王士銘 (2018)。AITC對李斯特菌抗菌機制及其在台灣鯛魚片上殺菌作用之探討。國立臺灣海洋大學食品科學系碩士學位論文。基隆。行政院經濟部標準檢驗局 (1997)。冷凍魚類檢驗法。中華民國國家標準 (CNS) 總號 1451 類號 N6029。2020 年 5 月 15 日取自:https://www.cnsonline.com.tw/。
行政院衛生福利部食品藥物管理署 (2010)。金黃色葡萄球菌。2020 年 5 月 15 日取自:https://www.fda.gov.tw/tc/siteContent.aspx?sid=1937。
行政院衛生福利部食品藥物管理署 (2013)。生食用食品類衛生標準。2020 年 5 月 15 日取自:https://consumer.fda.gov.tw/Law/Detail.aspx?nodeID=518&lawid=97&k=%u751F%u98DF%u7528%u98DF%u54C1%u985E%u885B%u751F%u6A19%u6E96%20。
行政院衛生福利部食品藥物管理署 (2013)。食品微生物之檢驗方法-大腸桿菌之檢驗。2020 年 5 月 15 日取自:https://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f636694167743054204。
行政院衛生福利部食品藥物管理署 (2013)。食品微生物之檢驗方法-大腸桿菌群之檢驗。2020 年 5 月 15 日取自:https://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f636694157843204762。
行政院衛生福利部食品藥物管理署 (2013)。食品微生物之檢驗方法-生菌數之檢驗。2020 年 5 月 15 日取自:https://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f636694157843404703。
行政院衛生福利部食品藥物管理署 (2017)。食品中毒定義及常見問與答。2020 年 5 月 15 日取自:https://www.fda.gov.tw/tc/siteContent.aspx?sid=2275。
行政院衛生福利部食品藥物管理署 (2020)。歷年食品中毒資料。2020 年 5 月 15 日取自:https://www.fda.gov.tw/tc/siteContent.aspx?sid=323。
行政院衛生福利部食品藥物管理署 (2020)。食品添加物使用範圍及限量暨規格標準。2020 年 5 月 15 日取自:https://consumer.fda.gov.tw/Law/FoodAdditivesList.aspx?nodeID=521。
行政院環境保護署 (2005)。環境衛生用殺菌劑藥效試驗測定法。2020 年 5 月 15 日取自:https://www.epa.gov.tw/niea/5E511B2DEF17B258。
李紘霈 (2019)。以微酸性和微鹼性電解水對 Salmonella enterica 汙染之高麗菜絲其消毒效果研究。國立臺灣海洋大學食品科學系碩士學位論文。基隆。施養志 (2015)。細菌性中毒。載於黃登福 (總校閱) (2015),新編食品衛生與安全 (3 版) (3-3–3-6 頁)。台中市:華格納企業。
陳怡安 (2019)。微酸性電解水結合高壓技術對李斯特菌的殺菌效果之探討。國立臺灣海洋大學食品科學系碩士學位論文。基隆。Afari, G. K., & Hung, Y. C. (2018). A meta-analysis on the effectiveness of electrolyzed water treatments in reducing foodborne pathogens on different foods. Food Control, 93, 150-164.
Asioli, D., Aschemann-Witzel, J., Caputo, V., Vecchio, R., Annunziata, A., Næs, T., & Varela, P. (2017). Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Research International, 99, 58-71.
Bjørnevik, M., & Solbakken, V. (2010). Preslaughter stress and subsequent effect on flesh quality in farmed cod. Aquaculture Research, 41, e467-e474.
Bourne, M. C., Kenny, J. F., & Barnard, J. (1978). Computer‐assisted readout of data from texture profile analysis curves. Journal of Texture Studies, 9, 481-494.
Brown, K. K., & Hampton, M. B. (2011). Biological targets of isothiocyanates. Biochimica et Biophysica Acta (BBA)-General Subjects, 1810, 888-894.
Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. In Chenoweth, D. M. (Eds), Methods in Enzymology, 52, 302-310. Elsevier. Retrieved from: https://doi.org/10.1016/S0076-6879(78)52032-6
Cai, L., Cao, A., Bai, F., & Li, J. (2015). Effect of ε-polylysine in combination with alginate coating treatment on physicochemical and microbial characteristics of Japanese sea bass (Lateolabrax japonicas) during refrigerated storage. LWT-Food Science and Technology, 62, 1053-1059.
Cao, W., Zhu, Z. W., Shi, Z. X., Wang, C. Y., & Li, B. M. (2009) Efficiency of slightly acidic electrolyzed water for inactivation of Salmonella enteritidis and its contaminated shell eggs. International Journal of Food Microbiology, 130, 88-93.
