陳柏翔,2018,以幾丁質和幾丁聚醣製備碳點並探討其特性和應用於檢測微生物與金屬離子,國立臺灣海洋大學食品科學系碩士學位論文,基隆,臺灣。Akhter, S., Allan, K., Buchanan, D., Cook, J. A., Campion, A., & White, J. M. (1988). XPS and IR study of X-ray induced degradation of PVA polymer film. Applied Surface Science, 35(2), 241-258.
Alafeef, M., Moitra, P., & Pan, D. (2020). Nano-enabled sensing approaches for pathogenic bacterial detection. Biosensors and Bioelectronics, 165, 112276.
Anand, S. R., Bhati, A., Saini, D., Gunture, Chauhan, N., Khare, P., & Sonkar, S. K. (2019). Antibacterial nitrogen-doped carbon dots as a reversible “fluorescent nanoswitch” and fluorescent ink. ACS Omega, 4(1), 1581-1591.
Ansari, L., Hallaj, S., Hallaj, T., & Amjadi, M. (2021). Doped-carbon dots: recent advances in their biosensing, bioimaging and therapy applications. Colloids and Surfaces B: Biointerfaces, 203, 111743.
Bajpai, S. K., D'Souza, A., & Suhail, B. (2019). Blue light-emitting carbon dots (CDs) from a milk protein and their interaction with spinacia oleracea leaf cells. International Nano Letters, 9(3), 203-212.
Bao, L., Liu, C., Zhang, Z.-L., & Pang, D.-W. (2015). Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning. Advanced Materials, 27(10), 1663-1667.
Bera, S., Zhanel, G. G., & Schweizer, F. (2010). Antibacterial activities of aminoglycoside antibiotics-derived cationic amphiphiles. polyol-modified neomycin B-, kanamycin A-, amikacin-, and neamine-based amphiphiles with potent broad spectrum antibacterial activity. Journal of Medicinal Chemistry, 53(9), 3626-3631.
Bhaisare, M. L., Gedda, G., Khan, M. S., & Wu, H.-F. (2016). Fluorimetric detection of pathogenic bacteria using magnetic carbon dots. Analytica Chimica Acta, 920, 63-71.
Bing, W., Sun, H., Yan, Z., Ren, J., & Qu, X. (2016). Programmed bacteria death induced by carbon dots with different surface charge. Small, 12(34), 4713-4718.
Black, K. C. L., Sileika, T. S., Yi, J., Zhang, R., Rivera, J. G., & Messersmith, P. B. (2014). Bacterial killing by light-triggered release of silver from biomimetic metal nanorods. Small, 10(1), 169-178.
Boobalan, T., Sethupathi, M., Sengottuvelan, N., Kumar, P., Balaji, P., Gulyás, B., Padmanabhan, P., Selvan, S. T., & Arun, A. (2020). Mushroom-derived carbon dots for toxic metal ion detection and as antibacterial and anticancer agents. ACS Applied Nano Materials, 3(6), 5910-5919.
Cao, L., Wang, X., Meziani, M. J., Lu, F., Wang, H., Luo, P. G., Lin, Y., Harruff, B. A., Monica Veca, L., Murray, D., Xie, S.-Y., & Sun, Y.-P. (2007). Carbon dots for multiphoton bioimaging. Journal of the American Chemical Society, 129(37), 11318-11319.
Chandra, S., Chowdhuri, A. R., Mahto, T. K., Samui, A., & Sahu, S. k. (2016). One-step synthesis of amikacin modified fluorescent carbon dots for the detection of gram-negative bacteria like Escherichia coli. RSC Advances, 6(76), 72471-72478.
Chandra, S., Mahto, T. K., Chowdhuri, A. R., Das, B., & kumar Sahu, S. (2017). One step synthesis of functionalized carbon dots for the ultrasensitive detection of Escherichia coli and iron (III). Sensors and Actuators B: Chemical, 245, 835-844.
Chatzimitakos, T. G., Kasouni, A. I., Troganis, A. N., & Stalikas, C. D. (2020). Exploring the antibacterial potential and unraveling the mechanism of action of non-doped and heteroatom-doped carbon nanodots. Journal of Nanoparticle Research, 22(2), 1-13.
