行政院衛生福利部,2017。「食品中游離胺基酸、葡萄糖胺及牛磺酸之檢驗方法」。下載日期:2018 年 1 月 18 日。https://www.fda.gov.tw/tc/siteList.aspx?pn=4&sid=1574
行政院衛生福利部,2010。「可供食品使用原料彙整一覽表」。下載日期:2017 年 7 月 19 日。https://consumer.fda.gov.tw/Food/Material.aspx?nodeID=160#
行政院衛生福利部,2011。「國人膳食營養素參考攝取量」。下載日期:2017 年 7 月 11 日。http://www.doh.gov.tw/
行政院衛生福利部,2014。「食品添加物使用範圍及用量標準」。http://fas.fda.gov.tw/Fasweb/DataQuery/FoodAdditivesQueryForm.aspx
行政院衛生福利部,2016a。「食品中丙烯醯胺指標值之參考指引」。下載日期:2016 年 7 月 18 日。https://www.fda.gov.tw/TC/newsContent.aspx?id=19447&chk=704e7fcd-17f7-4582-adc6-05868ba082fe
行政院衛生福利部,2016b。「臺灣國民營養健康狀況變遷調查」。下載日期:2017 年 7 月 11 日。http://obesity.hpa.gov.tw/tc/index.aspx
方紹威。1990。幾丁質與幾丁聚醣在廢水處理、生化、食品和醫藥上之研究發展現況。藥物食品檢驗局調查研究年報,8︰20-30。
江晃榮。1998。生體高分子(幾丁質、膠原蛋白) 在食品工業上的應用,原料應用,150 (6)︰19-25。
沈一慶、傅鍔。2001。幾丁質與幾丁聚醣之機能及其有效利用。2001 年幾丁質幾丁聚醣研討會論文專輯,17。
張展榮。1996。剪力、超音波或兩種合併作用對幾丁聚醣物化性質之影響及其在水溶性幾丁聚醣製備上的應用。國立臺灣海洋大學食品科學研究所碩士論文。基隆,臺灣。盧訓、徐永鑫、曾素芬。2008。烘焙學。華格那企業有限公司,臺中市。
賴滋漢、柯文慶。1996。食品材料學-農產篇。富林出版社。臺中市。
A.A.C.C. (2000). Approved methods of the American Association of Cereal Chemists. 10 th ed. method 10-54. Minnesota.
Açar, Ö., Pollio, M., Di Monaco, R., Fogliano, V.,& Gökmen, V. (2012). Effect of Calcium on Acrylamide Level and Sensory Properties of Cookies. Food and Bioprocess Technology, 5(2), 519-526.
Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry.LWT-Food Science and Technology,43(6), 837-842.
Amrein, T. M., Schönbächler, B., Escher, F., & Amadò, R. (2004). Acrylamide in Gingerbread: Critical Factors for Formation and Possible Ways for Reduction. Journal of Agricultural and Food Chemistry, 52(13), 4282-4288.
Aranaz, I., Mengíbar, M., Harris, R., Paños, I., Miralles, B., Acosta, N. & Heras, Á. (2009). Functional characterization of chitin and chitosan.Current Chemical Biology, 3(2), 203-230.
Barber, D. S., Hunt, J. R., Ehrich, M. F., Lehning, E. J., & LoPachin, R. M. (2001). Metabolism, toxicokinetics and hemoglobin adduct formation in rats following subacute and subchronic acrylamide dosing. Neurotoxicology, 22(3), 341-353.
Bartolomeo, M. P., & Maisano, F. (2006). Validation of a reversed-phase HPLC method for quantitative amino acid analysis. Journal of Biomolecular Techniques, 17(2), 131.
Barutcu, I., Sahin, S., &Sumnu,G. (2009). Acrylamide formation in different batter formulations during microwave frying. LWT - Food Science and Technology, 42(1), 17–22.
Bates, L., Ames, J. M., MacDougall, D. B., & Taylor, P. C. (1998). Laboratory Reaction Cell to Model Maillard Color Development in a Starch‐Glucose‐Lysine System.Journal of Food Science,63(6), 991-996.