Chen, W., Jin, T. Z., Gurtler, J. B., Geveke, D. J., & Fan, X. (2012). Inactivation of Salmonella on whole cantaloupe by application of an antimicrobial coating containing chitosan and allyl isothiocyanate. International Journal of Food Microbiology, 155, 165-170.
Cobb, B. F., Alaniz, I., & Thompson, C. A. (1973). Biochemical and microbial studies on shrimp: volatile nitrogen and amino nitrogen analysis. Journal of Food Science, 38, 431-436.
Corrales, M., Fernández, A., & Han, J. H. (2014). Antimicrobial packaging systems. In Han, J. H. (Eds) (2014), Innovations in Food Packaging (pp. 150). Elsevier. Retrieved from: https://doi.org/10.1016/B978-0-12-394601-0.00007-2
Cui, X., Shang, Y., Shi, Z., Xin, H., & Cao, W. (2009). Physicochemical properties and bactericidal efficiency of neutral and acidic electrolyzed water under different storage conditions. Journal of Food Engineering, 91, 582-586.
Ding, T., Xuan, X. T., Li, J., Chen, S. G., Liu, D. H., Ye, X. Q., Shi, J., & Xue, S. J. (2016). Disinfection efficacy and mechanism of slightly acidic electrolyzed water on Staphylococcus aureus in pure culture. Food Control, 60, 505-510.
Fahey, J. W., Zalcmann, A. T., & Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56, 5-51.
Fang, T. J., Wei, Q. K., Liao, C. W., Hung, M. J., & Wang, T. H. (2003). Microbiological quality of 18℃ ready-to-eat food products sold in Taiwan. International Journal of Food Microbiology, 80, 241-250.
Fawell, J. (2000). Risk assessment case study—chloroform and related substances. Food and Chemical Toxicology, 38, S91-S95.
Gómez-López, V. M., Gil, M. I., & Allende, A. (2017). A novel electrochemical device as a disinfection system to maintain water quality during washing of ready to eat fresh produce. Food Control, 71, 242-247.
Gram, L., & Huss, H. H. (1996). Microbiological spoilage of fish and fish products. International Journal of Food Microbiology, 33, 121-137.
Hajji-Hedfi, L., Rebai, E., Larayedh, A., Regaieg, H., & Horrigue-Raouani, N. (2018). Biological control of Meloidogyne javanica on tomato with Dazitol® and soil solarization. Environmental Science and Pollution Research, 25, 17278-17282.
Hammad, A. M., Watanabe, W., Fujii, T., & Shimamoto, T. (2012). Occurrence and characteristics of methicillin-resistant and-susceptible Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci from Japanese retail ready-to-eat raw fish. International Journal of Food Microbiology, 156, 286-289.
Hao, J., Wu, T., Li, H., & Liu, H. (2017). Differences of bactericidal efficacy on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis of slightly and strongly acidic electrolyzed water. Food and Bioprocess Technology, 10, 155-164.
He, H. J., Wu, D., & Sun, D. W. (2014). Rapid and non-destructive determination of drip loss and pH distribution in farmed Atlantic salmon (Salmo salar) fillets using visible and near-infrared (Vis–NIR) hyperspectral imaging. Food Chemistry, 156, 394-401.
Hermanson, G. T. (2013). The Reactions of Bioconjugation. In Hermanson, G. T. (2013). Bioconjugate techniques, 229-258. Elsevier. Retrieved from: https://doi.org/10.1016/B978-0-12-382239-0.00003-0
Hricova, D., Stephan, R., & Zweifel, C. (2008). Electrolyzed water and its application in the food industry. Journal of Food Protection, 71, 1934-1937.
Huang, Y. R., Hung, Y. C., Hsu, S. Y., Huang, Y. W., & Hwang, D. F. (2008). Application of electrolyzed water in the food industry. Food Control, 19, 329-345.
Issa-Zacharia, A., Kamitani, Y., Tiisekwa, A., Morita, K., & Iwasaki, K. (2010). In vitro inactivation of Escherichia coli, Staphylococcus aureus and Salmonella spp. using slightly acidic electrolyzed water. Journal of Bioscience and Bioengineering, 110, 308-313.
Jo, H. Y., Tango, C. N., & Oh, D. H. (2018). Influence of different organic materials on chlorine concentration and sanitization of slightly acidic electrolyzed water. LWT - Food Science and Technology, 92, 187-194.
Kanemaru, K., & Miyamoto, T. (1990). Inhibitory effects on the growth of several bacteria by brown mustard and allyl isothiocyanate. Nippon Shokuhin Kogyo Gakkaishi, 37, 823-829.
Kaschula, C. H., & Hunter, R. (2016). Synthesis and structure- Activity relations in allylsulfide and isothiocyanate compounds from garlic and broccoli against in vitro cancer cell growth. In Rahman, A. (Eds) (2016), Studies in Natural Products Chemistry (Vol. 50, pp. 1-43). Elsevier. Retrieved from: https://doi.org/10.1016/B
978-0-444-63749-9.00001-3
Kawakishi, S., & Namiki, M. (1969). Decomposition of allyl isothiocyanate in aqueous solution. Agricultural and Biological Chemistry, 33, 452-459.
