|
Agency for Toxic Substances and Disease Registry (ATSDR), 1997. Chlorpyrifos CAS # 2921-88-2. https://www.atsdr.cdc.gov/toxfaqs/tfacts84.pdf [retrieved 10 Augest 2020]. American Conference of Government Industrial Hygienists (ACGIH), 1995. “Topics in Biological Monitoring”. Cincinnati, Ohio: American Conference of Government Industrial Hygienists. Arnold SM, Morriss A, Velovitch J, Juberg D, Burns CJ, Bartels M, Price P, 2015. Derivation of human Biomonitoring Guidance Values for chlorpyrifos using a physiologically based pharmacokinetic and pharmacodynamic model of cholinesterase inhibition. Regulatory Toxicology and Pharmacology, 71(2): 235-243. Barr DB, Bravo R, Weerasekera G, Caltabiano LM, Whitehead JRD, Olsson AO, Samuel PC, Susan ES, James LP, Eric JS, Richard JJ, Larry LN, 2004. Concentrations of dialkyl phosphate metabolites of organophosphorus pesticides in the US population. Environmental Health Perspectives, 112(2): 186-200. Bouchard M, Carrier G, Brunet RC, Bonvalot Y, Gosselin NH, 2005. Determination of biological reference values for chlorpyrifos metabolites in human urine using a toxicokinetic approach. Journal of Occupational and Environmental Hygiene, 2(3): 155-168. Carrier G, Brunet RC, 1999. A toxicokinetic model to assess the risk of azinphosmethyl exposure in humans through measures of urinary elimination of alkylphosphates. Toxicological Sciences: an Official Journal of the Society of Toxicology, 47(1): 23-32. Chambers JE, Chambers HW, 1989. Oxidative desulfuration of chlorpyrifos, chlorpyrifos‐methyl, and leptophos by rat brain and liver. Journal of Biochemical Toxicology, 4(3): 201-203. Chang HY, Yang WC, Xue YJ, Tsai MY, Wang JH, Chang GR, 2019. Phthalates and organophosphorus insecticide residues in shrimp determined by liquid/gas chromatography–Tandem mass spectrometry and a health risk assessment. Marine Pollution Bulletin, 144: 140-145. Clarke DB, Barnes KA, Castle L, Rose M, Wilson LA, Baxter MJ, DuPont MS, 2003. Levels of phytoestrogens, inorganic trace-elements, natural toxicants and nitrate in vegetarian duplicate diets. Food Chemistry. 81:287-300 Codex Alimentarius Commission (CODEX or CAC), 2013. Procedural mannual. Codex Committee on Food Additives and Contaminants (CCFAC) guidelines for exposure assessment of contaminants and toxins in food or food groups. 15th ed. Dallas CE, Chen XM, Muralidhara S, Varkonyi P, Tackett RL, Bruckner JV, 1995. Physiologically based pharmacokinetic model useful in prediction of the influence of species, dose, and exposure route on perchloroethylene pharmacokinetics. Journal of Toxicology and Environmental Health, Part A Current Issues, 44(3): 301-317. Davies B, Morris T, 1993. Physiological parameters in laboratory animals and humans. Pharmaceutical Research, 10(7): 1093-1095. Egan SK, 2002. FDA's Total Diet Study: Monitoring U.S. Food Supply Safety. Food Safety Magazine. 