Becalski, A., Lau, B. P. Y., Lewis, D., & Seaman, S. W. (2003). Acrylamide in foods: occurrence, sources, and modeling. Journal of Agricultural and Food Chemistry, 51(3), 802-808.
Besaratinia, A., & Pfeifer, G. P. (2004). Genotoxicity of acrylamide and glycidamide.Journal of the National Cancer Institute,96(13), 1023-1029.
Besaratinia, A., & Pfeifer, G. P. (2007). A review of mechanisms of acrylamide carcinogenicity. Carcinogenesis, 28(3), 519-528.
Bezrodnykh, E. A., Blagodatskikh, I. V., Kulikov, S. N., Zelenikhin, P. V., Yamskov, I. A., & Tikhonov, V. E. (2018). Consequences of chitosan decomposition by nitrous acid: Approach to non-branched oligochitosan oxime. Carbohydrate Polymers, 195, 551-557.
Birch, A. N., Petersen, M. A., & Hansen, Å. S. (2014). Review: Aroma of wheat bread crumb. Cereal Chemistry, 91(2), 105-114.
Bough, W. A. & Landes, D. R. (1977). Recovery and nutritional evalution of proteinaceous solids separated from whey by coagulation with chitosan. Journal of Dairy Science, 59(11), 1874-1880.
Burek, J. D., Albee, R. R., Beyer, J. E., Bell, T. J., Carreon, R. M., Morden, D. C., Wade, C. E., Hermann, E. A. & Gorzinski, S. J.(1980). Subchronic toxicity of acrylamide administered to rats in the drinking water followed by up to 144 daysof recovery.Journal ofEnvironmentalPathology,Toxicology and Oncology,4(5-6): 157-182.
Capuano, E., Ferrigno, A., Acampa, I., Serpen, A., Açar, Ö. Ç., Gökmen, V., & Fogliano, V. (2009). Effect of flour type on Maillard reaction and acrylamide formation during toasting of bread crisp model systems and mitigation strategies. Food Research International,42(9), 1295-1302.
Chang, K. L. B., Wang, J. S., & Sung, W. C. (2014). Calcium salts reduce acrylamide formation and improve qualities of cookies.Journal of Food and Nutrition Research,2(11), 857-866.
Chang, Y. W., Sung, W. C., & Chen, J. Y. (2016). Effect of different molecular weight chitosans on the mitigation of acrylamide formation and the functional properties of the resultant Maillard reaction products.Food Chemistry,199, 581-589.
Chen, R. H., Chang, J. R. & Shyur, J. S. 1997. Effect of ultrasonic conditions and storage inacidic solutions on changes in molecular weight and polydispersity of treated chitosan. Carbohydrate Research, 299(4), 287 - 294.
Chen, W., Li, Y., Yang, S., Yue, L., Jiang, Q., & Xia, W. (2015). Synthesis and antioxidant properties of chitosan and carboxymethyl chitosan-stabilized selenium nanoparticles.Carbohydrate polymers,132, 574-581.
Chien, P. J., Sheu, F., Huang, W. T., & Su, M. S. (2007). Effect of molecular weight of chitosans on their antioxidative activities in apple juice. Food Chemistry, 102(4), 1192–1198.
Chung, Y. C., Kuo, C. L., & Chen, C. C. (2005). Preparation and important functional properties of water-soluble chitosan produced through Maillard reaction. Bioresource Technology, 96(13), 1473-1482.
Claus, A., Carle, R.,& Schieber, A., (2008). Acrylamide in cereal products: a review. Journal of Cereal Science, 47(2), 118-133.
Clydesdale FM. (1988). Minerals: Their Chemistry and Fate in Food. In: Smith K, editor. Trace Minerals in Food. Marcel Dekker, New York, p.57-94.
Commission Regulation. (2011). Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off. Official Journal of the European Union, 12, 1–89.
Čukelj, N., Novotni, D., Sarajlija, H., Drakula, S., Voučko, B., & Ćurić, D. (2017). Flaxseed and multigrain mixtures in the development of functional biscuits. LWT-Food Science and Technology, 86, 85-92.