Kim, Y. S., Ahn, E. S., & Shin, D. H. (2002). Extension of shelf life by treatment with allyl isothiocyanate in combination with acetic acid on cooked rice. Journal of Food Science, 67, 274-279.
Ko, J. A., Kim, W. Y., & Park, H. J. (2012). Effects of microencapsulated Allyl isothiocyanate (AITC) on the extension of the shelf-life of Kimchi. International Journal of Food Microbiology, 153, 92-98.
Kuo, H. H., & Chuang, C. T. (2017). Salmon importation and consumption in Taiwan. Aquaculture Economics & Management, 21, 315-333.
Kyung, K. H., & Fleming, H. P. (1997). Antimicrobial activity of sulfur compounds derived from cabbage. Journal of Food Protection, 60, 67-71.
Lampila, L. E., & McMillin, K. W. (2012). Major microbial hazards associated with packaged seafood. In Kerry J. P. (Eds.) (2012), Advances in Meat, Poultry and Seafood Packaging (pp. 59-85). Woodhead Publishing. Retrieved from: https://doi.
org/10.1533/9780857095718.1.59
Li, H., Stegger, M., Dalsgaard, A., & Leisner, J. J. (2019). Bacterial content and characterization of antibiotic resistant Staphylococcus aureus in Danish sushi products and association with food inspector rankings. International Journal of Food Microbiology, 305, 108244.
Li, T., Hu, W., Li, J., Zhang, X., Zhu, J., & Li, X. (2012). Coating effects of tea polyphenol and rosemary extract combined with chitosan on the storage quality of large yellow croaker (Pseudosciaena crocea). Food Control, 25, 101-106.
Liang, W. L., Pan, Y. L., Cheng, H. L., Li, T. C., Yu, P. H. F., & Chan, S. W. (2016). The microbiological quality of take-away raw salmon finger sushi sold in Hong Kong. Food Control, 69, 45-50.
Liao, X., Xuan, X., Li, J., Suo, Y., Liu, D., Ye, X., Chen, S. & Ding, T. (2017). Bactericidal action of slightly acidic electrolyzed water against Escherichia coli and Staphylococcus aureus via multiple cell targets. Food Control, 79, 380-385.
Liu, D., & Lv, R. (2019). Safety Evaluation of Electrolyzed Water. In Ding, T., Oh, D. H., Liu, D. (Eds.), Electrolyzed Water in Food: Fundamentals and Applications (pp.261-267). Singapore: Springer Nature Singapore Pte Ltd. & China: Zhejiang University Press.
Merlo, T. C., Contreras-Castillo, C. J., Saldaña, E., Barancelli, G. V., Dargelio, M. D. B., Yoshida, C. M. P., Ribeiro Junior, E. E., Massarioli, A., & Venturini, A. C. (2019). Incorporation of pink pepper residue extract into chitosan film combined with a modified atmosphere packaging: Effects on the shelf life of salmon fillets. Food Research International, 125, 108633.
Miguéis, S., Santos, C., Saraiva, C., & Esteves, A. (2015). Evaluation of ready to eat sashimi in northern Portugal restaurants. Food Control, 47, 32-36.
Mikš-Krajnik, M., Feng, L. X. J., Bang, W. S., & Yuk, H. G. (2017). Inactivation of Listeria monocytogenes and natural microbiota on raw salmon fillets using acidic electrolyzed water, ultraviolet light or/and ultrasounds. Food Control, 74, 54-60.
Monnin, A., Lee, J., & Pascall, M. A. (2012). Efficacy of neutral electrolyzed water for sanitization of cutting boards used in the preparation of foods. Journal of Food Engineering, 110, 541-546.
Mukhopadhyay, S., Sokorai, K., Ukuku, D. O., Jin, T., Fan, X., Olanya, M., & Juneja, V. (2018). Inactivation of Salmonella in grape tomato stem scars by organic acid wash and chitosan-allyl isothiocyanate coating. International Journal of Food Microbiology, 266, 234-240.
Muscolino, D., Giarratana, F., Beninati, C., Tornambene, A., Panebianco, A., & Ziino, G. (2014). Hygienic-sanitary evaluation of sushi and sashimi sold in Messina and Catania, Italy. Italian Journal of Food Safety, 3, 134-136.
Olaimat, A. N., Al-Holy, M. A., Ghoush, M. A., Al-Nabulsi, A. A., & Holley, R. A. (2018). Control of Salmonella enterica and Listeria monocytogenes in hummus using allyl isothiocyanate. International Journal of Food Microbiology, 278, 73-80.
