|
吳彰哲、黃瀚寧。2010。蝦蟹殼中的寶貝 ─ 幾丁質。科學發展。448,12-19。 闞建全、駱錫能、盧義發、邱思魁、陳振芳、吳柏青。2007。食品化學第二版。臺北,臺灣。 陳榮輝。2001。幾丁質、幾丁聚醣的生產製造、檢測與應用。科學發展。29,10。 陳澄河。2003。蝦蟹殼傳奇。科學發展。369,62-67。 國家研究院環境毒物研究中心。2010。丙烯醯胺毒性資料。臺灣。 衛福部。2012。降低食品中丙烯醯胺加工參考手冊。臺灣。 衛福部。2009。食品中游離胺基酸、葡萄糖胺及牛磺酸之檢驗方法。臺灣。 Alaiz, M., Zamora, R., & Hidalgo, F. J. (1996). Antioxidant activity of pyrrole, imidazole, dihydropyridine, and pyridium salt derivatives produced in oxidized lipid/ amino acid browning reactions. Journal of Agricultural and Food Chemistry, 44, 686-691. Amrein, T. M., Limacher, A., Conde-Petit, B., Amado, R. & Escher, F. (2006). Influence of thermal processing conditions on acrylamide generation and browning in a potato model system. Journal of Agricultural and Food Chemistry, 54, 5910-5916. Ames, J. M. (1990). Control of the Maillard reaction in food systems. Trends in Food Science & Technology, 1, 150-154. Aye, K. N., Karuppuswamy, R., Ahamed, T., & Stevens, W. F. (2006). Peripheral enzymatic deacetylation of chitin and reprecipitated chitin particles. Bioresource Technology, 97, 557-582. Ashoor, S. H., & Zent, J. B. (1984). Maillard browning of common amino acids and sugars. Journal of Food Science, 49, 1206-1210. Barber, D. S., Hunt, J. R., Ehrich, M. F., Lehning, E. J., & LoPachin, R. M. (2001). Metabolism, toxicokinetics and hemoglobin adduct formation in rats following subacute and subchronic acrylamide dosing. Neurotoxicology, 22, 341-353. Bartolomeo, M. P. and Maisano, F. 2006. Validation of a reversed-phase HPLC method for quantitative amino acid analysis. Journal of Biomolecular Techniques, 17: 131-137. Becalski, A., Lau, B. P. Y., Lewis, D., & Seaman, S. W. (2003). Acrylamide in foods: occurrence, sources, and modeling. Journal of Agricultural and Food Chemistry, 51, 802-808. Bersuder, P., Hole, M., & Smith, G. (2001). Antioxidants from a heated histidine-glucose model system. Investigation of the copper (II) binding ability. Journal of the American Oil Chemists Society, 78, 1079-1082. Besaratinia, A., & Pfeifer, G. P. (2004). Genotoxicity of acrylamide and glycidamide. Journal of the National Cancer Institute, 96(13), 1023-1029. Beveridge, T., & Harrison, J. E. (1984). Nonenzymatic browning in pear juice concentrate at elevated temperatures. Journal of Food Science, 49, 1335-1336. Bezrodnykh, E. A., Blagodatskikh, I. V., Kulikov, S. N., Zelenikhin, P. V., Yamskov, I. A., & Tikhonov, V. E. (2018). Consequences of chitosan decomposition by nitrous acid: Approach to non-branched oligochitosan oxime. Carbohydrate Polymers, 195, 551-557. Bologna, L. S., Andrawes, F. F., Barvenik, F. W., Lentz, R. D., & Sojka, R. E. (1999). Analysis of residual acrylamide in field crops. Journal of Chromatographic Science, 37, 240-244. Buera, M., Chirife, J., Resnik, S. L., & Lozano, R. D. (1987). Nonenzymatic browning in liquid model systems of high water activity: Kinetics of color changes due to reaction between glucose and glycine peptides. Journal of Food Science, 52, 1068-1070. Bull, R. J., Robinson, M., Laurie, R. D., Stoner, G. D., Greisiger, E., Meier, J. R., & Stober, J. (1984). Carcinogenic effects of acrylamide in Sencar and A/J mice. Cancer Research, 44, 107-111. Calleman, C.J., Bergmark, E., & Costa, L.G. (1990). Acrylamide is metabolized to glycidamide in the rat: evidence from hemoglobin adduct formation. Chemical Research in Toxicology, 3, 406-412. Chang, Y.W., Sung, W.C., & Chen, J.Y. (2016). Effect of different molecular weight chitosans on the mitigation of acrylamide formation and the functional properties of the resultant Maillard reaction products. Food Chemistry, 199, 