Dapčević Hadnađev, T., Torbica, A., & Hadnađev, M. (2013). Influence of buckwheat flour and carboxymethyl cellulose on rheological behaviour and baking performance of gluten-free cookie dough. Food and Bioprocess Technology, 6(7), 1770-1781.
Dinç, S., Javidipour, I., Özbas, Ö., & Tekin, A. (2014). Utilization of zero-trans non-interesterified and interesterified shortenings in cookie production. Journal of Food Science and Technology, 51(2), 365-370.
Doolittle, R. F., Falter, H., Horn, M. J., Kannan, K. K., Mross, G. A., Laursen, R. A., Needleman, S. B., Nieboer, e. & Reichlin, M. (2012).Advanced methods in protein sequence determination(Vol. 25). Springer Science & Business Media, New York.
Dos Santos, J. M., Quináia, S. P., & Felsner, M. L. (2018). Fast and direct analysis of Cr, Cd and Pb in brown sugar by GF AAS.Food Chemistry,260, 19-26.
Dybing, E., &Sanner, T. (2003). Risk assessment of acrylamide in foods. Risk assessment of acrylamide in foods. Toxicological Sciences, 75(1), 7–15.
EC, (1998).European Community (EC), Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption.
European Commission. (2013). Commission Recommendation of 8 November 2013on investigations into the levels of acrylamide in food. Available at: http://www.fsai.ie/uploadedFiles/Recomm_2013_647.pdf Accessed 20.08.14.
Faridi, H. (1994). The Science of Cookie and Cracker Production. Chapman & Hall,New York.Fleischman, A. I., Yacowitz,
Friedman, M. (2003). Chemistry, biochemistry, and safety of acrylamide. A review, J. Agric. Food Chemistry,51(16), 4504–4526.
Friedman, M., & Mottram. D. (2005). Advances in Experimental Medicine and Biology - volume 561, Chemistry and Safety of Acrylamide in Food. American. New York: Springer.
Friedman, M. (2015). Acrylamide: inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans. Food & Function, 6(6), 1752-1772.
Gama-Baumgartner, F., Grob, K., & Biedermann, M. (2004). Citric acid to reduce acrylamide formation in French fries and roasted potatoes. Mitteilungen aus Lebensmitteluntersuchung und Hygiene, 95(1),110-117.
Ghanayem, B. I., McDaniel, L. P., Churchwell, M. I., Twaddle, N. C., Snyder, R., Fennell, T. R., &Doerge, D. R. (2005). Role of CYP2E1 in the epoxidation of acrylamide to glycidamide and formation of DNA and hemoglobin adducts. Toxicological Sciences, 88(2), 311–318.
Gökmen, V., & Şenyuva, H. Z. (2007a). Effects of some cations on the formation of acrylamide and furfurals in glucose–asparagine model system. European Food Research and Technology, 225(5-6), 815-820.
Gökmen, V., & Şenyuva, H. Z. (2007b). Acrylamide formation is prevented by divalent cations during the Maillard reaction.Food Chemistry,103(1), 196-203.
Gökmen, V., Açar, O. C., Arribas-Lorenzo, G., & Morales, F. J. (2008). Investigatingthe correlation between acrylamide content and browning ratio of model cookies. Journal of Food Engineering, 87(3), 380–385.
Gonzales, A. P., Naranjo, G. B., Leiva, G. E., & Malec, L. S. (2010). Maillard reaction kinetics in milk powder: Effect of water activity at mild temperatures. International Dairy Journal, 20(1), 40-45.
Heenana, S.P., Dufoura, J., Hamida,N., Harveyc,W.,& Delahunty, C.M. (2010). The influence of ingredients and time from baking on sensory quality and consumer freshness perceptions in a baked model cake system. LWT - Food Science and Technology, 43(7), 1032-1041.
Hirano, S., Itakura, C., Seino, H., Akiyama, Y., Nonaka, I., Kanbara, N., & Kawakami, T. (1990). Chitosan as an ingredient for domestic animal feeds.Journal of Agricultural and Food Chemistry,38(5), 1214-1217.