Oomori, T., Oka, T., Inuta, T., & Arata, Y. (2000). The efficiency of disinfection of acidic electrolyzed water in the presence of organic materials. Analytical sciences, 16, 365-369.
Pedrós-Garrido, S., Clemente, I., Calanche, J. B., Condón-Abanto, S., Beltrán, J. A., Lyng, J. G., Brunton, N., Bolton, D., & Whyte, P. (2020). Antimicrobial activity of natural compounds against Listeria spp. and their effects on sensory attributes in salmon (Salmo salar) and cod (Gadus morhua). Food Control, 107, 106768.
Pinchuk, I. V., Beswick, E. J., & Reyes, V. E. (2010). Staphylococcal enterotoxins. Toxins, 2, 2177-2197.
Podhradský, D., Drobnica, Ľ., & Kristian, P. (1979). Reactions of cysteine, its derivatives, glutathione, coenzyme A, and dihydrolipoic acid with isothiocyanates. Experientia, 35, 154-155.
Rahman, S. M. E., Ding. T., & Oh, D. H. (2010). Inactivation effect of newly developed low concentration electrolyzed water and other sanitizers against microorganisms on spinach. Food Control, 21, 1383-1387.
Rahman, S. M. E., Khan, I., & Oh, D. H. (2016). Electrolyzed Water as a Novel Sanitizer in the Food Industry: Current Trends and Future Perspectives. Comprehensive Reviews in Food Science and Food Safety, 15, 471-490.
Reilly, A., Tlustos, C., O’Connor, J., & O’Connor, L. (2009). Food safety: A public health issue of growing importance. In Gibney, M. J., Lanham-New S. A., Cassidy, A., Vorster, H. H. (Eds.), Introduction to Human Nutrition (pp. 329). Chichester, United Kingdom: John Wiley & Sons, Ltd.
Ren, Z., Li, Y., Fang, W., Yan, D., Huang, B., Zhu, J., Wang, X., Wang, X., Wang, Q., Guo, M., & Cao, A. (2018). Evaluation of allyl isothiocyanate as a soil fumigant against soil‐borne diseases in commercial tomato (Lycopersicon esculentum Mill.) production in China. Pest Management Science, 74, 2146-2155.
Saito, E., Yoshida, N., Kawano, J., Shimizu, A., & Igimi, S. (2011). Isolation of Staphylococcus aureus from raw fish in relation to culture methods. Journal of Veterinary Medical Science, 73, 287-292.
Sallam, K. I. (2007). Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control, 18, 566-575.
Sekiyama, Y., Mizukami, Y., Takada, A., & Numata, S. (1994). Vapor pressure and stability of allyl isothiocyanate. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi), 35, 365-370.
Simon, S. S., & Sanjeev, S. (2007). Prevalence of enterotoxigenic Staphylococcus aureus in fishery products and fish processing factory workers. Food Control, 18, 1565-1568.
Tomás-Callejas, A., Martínez-Hernández, G. B., Artés, F., & Artés-Hernández, F. (2011). Neutral and acidic electrolyzed water as emergent sanitizers for fresh-cut mizuna baby leaves. Postharvest Biology and Technology, 59, 298-306.
USDA (United States Department of Agriculture). (2019). Fish, Salmon, Atlantic, Farmed, Raw. Retrieved May 15th, 2020, from: https://fdc.nal.usda.gov/fdc-app.html#/food-details/175167/nutrients.
Vyncke, W. (1975). Evaluation of the direct thiobarbituric acid extraction method for determining oxidative rancidity in mackerel (Scomber scombrus L.). Fette, Seifen, Anstrichmittel, 77, 239-240.
Wang, Y. T., Lin, Y. T., Wan, T. W., Wang, D. Y., Lin, H. Y., Lin, C. Y., Chen, Y. C., & Teng, L. J. (2019). Distribution of antibiotic resistance genes among Staphylococcus species isolated from ready-to-eat foods. Journal of Food and Drug Analysis, 27, 841-848.
Xu, G., Tang, X., Tang, S., You, H., Shi, H., & Gu, R. (2014). Combined effect of electrolyzed oxidizing water and chitosan on the microbiological, physicochemical, and sensory attributes of American shad (Alosa sapidissima) during refrigerated storage. Food Control, 46, 397-402.
Yang, T. Y., Hung, W. W., Lin, L., Hung, W. C., & Tseng, S. P. (2017). mecA-related structure in methicillin-resistant coagulase-negative staphylococci from street food in Taiwan. Scientific Reports, 7, 42205.
Zeng, X., Tang, W., Ye, G., Ouyang, T., Tian, L., Ni, Y., & Li, P. (2010). Studies on disinfection mechanism of electrolyzed oxidizing water on E. coli and Staphylococcus aureus. Journal of Food Science, 75, M253-M260.