-64.
Kim, K. W., & Thomas, R. L. (2007). Antioxidative activity of chitosans with varying molecular weights. Food Chemistry, 101(1), 308-313.
Kim, S. K. & Rajapakse, N. (2005). Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydrate Polymers, 62(4), 357-368.
Knorr, D. (1984). Use of chitinous polymers in food: A challenge for food research and development. Food Technology, 38, 85-97.
Ko, M. H., Chen, W. P., & Hsieh, S. T. (2002). Neuropathology of skin denervation in acrylamide-induced neuropathy. Neurobiology of Disease, 11(1), 155-165.
Koh, B. K. (2006). Determination of acrylamide content of food products in Korea. Journal of the Science of Food and Agriculture, 86(15), 2587-2591.
Kroh, L. W. (1994). Caramelisation in food and beverages. Food Chemistry, 51(4), 373-379.
Kulikov, S., Tikhonov, V., Blagodatskikh, I., Bezrodnykh, E., Lopatin, S., Khairullin, R., Philippova, Y., & Abramchuk, S. (2012). Molecular weight and pH aspects of the efficacy of oligochitosan against methicillin-resistant Staphylococcus aureus (MRSA). Carbohydrate Polymers, 87(1), 545-550.
Le Roux-Pullen, L., & Lessing, D. (2011). Should veterinarians consider acrylamide that potentially occurs in starch-rich foodstuffs as a neurotoxin in dogs? Journal of the South African Veterinary Association, 82(2), 129-130.
Lee, H. S., & Nagy, S. (1990). Relative reactivities of sugars in the formation of 5‐hydroxymethylfurfural in sugar‐catalyst model systems. Journal of Food Processing and Preservation, 14(3), 171-178.
Liaqat, F. & Eltem, R. (2017). Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydrate Polymers, 184, 243-259.
Lin, P. H., Huang, S. Y., Mau, J. L., Liou, B. K., & Fang, J. (2010). A novel alcoholic beverage developed from shiitake stipe extract and cane sugar with various Sachharomyces stains. LWT-Food Science and Technology, 43(6), 971-976.
Lodhi, G., Kim, Y. S., Hwang, J. W., Kim, S. K., Jeon, Y. J., Je, J. Y., Ahn, C. B., Moon S. H., Jeon, B. T., & Park, P. J. (2014). Chitooligosaccharide and its derivatives: preparation and biological applications. BioMed Research International, 2014, 13.
Lofstwst, R. E. (2003). Science communication and the Swedish acrylamide" Alarm". Journal of Health Communication, 8(5), 407-432.
LoPachin, R. M. (2004). The changing view of acrylamide neurotoxicity. Neurotoxicology, 25(4), 617-630.
Low, M. Y., Koutsidis, G., Parker, J. K., Elmore, J. S., Dodson, A. T., & Mottram, D. S. (2006). Effect of citric acid and glycine addition on acrylamide and flavor in a potato model system. Journal of Agricultural and Food Chemistry, 54(16), 5976-5983.
Mahan, L. K., & Escott-Stump, S. (1996). Krause's food, nutrition, and diet therapy. W.B. Saunders Company, Philadelphia, USA.
Mahata, M., Shinya, S., Masaki, E., Yamamoto, T., Ohnuma, T., Brzezinski, R., Mazumder T. K., Yamashita, K., & Fukamizo, T. (2014). Production of chitooligosaccharides from Rhizopus oligosporus NRRL2710 cells by chitosanase digestion. Carbohydrate Research, 383, 27-33.
Maki, K. C., Dicklin, M. R., Cyrowski, M., Umporowicz, D. M., Nagata, Y., Moon, G., Forusz, S., & Davidson, M. H. (2002). Improved calcium absorption from a newly formulated beverage compared with a calcium carbonate tablet. Nutrition Research, 22(10), 1163-1176.
Martenson, C. H., Sheetz, M. P., & Graham, D. G. (1995). In vitro acrylamide exposure alters growth cone morphology. Toxicology and Applied Pharmacology, 131(1), 119-129.