Huang, J. R., Huang, C. Y., Huang, Y. W., & Chen, R. H. (2007). Shelf-life of fresh noodles as affected by chitosan and its Maillard reaction products. LWT-Food Science and Technology, 40(7), 1287-1291.
Hwang, H. S., Singh, M., & Lee, S. (2016). Properties of cookies made with natural wax-vegetable oil organogels. Journal of Food Science, 81(5), 1045-1054.
IARC. (1994). Monographs on the evaluation of carcinogenic risks to humans: Some industrial chemicals, 60 pp. 389-433. Lyon, France: International Agency for Research on Cancer.
Ilyina, A. V., Varlamov, V. P., Tikhonov, V. E., Yamskov, I. A.& Davankov, V. A. (1994).One-step isolation of a chitinase by affinity chromatography of the chitinolytic enzymecomplex produced by streptomyces kurssanovii.Biotechnology and Applied Biochemistry, 19(2), 199-207.
Inoue, K., Baba, Y., Yoshizuka, K., Noguchi, H., & Yoshizaki, M. (1988). Selectivity series in the adsorption of metal ions on a resin prepared by crosslinking copper(II)-complexed chitosan. Chemistry Letters, 1281–1284.
James, C.S. (1995). Analytical Chemistry of Foods. Chapman and Hall, New York.
Jiang, T. J., Feng, L. F., & Li, J. R. (2012). Changes in microbial and postharvest quality of shiitake mushroom (Lentinus edodes) treated with chitosan-glucose complex coating under cold storage. Food Chemistry, 131(3), 780-786.
Jing, H., & Kitts, D. D. (2004). Antioxidant activity of sugar–lysine Maillard reaction products in cell free and cell culture systems. Archives of Biochemistry and Biophysics, 429(2), 154-163.
Jung, M. Y., Choi, D. S., & Ju, J. W. (2003). A novel technique for limitation of acrylamide formation in fried and baked corn chips and in french fries. Journal of Food Science, 68(4), 1287-1290.
Kanatt, S. R., Chander, R., & Sharma, A. (2008). Chitosan glucose complex –A novel food preservative. Food Chemistry, 106(2), 521-528.
Kim, M. K., Lee, J. M., Do, J. S., & Bang, W. S. (2015). Antioxidant activities and quality characteristics of omija (Schizandra chinesis Baillon) cookies.Food Science and Biotechnology,24(3), 931-937.
Kim, S. K., & Rajapakse, N. (2005). Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydrate Polymers, 62(4), 357-368.
Knorr, D., Wampler, J. P. & Teutonico, R. A. (1985). Formation of pyrazine by chitin pyrolysis. Journal of Food Science, 50(6), 1762-1763.
Kroh, L. W. (1994). Caramelisation in food and beverages. Food Chemistry, 51(4), 373-379.
Labuza, T. P. (2005). Interpreting the complexity of the kinetics of the Maillard reaction. In G. A. Reineccius, V. M. Monnier, J. W. O’Brien, & J. Baynes (Eds.), Maillard reactions in chemistry, food and health (pp. 176–181). Woodhead Publishing, Lodon.
Lindsay, R. C., & Jang, S. (2005). Chemical intervention strategies for substantial suppression of acrylamide formation in fried potato products. Chemistry and safety of acrylamide in food (pp. 393-404). Springer, Boston, MA.
Lineback, D. R., Coughlin, J. R., & Stadler, R. H. (2012). Acrylamide in foods: A review of the science and future considerations. Annual Review of Food Science and Technology, 3, 15-35.
Liu, Y., Wang, P., Chen, F., Yuan, Y., Zhu, Y., Yan, H., & Hu, X. (2015). Role of plant polyphenols in acrylamide formation and elimination. Food Chemistry, 186, 46-53.
LoPachin, R. M., Ross, J. F., & Lehning, E. J. (2002). Nerve Terminals as the Primary Site of Acrylamide Action: A Hypothesis. Neurotoxicology, 23(1), 43–59.
Loveday, S. M., & Winger, R. J. (2007). Mathematical model of sugar uptake in fermenting yeasted dough. Journal of Agriculture and Food Chemistry, 55(15), 6325–6329.