581-589. Chapin, R. E., Fail, P. A., George, J. D., Grizzle, T. B., Heindel, J. J., Harry, G. J., Collins, B. J., & Teague, J. (1995). The reproductive and neural toxicities of acrylamide and three analogues in Swiss mice, evaluated using the continuous breeding protocol. Fundamental and Applied Toxicology, 27, 9-24. Chien, P. J., Sheu, F., Huang, W. T., & Su, M. S. (2007). Effect of molecular weight of chitosans on their antioxidative activities in apple juice. Food Chemistry, 102, 1192-1198. Del Pilar Buera, M., Chirife, J., Resnik, S. L., & Lozano, R. D. (1987). Nonenzymatic browning in liquidmodel system of high water activity. Kinetics of color changes due to reaction between glucose and glycine peptides. Journal of Food Science, 52, 1068-1070. DeMan, J. M. (1999). Proteins. In: Principles of Food Chemistry. 3rd Edn. An AVI Book, New York. Dittrich, R., El-Massry, F., Rinaldi, F., Peich, C. C., Beckmann, M. W., & Pischetsrieder, M. (2003). Maillard reaction products inhibit oxidation of human low-density lipoproteins in vitro. Journal of Agricultural and Food Chemistry, 51, 3900-3904. Dinis, T. C., Madeira, V. M., & Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arhives of Biochemistry and Biophysics, 315, 161-169. Dogan, I. S., Steenken, D., & Icli. S. (1990). Electron spin resonance and pulse radiolysis studies on the reaction of OH and SO4-with five-membered heterocyclic compounds in aqueous solution. Journal of Physical Chemistry, 94, 1887-1894. Doolittle, R. F., Falter, H., Horn, M. J., Kannan, K. K., Mross, G. A., Laursen, R. A., Needleman, S. B., Nieboer, e. & Reichlin, M. (2012). Advanced methods in protein sequence determination (Vol. 25). Springer Science & Business Media. Ehling, S., & Shibamoto, T. (2005). Correlation of acrylamide generation in thermally 36 processed model systems of asparagine and glucose with color formation, amounts of pyrazines formed, and antioxidative properties of extracts. Journal of Agricultural and Food Chemistry, 53, 4813-4819. Eichner, K., & Karel, M. (1972). Influence of water content and water activity on the sugar-amino browning reaction in model systems under various conditions.Journal of Agricultural and Food Chemistry, 20, 218-223. El-Ghorab, A. H., Fujioka, K., & Shibamoto, T. (2006). Determination of acrylamide formed in asparagine/D-glucose Maillard model systems by using gas chromatography with headspace solid-phase microextraction. Journal of AOAC International, 89, 149-153. Endo, H., Kittur, S., & Sabri, M. I. (1994). Acrylamide alters neurofilament protein gene expression in rat brain. Neurochemical Research, 19, 815-820. Food Drink Europe. (2011). Acrylamide Toolbox 2011. Brussels, Belgium. Franke, K., Sell, M., & Reimerdes, E. H. (2005). Quality related minimization of acrylamide formation-an integrated approach. In Chemistry and safety of acrylamide in food, 357-369. Springer US. Friedman, M. (2003). Chemistry, biochemistry, and safety of acrylamide. A review. Agricultural and Food Chemistry, 51, 4504-4526. García, M. A., de la Paz, N., Castro, C., Rodríguez, J. L., Rapado, M., Zuluaga, R., Gañán, P., & Casariego, A. (2015). Effect of molecular weight reduction by gamma irradiation on the antioxidant capacity of chitosan from lobster shells. Journal of Radiation Research and Applied Sciences, 8, 190-200. Ghanayem, B. I., McDaniel, L. P., Churchwell, M. I., Twaddle, N. C., Snyder, R., Fennell, T. R., & Doerge, D. R. (2005). Role of CYP2E1 in the epoxidation of acrylamide to glycidamide and formation of DNA and hemoglobin adducts. Toxicological Sciences, 88, 311-318. Gökmen, V., & Şenyuva, H. Z. (2007). Effects of some cations