10-15. Ellison CA, Smith JN, Lein PJ, Olson JR, 2011. Pharmacokinetics and pharmacodynamics of chlorpyrifos in adult male Long-Evans rats following repeated subcutaneous exposure to chlorpyrifos. Toxicology, 287(1-3): 137-144. El-Masri HA, Thomas RS, Benjamin SA, Yang RS, 1995. Physiologically based pharmacokinetic/pharmacodynamic modeling of chemical mixtures and possible applications in risk assessment. Toxicology, 105(2-3): 275-282. European Union (EU), 2020. Chlorpyrifos and Chlorpyrifos-methyl. https://ec.europa.eu/food/plant/pesticides/approval_active_substances/chlorpyrifos_chlorpyrifos-methyl_en [retrieved 15 July 2020]. Fenske RA, Lu C, Simcox N J, Loewenherz C, Touchstone J, Moate TF, Allen EH, Kissel JC, 2000. Strategies for assessing children's organophosphorus pesticide exposures in agricultural communities. Journal of Exposure Analysis and Environmental Epidemiology, 10: 662-671. Fiserova-Bergerova V, 1983. Modeling of inhalation: exposure to vapors: uptake, distribution, and elimination. CRC Press. Fiserova-Bergerova V, 1990. Application of toxicokinetic models to establish biological exposure indicators. The Annals of Occupational Hygiene, 34(6): 639-651. Food Standards Agency (FSA), 2019. Total diet study: metals and other elements. https://www.food.gov.uk/research/research-projects/total-diet-study-metals-and-other-elements [retrieved 15 July 2020]. Food Standards Australia New Zealand (FSANZ), 2001. A447 – Maximum Residue Limits (2001). http://www.foodstandards.gov.au/Pages/default.aspx [retrieved 15 July 2020]. Food Standards Australia New Zealand (FSANZ), 2012. M1008 – Maximum Residue Limits (2012). https://www.foodstandards.gov.au/code/proposals/documents/M1008%20MRLs%20(2012)%20AppR%20FINAL.pdf [retrieved 15 July 2020]. Food Standards Australia New Zealand (FSANZ), 2015. M1011 – Maximum Residue Limits (2015). http://www.foodstandards.gov.au/Pages/default.aspx [retrieved 15 July 2020]. Food Standards Australia New Zealand (FSANZ), 2017. M1015 – Maximum Residue Limits (2017). https://www.foodstandards.gov.au/code/proposals/Pages/M1015Maximum-Residue-Limits-(2017).aspx [retrieved 15 July 2020]. Food Standards Australia New Zealand (FSANZ), 2019. Australian Total Diet Study. https://www.foodstandards.gov.au/science/surveillance/Pages/australiantotaldiets1914.aspx [retrieved 15 July 2020]. French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 2018. Total Diet Studies (TDSs). https://www.anses.fr/en/content/total-diet-studies-tdss [retrieved 15 July 2020]. Gulson BL, Mizon KJ, Korsch MJ, Mahaffey KR, Taylor AJ, 2001. Dietary intakes of selected elements from longitudinal 6-day duplicate diets for pregnant and nonpregnant subjects and elemental concentrations of breast milk and infant formula. Environmental Research, 87(3): 160-174. Gupta RC (Ed.), 2011. Toxicology of organophosphate and carbamate compounds. Academic Press. Health Canada, 2019. Guidelines for canadian drinking water quality summary table. Hinderliter PM, Price PS, Bartels MJ, Timchalk C, Poet TS, 2011. Development of a source-to-outcome model for dietary exposures to insecticide residues: an example using chlorpyrifos. Regulatory Toxicology and Pharmacology, 61(1): 82-92. IPCS (International Programme on Chemical Safety), 2000. Human exposure assessment. Geneva, World Health Organization, International Programme on Chemical