Mahan, L. K., & Escott-Stump, S. (1996). Krause's Food, Nutrition, and Diet Therapy. Philadelphia: W.B. Saunders Company, Philadelphia.
Marathe, S. A., Rajalakshmi, V., Jamdar, S. N., & Sharma, A. (2011). Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India. Food and Chemical Toxicology, 49(9), 2005-2012.
Martins, S. I., Jongen, W. M., & Van Boekel, M. A. (2000). A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology, 11(9-10), 364-373.
Matz, S. A. (1968). Base cakes and plain cookies.Cookies and Cracker Technology. AVI Publishing Co., Westport, CT, USA, 119-136.
Mesías, M., Holgado, F., Márquez-Ruiz, G., & Morales, F. J. (2015). Effect of sodium replacement in cookies on the formation of process contaminants and lipid oxidation. LWT-Food Science and Technology, 62(1), 633-639.
Miura, T., & Nakano, M. (1998). Calcium bioavailability of a total bone extract (TBE) and its effects on bone metabolism in rats. Biotechnology Journal, 62(7), 1307-1312.
Mizukoshi, M., Kawada,T., &Matsui, N. (1979). Model studies of cake baking. I. Continuous observations of starch gelatinization and protein coagulation during baking. Cereal Chemistry, 56(4), 305–309.
Molnar-Perl, I. (2001). Derivatization and chromatographic behavior of the o-phthaldialdehyde amino acid derivatives obtained with various SH-group-containing additives. Journal of Chromatography A, 913(1-2), 283-302.
Mottram, D. S., Wedzicha, B. L., & Dodson, A. T. (2002). Food chemistry: Acrylamide is formed in the Maillard reaction. Nature, 419, 448-449.
Navarro, M., & Morales, F. J. (2017). Effect of hydroxytyrosol and olive leaf extract on 1, 2-dicarbonyl compounds, hydroxymethylfurfural and advanced glycation endproducts in a biscuit model. Food Chemistry, 217, 602-609.
Nguyen, H. T., Peters, R. J., & Van Boekel, M. A. (2016). Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: Part I: Effects of sugar type.Food Chemistry, 192, 575-585.
Nguyen, H. T., & Van Boekel, M. A. J. S. (2017). Acrylamide and 5-hydroxymethylfurfural formation during biscuit baking. Part II: Effect of the ratio of reducing sugars and asparagine. Food Chemistry, 230, 14-23.
Nordin, B. E. C. (1990). Calcium homeostasis. Clinical Biochemistry, 23(1), 3-10.
Normandin, L., Bouchard, M., Ayotte, P., Blanchet, C., Becalski, A., Bonvalot, Y., & Courteau, M. (2013). Dietary exposure to acrylamide in adolescents from a Canadian urban center.Food and Chemical Toxicology,57, 75-83.
Oral, R. A., Mortas, M., Dogan, M., Sarioglu, K., & Yazici, F. (2014). New approaches to determination of HMF. Food Chemistry, 143, 367-370.
Oyaizu, M. (1988). Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi, 35(11), 771-775.
Park, P. J., Je, J. Y., & Kim, S. K. (2004). Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer. Carbohydrate Polymers, 55(1), 17–22.
Payet, B., Shum Cheong Sing, A., & Smadja, J. (2005). Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: determination of their polyphenolic and volatile constituents. Journal of Agricultural and Food Chemistry, 53(26), 10074-10079.
Pedreschi, F., Kaack, K., & Granby, K. (2004). Reduction of acrylamide formation in potato slices during frying. LWT -Food Science and Technology, 37(6),679-685.
Pedreschi, F., Mariotti, M. S., & Granby, K. (2014). Current issues in dietary acrylamide: formation, mitigation and risk assessment. Journal of the Science of Food and Agriculture, 94(1), 9-20.
Pedreschi, F., Moyano, P., Kaack, K., & Granby, K. (2005). Color changes and acrylamide formation in fried potato slices. Food Research International, 38(1), 1-9.
Polovková, M., & Šimko, P. (2017). Determination and occurrence of 5-hydroxymethyl-2-furaldehyde in white and brown sugar by high performance liquid chromatography.Food Control,78, 183-186.