on the formation of acrylamide and furfurals in glucose–asparagine model system. European Food Research and Technology, 225, 815-820. Gu, F. L., Kim, J. M., Abbas, S., Zhang, X. M., Xia, S. Q., & Chen, Z. X. (2010). Structure and antioxidant activity of high molecular weight Maillard reaction products from casein–glucose. Food Chemistry, 120, 505-511. Hammouda, Y., & Salakawy, S. A. (1971). Non-enzymatic browing in solid-dosage forms: Lactose-induced discoloration of neomycin tablets. Pharmazie, 26, 636-640. Hashimoto, K., & Tanii, H. (1985). Mutagenicity of acrylamide and its analogues in Salmonella typhimurium. Mutation Research, 158, 129-133. He, F. S., S. L. Zhang, H. L. Wang, G. Li, Z. M. Zhang, F. L. Li, X. M. Dong and F. R. Hu (1989). Neurological and electroneuromyographic assessment of the adverse effects of acrylamide on occupationally exposed workers. Scandinavian Journal of Work, Environment & Health 15(2): 125-129. He, H., Chen, X., Sun, C., Zhang, Y., & Gao, P. (2006). Preparation and functional evaluation of oligopeptide-enriched hydrolysate from shrimp (Acetes chinensis) treated with crude protease from Bacillus sp. SM98011. Bioresource Technology, 97, 385-390. Hidalgo, F. J., & Zamora, R. (2000). The role of lipids in nonenzymatic browning. Grasas Y Aceites, 51, 35-49. Hofmann, T. (1998). Studies on melanoidin-type colorants generated from the Maillard reaction of protein-bound lysine and furan-2-carboxaldehyde –Chemical characterisation of a red coloured domaine. Zeitschrift fuer Lebensmittel-Untersuchung und -Forschung, 206,251-258. Hwang, J. Y., Shue, Y. S., & Chang, H. M. (2001). Antioxidative activity of roasted and defatted peanut kernels. Food Research International, 34, 639-647. James, C.S. (1995). Analytical Chemistry of Foods. Chapman and Hall, New York. Jang, M. K., Kong, B. G., Jeong, Y., Lee, H., & Nah, J. W. (2004). Physicochemical characterization of α-chitin, β-chitin and γ-chitin separated from natural resources. Journal of Polymer Science Part A: Polymer Chemistry, 42, 3425-3432. Jeddawi, W. A., Dawson, P., & Han, I. (2014). Effect of addition of low and high molecular weight water soluble chitosan on whole milk powder oxidation. Research & Reviews: Journal of Dairy Science & Technology, 3, 9-21. Jung, M. Y., Choi, D. S., & Ju, J. W. (2003). A novel technique for limitation of acrylamide formation in fried and baked corn chips and in french fries. Journal of Food Science, 68, 1287-1290. Jung, J., & Zhao, Y. (2012). Comparison in antioxidant action between α-chitosan and 38 β-chitosan at a wide range of molecular weight and chitosan concentration. Bioorganic & Medicinal Chemistry, 20, 2905-2911. Kanatt, S. R., Chander, R., & Sharma, A. (2008). Chitosan glucose complex –A novel food preservative. Food Chemistry, 106, 521-528. Kavousi, P., Mirhosseini, H., Ghazali, H., & Ariffin, A. A. (2015). Formation and reduction of 5-hydroxymethylfurfural at frying temperature in model system as a function of amino acid and sugar composition. Food Chemistry, 182, 164-170. Kemplay, S., & Cavanagh, J. B. (1984). Effects of acrylamide and other sulfhydryl compounds in vivo and in vitro on staining of motor nerve terminals by the zinc iodide‐osmium technique. Muscle & Nerve, 7, 94-100. Kim, K. W., & Thomas, R. L. (2007). Antioxidative activity of chitosans with varying molecular weights. Food Chemistry, 101, 308-313. Kim, S. K., & Rajapakse, N. (2005). Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydrate Polymers, 62(4), 357-368. Ko, M. H., Chen, W. P., & Hsieh, S. T. (2002). Neuropathology of skin denervation in acrylamide-induced neuropathy. Neurobiology of Disease, 11, 155-165. Labuza, T. P., & Baisier, W. M. (1992). The kinetics of nonenzymatic browning. In: H. G. Schwartzberg, &R. W. Hartel (Eds.), Physical Chemistry of Foods (pp. 595-649). New York: Marcel Dekker Inc. Lievonen, S. M., Lanksonen, T. J., & Roos, Y. A. (2002). Nonenzymatic browning in food models in the vicinity of the glass transition: Effects of fructose, glucose, and xylose as reducing sugar. Journal of Agricultural and Food Chemistry, 50, 7034-7041. Liu, Y., Wang, P., Chen, F., Yuan, Y., Zhu, Y., Yan, H., & Hu, X. (2015). Role of plant polyphenols in acrylamide formation and elimination. Food Chemistry, 186, 46-53. LoPachin, R. M., J. F. Ross & E. J. Lehning (2002). Nerve terminals as the primary site of acrylamide action: a hypothesis. Neurotoxicology, 23, 43-59. Low, M. Y., Koutsidis, G., Parker, J. K., Elmore, J. S., Dodson, A. T., & Mottram, D. S. (2006). Effect of citric acid and glycine addition on acrylamide and flavor in a potato model system. Journal of Agricultural and Food Chemistry, 54, 5976-5983. MacDougall, D. B., & Granov, M. (1998).Relationship between ultraviolet and visible spectra in Maillard reactions and CIELAB colour space and visual appearance (pp. 160-165). The Royal Society of Chemistry: Cambridge, UK. Maghami, G. G., & Roberts, G. A. F. (1988). Evaluation of viscometric constants for chitosan. Die Makromolekulare Chemie, 189,195-200. Martenson, C. H., Sheetz, M. P., & Graham, D. G. (1995). In vitro acrylamide exposure alters growth cone morphology. Toxicology and Applied Pharmacology, 131, 119-129. Martins, S. I., & Van Boekel, M. A. (2005). A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chemistry, 90, 257-269. Mengíbar, M., Miralles, B., & Heras, Á. (2017). Use of soluble chitosans in Maillard reaction products with β-lactoglobulin. Emulsifying and antioxidant properties. LWT-Food Science and Technology, 75, 440-446. Mestdagh, F., De Meulenaer, B., Cucu, T., & Van Peteghem, C. (2006). Role of water upon the formation of acrylamide in a potato model system. Journal of Agricultural and Food Chemistry, 54, 9092-9098. Molnár-Perl, I. (2001). Derivatization and chromatographic behavior of the o-phthaldialdehyde amino acid derivatives obtained with various SH-group-containing additives. Journal of chromatography A, 913(1-2), 283-302. Morales, F. J., & Jiménez-Pérez, S. (2001). Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chemistry, 72, 119-125. Mottram, D. S., Wedzicha, B. L., & Dodson, A. T. (2002). Food chemistry: Acrylamide is formed in the Maillard reaction. Nature, 419, 448-449. Nguyen, H. T., & van Boekel, M. A. J. S. (2017). Acrylamide and 5-hydroxymethylfurfural formation during biscuit baking. Part II: Effect of the ratio of reducing sugars and asparagine. Food Chemistry, 230, 14-23. Oyaizu, M. (1988). Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi, 35, 771-775. Pedreschi, F., Kaack, K., & Granby, K. (2004). Reduction of acrylamide formation in potato slices during frying. LWT -Food Science and Technology, 37, 679-685. Pedreschi, F., Moyano, P., Kaack, K., & Granby, K. (2005). Color changes and acrylamide formation in fried potato slices. Food Research International, 38, 1-9. Petriella, C., Resnik, S. C., Lozano, R. D., & Chirife, J. (1985). Kinetics of deteriorative reactions in model food systems of high water activity: Color changes due to nonenzymatic browning. Food Science, 50, 622-626. Pogorelova, S. P., Bourenko, T., Kharitonov, A. B., & Willner, I. (2002). Selective sensing of triazine herbicides in imprinted membranes using ion-sensitive field-effect transistors and microgravimetric quartz crystal microbalance measurements. Analyst, 127, 1484-1491. Rao, M. S., Chawla, S. P., Chander, R., & Sharma, A. (2011). Antioxidant potential of Maillard reaction products formed by irradiation of chitosan-glucose solution. Carbohydrate Polymers,83, 714-719. Ravi Kumar, M. N. V. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46, 1-27. Roberts, G. A. F. (1992). Chitin Chemistry. London: The MacMillan Press Ltd. Robert, F., Vuataz, G., Pollien, P., Saucy, F., Alonso, M. I., Bauwens, I., & Blank, I. (2004). Acrylamide formation from asparagine under low-moisture Maillard reaction conditions. 1. Physical and chemical aspects in crystalline model systems. Journal of Agricultural and Food Chemistry, 52(22), 6837-6842. Robert, F., Vuataz, G., Pollien, P., Saucy, F., Alonso, M. I., Bauwens, I., & Blank, I. (2005). Acrylamide formation from asparagine under low moisture Maillard reaction conditions. 2. Crystalline vs amorphous model systems. Agricultural and Food Chemistry, 53, 4628-4632. Rufian-Henares, J. A., Delgado-Andrade, C., & Morales, F. J. (2009). Assessing the Maillard reaction development during the toasting process of common flours employed by the cereal products industry. Food Chemistry, 114, 93-99. Rydberg, P., Eriksson, S., Tareke, E., Karlsson, P., Ehrenberg, L., & Törnqvist, M. (2003). Investigations of Factors That Influence the Acrylamide Content of Heated Foodstuffs. Journal of Agricultural and Food Chemistry, 51, 7012-7018. Sadd, P., & Hamlet, C. (2005). The formation of acrylamide in UK cereal products. In M. Friedman, & D. S. Mottram (Eds), Chemistry and Safety of Acrylamide in Foods (pp. 415-429). New York: Spring. Salakawy, S. A., & Hammouda, Y. (1972). Nonenzymic browning in solid-dosage forms. Factors involved in the browing of antacid tablets containing glycine. DiePharmazie, 27, 595-599. Salmon, S., & Hudson, S. M. (1997). Crystal morphology, biosynthesis, and physical assembly of cellulose, chitin, and chitosan. Journal of Macromolecular Science, Reviews in Macromolecular Chemistry and Physics, 37, 199-276. Sakamoto, J., & Hashimoto, K. (1986). Reproductive toxicity of acrylamide and related compounds in mice—effects on fertility and sperm morphology. Archives of Toxicology, 59, 201-205. Shimada, K., Fujikawa, K., Yahara, K. & Nakamura, T. (1992). Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40, 945-948. Silva, E. M., & Simon, P. W. (2005). Genetic, physiological, and environmental factors affecting acrylamide concentration in fried potato products. Advances in Experimental Medicine and Biology, 561, 371-386. Silvan, J. M., van de Lagemaat, J., Olano, A., & del Castillo, M. D. (2006). Analysis and biological properties of amino acid derivates formed by Maillard reaction in foods. Journal of Pharmaceutical and Biomedical Analysis, 41, 1543-1551. Singh, N., & Rajini, P. S. (2004). Free radical scavenging activity of an aqueous extract of potato peel. Food Chemistry, 85, 611-616. Smith, E. A., Prues, S. L., & Oehme, F. W. (1997). Environmental degradation of polyacrylamides. Ecotoxicology and Environmental Safety, 37, 76-91. Tanaka, M., Kuei, W. C., Nagashima, Y., & Tagushi, T. (1988). Application of antioxidative Maillard reaction products from histidine and glucose to sardins products. Nippon Suisan Gakkaishi, 54, 1409-1414. Tian, F., Liu, Y., Hu, K., & Zhao, B. (2004). Study of the depolymerization behavior of chitosan by hydrogen peroxide. Carbohydrate polymers, 57(1), 31-37. Tsai, P. J., Yu, T. Y., Chen, S. H., Liu, C. C., & Sun, Y. F. (2009). Interactive role of color and antioxidant capacity in caramels. Food