Safety (Environmental Health Criteria, No. 214). http://www.inchem.org/documents/ehc/ehc/ehc214.htm [retrieved 23 August 2019]. Jakoi E, Carbrey J, 2015. Introductory Human Physiology. Lulu Press, Inc. Joint FAO/WHO Meeting on Pesticide Residues (JMPR), 2004. Pesticide Residues in Food-2004. http://apps.who.int/pesticide-residues-jmpr-database/Document/220 [retrieved 20 August 2019]. Jonsson F, Bois F, Johanson G, 2001. Physiologically based pharmacokinetic modeling of inhalation exposure of humans to dichloromethane during moderate to heavy exercise. Toxicological Sciences, 59(2): 209-218. Kapka-Skrzypczak L, Cyranka M, Skrzypczak M, Kruszewski M, 2011. Biomonitoring and biomarkers of organophosphate pesticides exposure-state of the art. Annals of Agricultural and Environmental Medicine, 18(2). Karalliedde L, Henry JA, 1993. Effects of organophosphates on skeletal muscle. Human and Experimental Toxicology, 12(4): 289-296. Katsikantami I, Colosio C, Alegakis A, Tzatzarakis MN, Vakonaki E, Rizos AK, Tsatsakis AM, 2019. Estimation of daily intake and risk assessment of organophosphorus pesticides based on biomonitoring data–the internal exposure approach. Food and Chemical Toxicology, 123: 57-71. Leblanc JC, Tard A, Volatier JL, Verger P, 2005. Estimated dietary exposure to principal food mycotoxins from the first French Total Diet Study. Food Additives and Contaminants, 22(7): 652-672. Leung HW, 1991. Development and utilization of physiologically based pharmacokinetic models for toxicological applications. Journal of Toxicology and Environmental Health, 32(3): 247-67. Leung HW, 1992. Use of physiologically based pharmacokinetic models to establish biological exposure indexes. American Industrial Hygiene Association Journal, 53(6): 369-374. Liu S, Chung C, Chuang J, Wang C, Aras N, 1991. Daily dietary intake of minor and trace elements by upper social groups in Taiwan. Journal of Radioanalytical and Nuclear Chemistry, 150(2): 397-415. Lu C, Holbrook CM, Andres LM, 2010. The implications of using a physiologically based pharmacokinetic (PBPK) model for pesticide risk assessment. Environmental Health Perspectives, 118(1): 125-130. Ma T, Chambers JE, 1994. Kinetic parameters of desulfuration and dearylation of parathion and chlorpyrifos by rat liver microsomes. Food and Chemical Toxicology, 32(8): 763-767. Material Safety Data Sheets (MSDS), 2018a. Chlorpyrifos Safety Data Sheet acc. to OSHA HCS Material Safety Data Sheets (MSDS), 2018b. Diethyl Phosphate Safety Data Sheet acc. to OSHA HCS Material Safety Data Sheets (MSDS), 2019a. Chlorpyrifos Safety Data Sheet acc. to OSHA HCS Material Safety Data Sheets (MSDS), 2019b. 3,5,6-Trichloro-2-pyridinol Safety Data Sheet acc. to OSHA HCS Melnyk LJ, Xue J, Brown GG, McCombs M, Nishioka M, Michael LC, 2014. Dietary intakes of pesticides based on community duplicate diet samples. Science of the Total Environment, 468: 785-790. Murakami T, Narita N, Nakagaki H, Shibata T, Robinson C, 2002. Fluoride intake in Japanese children aged 3–5 years by the duplicate-diet technique. Caries Research, 36(6): 386-390. Nirbhay N, Cynthia RE, 