Qin, Y. (1993). The chelating properties of chitosan fibers. Journal of Applied Polymer Science, 49(4), 727–731.
Quarta, B., & Anese, M. (2010). The effect of salts on acrylamide and 5-hydroxymethylfurfural formation in glucose-asparagine model solutions and biscuits.Journal of Food & Nutrition Research,49(2), 69-77.
Rao, M. S., Chawla, S. P., Chander, R., & Sharma, A. (2011). Antioxidant potential of Maillard reaction products formed by irradiation of chitosan–glucose solution.Carbohydrate Polymers,83(2), 714-719.
Risner, C. H., Kiser, M. J., & Dube, M. F. (2006). An Aqueous High‐Performance Liquid Chromatographic Procedure for the Determination of 5‐Hydroxymethylfurfural in Honey and Other Sugar‐containing Materials.Journal of Food Science,71(3), 179-184.
Rydberg, P., Eriksson, S., Tareke, E., Karlsson, P., Ehrenberg, L., & Törnqvist, M. (2003). Investigations of Factors That Influence the Acrylamide Content of Heated Foodstuffs. Journal of Agricultural and Food Chemistry, 51(24),7012-7018.
Sannan, T., Kurita, K. & Iwakura, Y. (1976). Studies on chitin 2: Effect of deacetylation on solubility. Macromolecular Chemistry and Physics, 177(12), 3589-3600.
Sansano, M., Castelló, M. L., Heredia, A., & Andrés, A. (2016). Protective effect of chitosan on acrylamide formation in model and batter systems.Food Hydrocolloids,60, 1-6.
Shahidi, F., Arachchi,J. K. V., &Jeon,Y. J. (1999). Food applications of chit in and chitosans.Trends in Food Science &Technology, 10(2), 37-51.
Shamla, L., & Nisha, P. (2017). Acrylamide formation in plantain (Musa paradisiaca) chips influenced by different ripening stages: A correlation study with respect to reducing sugars, amino acids and phenolic content. Food Chemistry, 222, 53-60.
Shimada, K., Fujikawa, K., Yahara, K. & Nakamura, T. (1992). Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion.Journal of Agricultural and Food Chemistry, 40(6), 945-948.
Shipp, A., Lawrence, G., Gentry, R., McDonald, T., Bartow, H., Bounds, J., Macdonald, N., Clewell, H., Allen, B., &Landingham, C. (2006). Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects. Critical Reviews in Toxicology, 36(6-7), 481–608.
Sickles, D. W., Sperry, A. O., Testino, A., & Friedman, M. 2007. Acrylamide effects on kinesin-related proteins of the mitotic/meiotic spindle. Toxicology and Applied Pharmacology, 222(1), 111-121.
Sinelli, N., Casiraghi, E., & Downey, G. (2008). Studies on proofing of yeasted bread dough using near-and mid-infrared spectroscopy. Journal of Agriculture and Food Chemistry, 56(3), 922–931.
Singhal, M., Paul, A., & Singh, H. P. (2014). Synthesis and reducing power assay of methyl semicarbazone derivatives. Journal of Saudi Chemical Society, 18(2), 121-127.
Smith, E. A.,Pruen, S. L., &Oehme, F. W. (1996). Environmentaldegradation of polyacrylamides. 1. Effects of artificial environmentalconditions: temperature, light and pH. Ecotoxicology and Environmental Safety,35(2), 121–135.
SNFA, (2002). Swedish National Food Administration. Information about Acrylamide in Food. <http://www.slv.se>.
Soto-Peralta, N. V., Muller, H. and Konner, D. (1989). Effect of chitosan treatments on theclarity and color of apple juice.Journal of Food Science, 54(2), 495-496.
Sudha, M.L., Baskaran, V., &Leelavathi, K. (2007). Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chemistry, 104(2), 686–692.
Sung, W. C., & Chen, C. Y. (2017). Influence of Cookies Formulation on the Formation of Acrylamide.Journal of Food and Nutrition Research,5(6), 370-378.