Martin, L. M., Michael, E., & Mudassir, S. (1989). Calcium acetate, an effective phosphorus binder in patients with renal failure. Kidney Internation, 36(4), 690.
Martins, S. I., & Van Boekel, M. A. (2005). A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chemistry, 90(1-2), 257-269.
Martins, S. I., Jongen, W. M., & Van Boekel, M. A. (2000). A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science and Technology, 11(9-10), 364-373.
Martins, S. I., Jongen, W. M., & Van Boekel, M. A. (2000). A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science and Technology, 11(9-10), 364-373.
McCollister, D. D., Oyen, F., & Rowe, V. K. (1964). Toxicology of acrylamide. Toxicology and Applied Pharmacology, 6(2), 172-181.
Mestdagh, F., De Meulenaer, B., Cucu, T., & Van Peteghem, C. (2006). Role of water upon the formation of acrylamide in a potato model system. Journal of Agricultural and Food Chemistry, 54(24), 9092-9098.
Miura, T., & Nakano, M. (1998). Calcium bioavailability of a total bone extract (TBE) and its effects on bone metabolism in rats. Biotechnology, 62(7), 1307-1312.
Mogol, B. A., & Gökmen, V. (2016). Effect of chitosan on the formation of acrylamide and hydroxymethylfurfural in model, biscuit and crust systems. Food and Function, 7(8), 3431-3436.
Molnar-Perl, I. (2001). Derivatization and chromatographic behavior of the o-phthaldialdehyde amino acid derivatives obtained with various SH-group-containing additives. Journal of Chromatography A, 913(1-2), 283-302.
Monien, B. H., Frank, H., Seidel, A., & Glatt, H. (2009). Conversion of the common food constituent 5-hydroxymethylfurfural into a mutagenic and carcinogenic sulfuric acid ester in the mouse in vivo. Chemical Research in Toxicology, 22(6), 1123-1128.
Mottram, D. S., Wedzicha, B. L., & Dodson, A. T. (2002). Acrylamide is formed in the Maillard reaction. Nature, 419(6906), 448-449.
Muzzarelli, R. A. A., & Rocchetti, R. (1985). Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydrate Polymers, 5(6), 461-472.
Narayanan, A., Kartik, R., Sangeetha, E., & Dhamodharan, R. (2018). Super water absorbing polymeric gel from chitosan, citric acid and urea: Synthesis and mechanism of water absorption. Carbohydrate Polymers, 191, 152-160.
Nicar, M. J., & Pak, C. Y. C. (1996). Calcium bioavailability from calcium carbonate and calcium citrate. The Journal of Clinical Endocrinology and Metabolism, 61(2), 391-393.
NTP. National Tocicology Program. (2011). Report on Carcinogens, 12th Edition. Research. Triangle Park, NC, USA. Natl. Toxicol. Prog. http://ntp.niehs.nih.gov/ntp/roc/twelfth/roc12.pdf, access on June, 2012.
Omi, N., & Ezawa, I. (1998). Effect of egg-shell Ca on preventing of bone loss after ovariectomy. Journal of Home Economics of Japan, 49(3), 277-282.
Oral, R. A., Mortas, M., Dogan, M., Sarioglu, K., & Yazici, F. (2014). New approaches to determination of HMF. Food Chemistry, 143, 367-370.
Oyaizu, M. (1988). Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi, 35(11), 771-775.
Payet, B., Shum Cheong Sing, A., & Smadja, J. (2005). Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: determination of their polyphenolic and volatile constituents. Journal of Agricultural and Food Chemistry, 53(26), 10074-10079.
Pedreschi, F., Kaack, K., & Granby, K. (2004). Reduction of acrylamide formation in potato slices during frying. LWT-Food Science and Technology, 37(6), 679-685.
Pedreschi, F., Moyano, P., Kaack, K., & Granby, K. (2005). Color changes and acrylamide formation in fried potato slices. Food Research International, 38(1), 1-9.
Petriella, C., Resnik, S. C., Lozano, R. D., & Chirife, J. (1985). Kinetics of deteriorative reactions in model food systems of high water activity: Color changes due to nonenzymatic browning. Journal of Food Science, 50(3), 622-626.