Research International, 42, 380-386. Tuohy, K. M., Hinton, D. J., Davies, S. J., Crabbe, M. J. C., Gibson, G. R., & Ames, J. M. (2006). Metabolism of Maillard reaction products by the human gut microbiota – implications for health. Molecular Nutrition & Food Research, 50, 847-857. Tyl, R. W., Friedman, M. A., Losco, P. E., Fisher, L. C., Johnson, K. A., Strother, D. E. & Wolf C. H. (2000). Rat two generation reproduction and dominant lethal study of acrylamide in drinking water. Reproductive Toxicology, 14, 385-401. Tyl, R. W. & Friedman, M. A. (2003). Effects of acrylamide on rodent reproductive performance. Reproductive Toxicology, 17, 1-13. Ulbricht, R. J., Northup, S. J., & Thomas, J. A. (1984). A review of 5-hydroxymethylfurfural (HMF) in parenteral solutions. Toxicological Sciences, 4(5), 843-853. Vattem, D. A., & Shetty, K. (2003). Acrylamide in food: a model for mechanism of formation and its reduction. Innovative Food Science & Emerging Technologies, 4, 331-338. Wagner, K. H, Derkit, S., Herr, M., Schuh, W., & Elmadfa, I. (2002). Antioxdative potential of melanoidins isolated from a roasted glucose-glycine model. Food Chemistry, 78, 375-382. Weisshaar, R., & Gutsche, B. (2002). Formation of acrylamide in heated potato products-model experiments pointing to asparagine as precursor. Deutsche Lebensmittel-Rundschau, 98, 397-400. Whistler, R. L., & Daniel, J. R. (1985). Carbohydrates. In O. R. Fennema (ed), Food Chemistry, 2nd ed. 69-137. New York: Marcel Dekker. Wijewickreme, A. N., Kitts, D. D., & Durance, T. D. (1997). Reaction conditions influence the elementary composition and metal chelating affinity of nondialyzable model Maillard reaction products. Journal of Agricultural and Food Chemistry, 45, 4577-4583. Wise, L. D., Gordon, L. R., Soper, K. A., Duchai, D. M., & Morrissey, R. E. (1995). Developmental neurotoxicity evaluation of acrylamide in Sprague-Dawley rats. Neurotoxicology and Teratology, 17, 189-198. Xie, W. M., Xu, P. X., & Liu, Q. (2001). Antioxidant activity of water-soluble chitosan derivatives. Bioorganic and Medicinal Chemistry Letters, 11, 1699-1701. Xing, R., Liu, S., Yu, H., Zhang, Q., Li, Z., & Li, P. (2004). Preparation of low-molecular-weight and high-sulfate-content chitosans under microwave radiation and their potential antioxidant activity in vitro. Carbohydrate Research, 339, 2515-2519. Yamaguchi, N., Koyama, Y., & Fujimaki, M. (1981). Fractionation and antioxidative activity of browning reaction products between D-xylose and glycine. Progress in Food and Nutrition Science. 17, 43-60. Yen, M. T., Yang, J. H., Mau, J. L. (2009). Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers. 75: 15-21. Ying, G. Q., Xiong, W. Y., Wang, H., Sun, Y., & Liu, H. Z. (2011). Preparation, water solubility and antioxidant activity of branched-chain chitosan derivatives. Carbohydrate Polymers, 83, 1787-1796. Zenick, H., Hope, E., & Smith, M. K. (1986). Reproductive toxicity associated with acrylamide treatment in male and female rats. Journal of Toxicology and Environmental Health, Part A Current Issues, 17, 457-472. Zhang, H., Yang, J., & Zhao Y. (2015). High intensity ultrasound assisted heating to improve solubility, antioxidant and antibacterial properties of chitosan-fructose Maillard reaction products, LWT -Food Science and Technology, 60, 253-262. Zyzak, D. V., Sanders, R. A., Stojanovic, M., Tallmadge, D. H., Eberhart, B. L., Ewald, D. K., Gruber D. C., Morsch, T. R., Strothers, M. A., Rizzi, G. P. & Villagran, M. D. (2003). Acrylamide formation mechanism in heated foods. Journal of Agricultural and Food Chemistry, 51, 4782-4787
|