Tarancón, P., Salvador, A.,& Sanz, T. (2013). Sunflower oil-water-cellulose ether emulsions as trans-fatty acid-free fat replacers in biscuits: texture and acceptability study. Food and Bioprocess Technology, 6(9), 2389-2398.
Tritscher, A.M. (2004). Human health risk assessment of processing –related compounds in food. Toxicology Letters. 149(1-3), 177–186.
Tsai, G. J. &Su,W. H. (1999). Antibacterial activity of shrimp chitosan against Escherichia coli. Journal of Food Protection, 62(3), 239-243.
Tsai, G. J., Liau, W. Y., & Chen, C. S. (1997). Antimicrobial activities of shrimp chitosan and chitosan derivatives and their application on food preservation. Advances in Chitin Science. 2, 744-750.
Tsai, G. J., Su, W. H., Chen, H. C., & Pan, C. L. (2002). Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation. Fisheries Science, 68(1), 170-177.
Tyl, R. W. &Friedman,M. A. (2003). Effects of acrylamide on rodent reproductive performance. Reproductive Toxicology, 17(1), 1-13.
Tyl, R. W., Friedman,M. A., Losco,P. E., Fisher,L. C., Johnson,K. A., Strother,D. E. &Wolf,C. H. (2000). Rat two generation reproduction and dominant lethal study of acrylamide in drinking water. Reproductive Toxicology, 14(5), 385-401.
Usui, M., Tamura, H., Nakamura, K., Ogawa, T., Muroshita, M., Azakami, H.,& Kato, A.(2004). Enhanced bactericidal action and masking of allergen stucture of soy protein by attachment of chitosan through Maillard-type protein-polysaccharide conjugation.Nahrung, 48(1), 69-72.
Van Boekel, M. A. (2008).Kinetic modeling of reactions in foods. CRC press, Boca Raton.
Van Der Fels-Klerx, H. J., Capuano, E., Nguyen, H. T., Mogol, B. A., Kocadağlı, T., Taş, N. G., & Gökmen, V. (2014). Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: NaCl and temperature–time profile effects and kinetics. Food Research International, 57, 210-217.
Vattem, D. A., &Shetty, K. (2003). Acrylamide in food: a model for mechanism of formation and its reduction. Innovative Food Science and Emerging Technologies, 4(3), 331–338.
Wan, A., Xu, Q., Sun, Y., & Li, H. (2013). Antioxidant activity of high molecular weight chitosan and N, O-quaternized chitosans. Journal of Agricultural and Food Chemistry, 61(28), 6921-6928.
Wang, H. Y., Qian, H., & Yao, W. R. (2011). Melanoidins produced by the Maillard reaction: Structure and biological activity. Food Chemistry, 128(3), 573-584.
Whitney, E. N., & Rolfes, R. R. (1999). Understanding Nutrition. Wadswoth Publishing Co. Belmont, California, USA.
Wu, T., & Zivanovic, S. (2008). Determination of the degree of acetylation (DA) of chitin and chitosan by an improved first derivative UV method. Carbohydrate Polymers, 73(2), 248-253.
Yen, M. T., Yang, J. H., & Mau, J. L. (2008). Antioxidant properties of chitosan from crab shells.Carbohydrate Polymers,74(4), 840-844.
Zamora, R., & Hidalgo, F. J. (2008). Contribution of lipid oxidation products to acrylamide formation in model systems. Journal of Agricultural and Food Chemistry, 56(15), 6075-6080.
Zhu, K. X., Li, J., Li, M., Guo, X. N., Peng, W., & Zhou, H. M. (2013). Functional properties of chitosan-xylose Maillard reaction products and their application to semi-dried noodle. Carbohydrate Polymers, 92(2),1972-1977.
Zyzak, D. V., Sanders, R. A., Stojanovic, M., Tallmadge, D. H., Eberhart, B. L., Ewald, D. K., Gruber D. C., Morsch, T. R., Strothers, M. A., Rizzi, G. P. & Villagran, M. D. (2003). Acrylamide formation mechanism in heated foods.Journal of Agricultural and Food Chemistry,51(16), 4782-4787.