Ranilla, L. G., Kwon, Y. I., Genovese, M. I., Lajolo, F. M., & Shetty, K. (2008). Antidiabetes and antihypertension potential of commonly consumed carbohydrate sweeteners using in vitro models. Journal of Medicinal Food, 11(2), 337-348.
Ravi Kumar, M. N. V. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1), 1-27.
Robert, F., Vuataz, G., Pollien, P., Saucy, F., Alonso, M. I., Bauwens, I., & Blank, I. (2005). Acrylamide formation from asparagine under low moisture Maillard reaction conditions. 2. Crystalline vs amorphous model systems. Journal of Agricultural and Food Chemistry, 53(11), 4628-4632.
Roberts, G. A. F. (1992). Chitin Chemistry. The MacMillan Press Ltd, London, UK.
Rydberg, P., Eriksson, S., Tareke, E., Karlsson, P., Ehrenberg, L., & Törnqvist, M. (2003). Investigations of factors that influence the acrylamide content of heated foodstuffs. Journal of Agricultural and Food Chemistry, 51(24), 7012-7018.
Sakamoto, J., & Hashimoto, K. (1986). Reproductive toxicity of acrylamide and related compounds in mice—effects on fertility and sperm morphology. Archives of Toxicology, 59(4), 201-205.
Sansano, M., Castelló, M. L., Heredia, A., & Andrés, A. (2016). Protective effect of chitosan on acrylamide formation in model and batter systems. Food Hydrocolloids, 60, 1-6.
Shelef, L. A., & Potluri, V. (1995). Behaviour of foodborne pathogens in cooked liver sausage containing lactates. Food Microbiology, 12(3), 221-227.
Shen, X., Lu, R., & Wu, M. (1996). Metabolism and utilization of calcium derived from hydrolysed oyster shell in rats. Zhonghua Yu Fang Yi Xue Za Zhi [Chinese Journal of Preventive Medicine], 30(2), 91-93.
Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40(6), 945-948.
Sickles, D. W., Sperry, A. O., Testino, A., & Friedman, M. (2007). Acrylamide effects on kinesin-related proteins of the mitotic/meiotic spindle. Toxicology and Applied Pharmacology, 222(1), 111-121.
Silva, E. M., & Simon, P. W. (2005). Genetic, physiological, and environmental factors affecting acrylamide concentration in fried potato products. In Chemistry and Safety of Acrylamide in Food. (pp. 371-386). Springer, Boston, MA, USA.
Smith, E. A., Prues, S. L., & Oehme, F. W. (1997). Environmental degradation of polyacrylamides. Ecotoxicology and Environmental Safety, 37(1), 76-91.
Spano, N., Ciulu, M., Floris, I., Panzanelli, A., Pilo, M. I., Piu, P. C., Salis, S., & Sanna, G. (2009). A direct RP-HPLC method for the determination of furanic aldehydes and acids in honey. Talanta, 78(1), 310-314.
Sun, T., Zhu, Y., Xie, J., & Yin, X. (2011). Antioxidant activity of N-acyl chitosan oligosaccharide with same substituting degree. Bioorganic and Medicinal Chemistry Letters, 21(2), 798-800.
Sung, W. C., Chang, Y. W., Chou, Y. H., & Hsiao, H. I. (2018). The functional properties of chitosan-glucose-asparagine Maillard reaction products and mitigation of acrylamide formation by chitosans. Food Chemistry, 243, 141-144.
Takahashi, M., Ishmael, M., Asikin, Y., Hirose, N., Mizu, M., Shikanai, T., Tamaki, H., & Wada, K. (2016). Composition, Taste, Aroma, and Antioxidant Activity of Solidified Noncentrifugal Brown Sugars Prepared from Whole Stalk and Separated Pith of Sugarcane (Saccharum officinarum L.). Journal of Food Science, 81(11), C2647-C2655.
Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S., & Törnqvist, M. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry, 50(17), 4998-5006.
Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S., & Törnqvist, M. (2000). Acrylamide: a cooking carcinogen? Chemical Research in Toxicology, 13(6), 517-522.
Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S., & Törnqvist, M. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry, 50(17), 4998-5006.