1998. Comprehensive Clinical Psychology. Volume 5: 267-293. Petrucci RH, Cunningham CM, Moore TE, 1989. General chemistry (pp. 495-497). New York: Macmillan. Poet TS, Timchalk C, Hotchkiss JA, Bartels MJ, 2014. Chlorpyrifos PBPK/PD model for multiple routes of exposure. Xenobiotica, 44(10): 868-881. Price PS, Conolly RB, Chaisson CF, Gross EA, Young JS, Mathis ET, Tedder DR, 2003. Modeling interindividual variation in physiological factors used in PBPK models of humans. Critical Reviews in Toxicology, 33(5): 469-503. Price PS, Schnelle KD, Cleveland CB, Bartels MJ, Hinderliter PM, Timchalk C, Poet TS, 2011. Application of a source-to-outcome model for the assessment of health impacts from dietary exposures to insecticide residues. Regulatory Toxicology and Pharmacology, 61(1): 23-31. PubChem, 2020. Compound Summary Diethylthiophosphate. Reddy M, Yang RS, Andersen ME, Clewell III HJ, 2005. Physiologically based pharmacokinetic modeling: science and applications. John Wiley and Sons. Robinson DE, Balter NJ, Schwartz SL, 1992. A physiologically based pharmacokinetic model for nicotine and cotinine in man. Journal of Pharmacokinetics and Biopharmaceutics, 20(6): 591-609. Roca M, Leon N, Pastor A, Yusa V, 2014. Comprehensive analytical strategy for biomonitoring of pesticides in urine by liquid chromatography–orbitrap high resolution mass spectrometry. Journal of Chromatography A, 1374: 66-76. Rosenbaum SE, 2016. Basic pharmacokinetics and pharmacodynamics: An integrated textbook and computer simulations. John Wiley and Sons. Salahudeen MS, Nishtala PS, 2017. An overview of pharmacodynamic modelling, ligand-binding approach and its application in clinical practice. Saudi Pharmaceutical Journal, 25(2): 165-175. Smith JN, Hinderliter PM, Timchalk C, Bartels MJ, Poet TS, 2014. A human life-stage physiologically based pharmacokinetic and pharmacodynamic model for chlorpyrifos: development and validation. Regulatory Toxicology and Pharmacology, 69(3): 580-597. Sun F, Chen HS, 2008. Monitoring of pesticide chlorpyrifos residue in farmed fish: investigation of possible sources. Chemosphere, 71(10): 1866-1869. Thomas RS, Bigelow PL, Keefe TJ, Yang RS, 1996. Variability in biological exposure indices using physiologically based pharmacokinetic modeling and Monte Carlo simulation. American Industrial Hygiene Association Journal, 57(1): 23-32. Timchalk C, Kousba AA, Poet TS, 2007. An age-dependent physiologically based pharmacokinetic/pharmacodynamic model for the organophosphorus insecticide chlorpyrifos in the preweanling rat. Toxicological Sciences, 98(2): 348-365. Timchalk C, Nolan RJ, Mendrala AL, Dittenber DA, Brzak KA, Mattsson JL, 2002. A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans. Toxicological Sciences, 66(1): 34-53. Train R, 1976. Interim procedures and guidelines for health risk and economic impact assessments of suspected carcinogens. EPA Office of the Administrator. U.S. National Library of Medicine's (NLM) Toxicology Data Network (TOXNET), 2014. HSDB (The Hazardous Substances Data Bank): CHLORPYRIFOS. https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~BhZjrW:3 [retrieved 20 August 2019]. United States Department of Agriculture (USDA), 2000. Agricultural Research Service Continuing Survey of Food Intakes by Individuals 1994-96, 1998. NTIS No. PB2000-50027. United States Environmental Protection Agency (USEPA), 1987. Pesticide Assessment Guidelines Subdivision U. Applicator Exposure Monitoring. United States Environmental Protection Agency (USEPA), 1998. Guidelines for Ecological Risk Assessment. United States Environmental Protection Agency, Risk Assessment Forum, Washington DC. United States Environmental Protection Agency (USEPA), 2011. Chlorpyrifos Preliminary Human Health Assessment for Registration Review. United States Environmental Protection Agency, Washington DC. United States Environmental Protection Agency (USEPA), 2014. Revised Human Health Risk Assessment for Registration Review. United States Environmental Protection Agency, Washington, DC. Whitelaw WA, 1987. Shape and size of the human diaphragm in vivo. Journal of Applied Physiology, 62(1): 180-186. Wilhelm M, Wittsiepe J, Schrey P, Budde U, Idel H, 2002. Dietary intake of cadmium by children and adults from Germany using duplicate portion sampling. Science of the Total Environment, 285(1-3): 11-19. World Health Organization (WHO), 1995. GEMS/Food EURO Second Workshop on Reliable Evaluation of Low Level Contamination of Food. Report on a workshop in the frame of GEMS/Food Euro. World Health Organization (WHO), 2006. Guidelin es for Drinking Water Quality. World Health Organization (WHO), 2009. Principles and methods for the risk assessment of chemicals in food, International Programme on Chemical Safety, Environmental Health Criteria 240. World Health Organization (WHO), 2010. The WHO recommended classification of pesticides by hazard and guidelines to classification 2009. Yang RS, El-Masri HA, Thomas RS, Constan AA, 1995. The use of physiologically-based pharmacokinetic/pharmacodynamic dosimetry models for chemical mixtures. Toxicology letters, 82: 497-504. Yusa V, Millet M, Coscolla C, Roca M, 2015. Analytical methods for human biomonitoring of pesticides. A review. Analytica Chimica Acta, 891: 15-31. 國家食品安全風險評估中心(CFSA),2013。中國總膳食研究(CTDS)。https://www.cfsa.net.cn/Article/News.aspx?id=443677A84AB03002F3B6167BD940844B39237010EFA0D8F9 [retrieved 15 July 2020]. 國家衛生研究院,2013,陶斯松,第1.0版。 中華人民共和國農業部國家食品藥品監督管理總局,2016。食品安全國家標準食品中農藥最大殘留限量。http://www.icama.org.cn/u/cms/www/201701/19165137icmx.pdf [retrieved 15 July 2020]. 方澤沛,2001。有機磷類農藥製造工廠員工之有機磷暴露評估與生物偵測。 江舟峰,謝顯堂,宋鴻樟,黃惠煐,王永福,凌明沛,2012。2012年農藥殘留總膳食研究及風險評估。行政院衛生福利部食品藥物管理署101年度成果報告。臺北,臺灣。 行政院農委會農業藥物毒物試驗所,2019。107年度水果農產品農藥殘留監測研究成果報告。https://www.tactri.gov.tw/Item/Detail/%E8%BE%B2%E8%97%A5%E6%AE%98%E7%95%99%E7%9B%A3%E6%B8%AC%E7%A0%94%E7%A9%B6%E6%88%90%E6%9E%9C%E5%A0%B1%E5%91%8A [retrieved 11 May 2020]. 行政院農業委員會,1997。陶斯松(Chlorpyrifos)成品農藥之規格,農糧字第86116775A號公告。 行政院農業委員會,2007。農產品生產及驗證管理法。https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=M0060072 [retrieved 23 August 2019]. 行政院農業委員會,2018。107年度臺灣地區果品生產概況。https://agrstat.coa.gov.tw/sdweb/public/book/Book_File.ashx?chapter_id=343_10_2 [retrieved 11 May 2020]. 行政院農業委員會,2018。107年農業統計年報。