Toker, O. S., Dogan, M., Ersöz, N. B., & Yilmaz, M. T. (2013). Optimization of the content of 5-hydroxymethylfurfural (HMF) formed in some molasses types: HPLC-DAD analysis to determine effect of different storage time and temperature levels. Industrial Crops and Products, 50, 137-144.
Tyl, R. W., & Friedman, M. A. (2003). Effects of acrylamide on rodent reproductive performance. Reproductive Toxicology, 17(1), 1-13.
USDA. United States Department of Agriculture. (2012). USDA National Nutrient Database for Standard Reference. USA. http://ndb.nal.usda.gov/ndb/foods/list, accessed on June date, 2012.
Usui, M., Tamura, H., Nakamura, K., Ogawa, T., Muroshita, M., Azakami, H., Kanuma, S., & Kato, A. (2004). Enhanced bactericidal action and masking of allergen structure of soy protein by attachment of chitosan through Maillard‐type protein‐polysaccharide conjugation. Molecular Nutrition and Food Research, 48(1), 69-72.
Vadivambal, R., & Jayas, D. S. (2007). Changes in quality of microwave-treated agricultural products—a review. Biosystems Engineering, 98(1), 1-16.
Verlee, A., Mincke, S., & Stevens, C. V. (2017). Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydrate polymers, 164, 268-283.
Vollmuth, T. A. (2018). Caramel color safety–An update. Food and Chemical Toxicology, 111, 578-596.
Vorlová, L., Borkovcová, I., Kalábová, K., & Vecˇerek, V. (2006). Hydroxymethylfurfural contents in foodstuffs determined by HPLC method. Journal of Food and Nutrition Research, 45(1), 34-38.
Wen, C., Shi, X., Wang, Z., Gao, W., Jiang, L., Xiao, Q., Liu, X., & Deng, F. (2016). Effects of metal ions on formation of acrylamide and 5‐hydroxymethylfurfural in asparagine–glucose model system. International Journal of Food Science and Technology, 51(2), 279-285.
Whistler, R. L., & Daniel, J. R. (1985). Carbohydrates. In O. R. Fennema (ed), Food Chemistry, 2nd ed. (pp. 69-137). Marcel Dekker, New York, USA.
Wise, L. D., Gordon, L. R., Soper, K. A., Duchai, D. M., & Morrissey, R. E. (1995). Developmental neurotoxicity evaluation of acrylamide in Sprague-Dawley rats. Neurotoxicology and Teratology, 17(2), 189-198.
Yasuhara, A., Tanaka, Y., Hengel, M., & Shibamoto, T. (2003). Gas chromatographic investigation of acrylamide formation in browning model systems. Journal of Agricultural and Food Chemistry, 51(14), 3999-4003.
Zeng, X., Cheng, K. W., Du, Y., Kong, R., Lo, C., Chu, I. K., Chen, F., & Wang, M. (2010). Activities of hydrocolloids as inhibitors of acrylamide formation in model systems and fried potato strips. Food Chemistry, 121(2), 424-428.
Zenick, H., Hope, E., & Smith, M. K. (1986). Reproductive toxicity associated with acrylamide treatment in male and female rats. Journal of Toxicology and Environmental Health, Part A Current Issues, 17(4), 457-472.
Zhang, H., Yang, J., & Zhao, Y. (2015). High intensity ultrasound assisted heating to improve solubility, antioxidant and antibacterial properties of chitosan-fructose Maillard reaction products. LWT-Food Science and Technology, 60(1), 253-262.
Zoulias, E. I., Oreopoulou, V., & Kounalaki, E. (2002). Effect of fat and sugar replacement on cookie properties. Journal of the Science of Food and Agriculture, 82(14), 1637-1644.
Zyzak, D. V., Sanders, R. A., Stojanovic, M., Tallmadge, D. H., Eberhart, B. L., Ewald, D. K., Gruber, D. C., Morsch, T. R., Strothers, M. A., Rizzi, G. P., & Villagran, M. D. (2003). Acrylamide formation mechanism in heated foods. Journal of Agricultural and Food Chemistry, 51(16), 4782-4787.