https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx [retrieved 11 May 2020]. 行政院農業委員會動物植物防疫檢疫局(農委會防檢局),2008。農藥類別及其毒性。https://pesticide.baphiq.gov.tw/web/briefDetailView.aspx?sn=31 [retrieved 13 October 2019]. 行政院農業委員會動物植物防疫檢疫局(農委會防檢局),2017a。農藥毒性。https://pesticide.baphiq.gov.tw/web/briefDetailView.aspx?sn=30 [retrieved 23 August 2019]. 行政院農業委員會動物植物防疫檢疫局(農委會防檢局),2017b。農藥MRL依各國需求訂定。https://pesticide.baphiq.gov.tw/web/briefDetailView.aspx?sn=61 [retrieved 23 August 2019]. 行政院農業委員會動物植物防疫檢疫局(農委會防檢局),2018a。登記農藥類別及其毒性。https://pesticide.baphiq.gov.tw/web/briefDetailView.aspx?sn=38 [retrieved 23 August 2019]. 行政院農業委員會動物植物防疫檢疫局(農委會防檢局),2018b。什麼是農藥?。https://pesticide.baphiq.gov.tw/web/briefDetailView.aspx?sn=15 [retrieved 23 August 2019]. 李敏郎,2011,農藥的種類介紹,花卉初階班栽培管理訓練班講義,第1-14頁。行政院農業委員會農業藥物毒物試驗所。 林容瑋,2007。高屏地區市售水產品中農藥及重金屬殘留之研究。 臺灣食品藥物管理署(Taiwan Food and Drug Administration, TFDA),2019a。108年1-2月份市售不合格農產品之檢出情形及抽樣地點。臺北,臺灣。 臺灣食品藥物管理署(Taiwan Food and Drug Administration, TFDA),2019b。108年1-2月份市售合格農產品抽樣地點。行政院衛生福利部食品藥物管理署。臺北,臺灣。 臺灣食品藥物管理署(Taiwan Food and Drug Administration, TFDA),2019c。108年5-6月份市售不合格農產品之檢出情形及抽樣地點。臺北,臺灣。 臺灣食品藥物管理署(Taiwan Food and Drug Administration, TFDA),2019d。108年5-6月份市售合格農產品抽樣地點。行政院衛生福利部食品藥物管理署。臺北,臺灣。 凌明沛,2018。水產品危害金屬追蹤評估與動物用藥濃度背景調查。國家衛生研究院研究計畫。苗栗,臺灣。 翁愫慎,1985,農藥殘留於食用作物中之消失。中央研究院動物研究所專刊農藥毒性研討會,第165-178頁。 國民健康署,2008。臺灣一般民眾暴露參數彙編。國立臺灣大學公共衛生學院健康風險及政策評估中心。行政院衛生福利部國民健康署研究計畫。臺北,臺灣。 國家環境毒物研究中心,2013。2013年台灣市售農產品殘留農藥:常見超標農藥毒理學資訊。 國家攝食資料庫,2020。攝食量檢索。http://tnfcds.cmu.edu.tw/index.php?action=food-intake-data [retrieved 11 June 2020]. 許惠悰,2006。風險評估與風險管理,第二版。新文京開發出版股份有限公司。新北市,臺灣。 郭玉梅,2006。基因作物的衝擊,科學發展,401:54-57。 郭柔佑,2019。臺灣素食族群攝入食品防腐劑與農藥之暴露調查與風險評估。 陳美蓮,李聯雄,林志鴻,2014。栽植作物有機磷類農藥噴灑作業暴露評估研究。 陳漢洋,黃玉瓊,2002,農藥安全使用管理措施,農政與農情,農委會出版品,第120期,第115-126頁。 黃德昌,楊秀珠,2009。農藥種類與特性簡介。行政院農業委員會農業藥物毒物試驗所。 新北市政府衛生局,2013a。新北市政府衛生局102年8月生鮮蔬果抽驗不符規定名冊。新北市政府衛生局。新北,臺灣。 新北市政府衛生局,2013b。新北市政府衛生局102年8月生鮮蔬果抽驗符合規定名冊。新北市政府衛生局。新北,臺灣。 新北市政府衛生局,2017。新北市抽驗清明節食品結果3件農藥殘留超標。新北市三重區衛生所。新北,臺灣。 新北市衛生局,2018。新北市抽驗清明節應景食品 2件農藥殘留超標 其餘食品合格。新北市三重區衛生所。新北,臺灣。 楊振昌,2000,有機磷殺蟲劑中毒,毒藥物季刊。http://www.pcc-vghtpe.tw/tc/p7-magazine.asp?cid=1&tid=&page=2 [retrieved 22 August 2019]. 葉枚耕譯,1986。農藥生物化學。國立編譯館。 臺北市政府衛生局,2011a。臺北市政府衛生局100年第3、4季生鮮蔬果抽驗不符規定名冊附件。臺北市政府衛生局。臺北,臺灣。 臺北市政府衛生局,2011b。臺北市政府衛生局100年第3、4季生鮮蔬果抽驗符合規定名冊附件。臺北市政府衛生局。臺北,臺灣。 臺北市政府衛生局,2011c。臺北市政府衛生局100年第二季生鮮蔬果抽驗不符規定名冊附錄。臺北市政府衛生局。臺北,臺灣。 臺北市政府衛生局,2011d。臺北市政府衛生局100年第二季生鮮蔬果抽驗符合規定名冊附錄。臺北市政府衛生局。臺北,臺灣。 臺北市政府衛生局,2012a。臺北市政府衛生局101年5月生鮮蔬果抽驗不符規定名冊。臺北市政府衛生局。臺北,臺灣。 臺北市政府衛生局,2012b。臺北市政府衛生局101年5月生鮮蔬果抽驗符合規定名冊。臺北市政府衛生局。臺北,臺灣。 臺北市政府衛生局,2012c。臺北市政府衛生局101年8月生鮮蔬果抽驗不符規定名冊。臺北市政府衛生局。臺北,臺灣。 臺北市政府衛生局,2012d。臺北市政府衛生局101年8月生鮮蔬果抽驗符合規定名冊。臺北市政府衛生局。臺北,臺灣。 臺北市政府衛生局,2019a。臺北市政府衛生局108年8月生鮮蔬果抽驗不符規定名冊。臺北市政府衛生局。臺北,臺灣。 臺北市政府衛生局,2019b。臺北市政府衛生局108年8月生鮮蔬果抽驗符合規定名冊。臺北市政府衛生局。臺北,臺灣。 臺北市政府衛生局,2019c。臺北市政府衛生局108年10月生鮮蔬果抽驗不符規定名冊。臺北市政府衛生局。臺北,臺灣。 臺北市政府衛生局,2019d。臺北市政府衛生局108年10月生鮮蔬果抽驗符合規定名冊。臺北市政府衛生局。臺北,臺灣。 臺灣食品藥物管理署(Taiwan Food and Drug Administration, TFDA),2020b。動物產品中農藥殘留容許量標準。 臺灣食品藥物管理署(Taiwan Food and Drug Administration, TFDA),2020a。農藥殘留容許量標準。 趙昌平,廖建男,2001。農藥濫用影響國人健康及生態環境專案調查。監察院。 簡秀芳,黃鈺婷,劉天成,張瑞璋,2014。農產品安全無縫管理體系之辦理現況,農政與農情,農委會出版品,第265期,第79-83頁。
|