Cheah, W. Y., Show, P.-L., Ng, I.-S., Lin, G.-Y., Chiu, C.-Y., & Chang, Y.-K. (2019). Antibacterial activity of quaternized chitosan modified nanofiber membrane. International Journal of Biological Macromolecules, 126, 569-577.
Chen, L., Zheng, J., Du, Q., Yang, Y., Liu, X., & Xu, B. (2020). Orange-emissive carbon dot phosphors for warm white light-emitting diodes with high color rendering index. Optical Materials, 109, 110346.
Cho, J., Grant, J., Piquette-Miller, M., & Allen, C. (2006). Synthesis and physicochemical and dynamic mechanical properties of a water-soluble chitosan derivative as a biomaterial. Biomacromolecules, 7(10), 2845-2855.
Chu, X., Wu, F., Sun, B., Zhang, M., Song, S., Zhang, P., Wang, Y., Zhang, Q., Zhou, N., & Shen, J. (2020). Genipin cross-linked carbon dots for antimicrobial, bioimaging and bacterial discrimination. Colloids and Surfaces B: Biointerfaces, 190, 110930.
Cui, F., Sun, J., Habimana, J. D., Yang, X., Ji, J., Zhang, Y., Lei, H., Li, Z., Zheng, J., Fan, M., & Sun, X. (2019). Ultrasensitive fluorometric angling determination of Staphylococcus aureus in vitro and fluorescence imaging in vivo using carbon dots with full-color emission. Analytical Chemistry, 91(22), 14681-14690.
Das, P., Bose, M., Ganguly, S., Mondal, S., Das, A. K., Banerjee, S., & Das, N. C. (2017). Green approach to photoluminescent carbon dots for imaging of gram-negative bacteria Escherichia coli. Nanotechnology, 28(19), 195501.
de Abreu, F. R., & Campana-Filho, S. P. (2009). Characteristics and properties of carboxymethylchitosan. Carbohydrate Polymers, 75(2), 214-221.
de Oliveira, B. P., & da Silva Abreu, F. O. M. (2021). Carbon quantum dots synthesis from waste and by-products: perspectives and challenges. Materials Letters, 282, 128764.
De, B., & Karak, N. (2013). A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Advances, 3(22), 8286-8290.
Depan, D., & Misra, R. D. K. (2014). Structural and physicochemical aspects of silica encapsulated ZnO quantum dots with high quantum yield and their natural uptake in HeLa cells. Journal of Biomedical Materials Research Part A, 102(9), 2934-2941.
Ding, H., Wei, J.-S., Zhang, P., Zhou, Z.-Y., Gao, Q.-Y., & Xiong, H.-M. (2018). Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small, 14(22), 1800612.
Ding, H., Yu, S.-B., Wei, J.-S., & Xiong, H.-M. (2016). Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano, 10(1), 484-491.
Dong, Y., Pang, H., Yang, H. B., Guo, C., Shao, J., Chi, Y., Li, C. M., & Yu, T. (2013). Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angewandte Chemie International Edition, 52(30).
Dong, Y., Zhou, N., Lin, X., Lin, J., Chi, Y., & Chen, G. (2010). Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chemistry of Materials, 22(21), 5895-5899.
Du, Y., & Guo, S. (2016). Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale, 8(5), 2532-2543.
Essner, J. B., Kist, J. A., Polo-Parada, L., & Baker, G. A. (2018). Artifacts and errors associated with the ubiquitous presence of fluorescent impurities in carbon nanodots. Chemistry of Materials, 30(6), 1878-1887.
Fang, H.-Y., Huang, W.-M., & Chen, D.-H. (2019). One-step synthesis of positively charged bifunctional carbon dot/silver composite nanoparticles for killing and fluorescence imaging of gram-negative bacteria. Nanotechnology, 30(36), 365603.
Fei Liu, X., Lin Guan, Y., Zhi Yang, D., Li, Z., & De Yao, K. (2001). Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science, 79(7), 1324-1335.
Gao, Z., Yang, D., Wan, Y., & Yang, Y. (2020). One-step synthesis of carbon dots for selective bacterial inactivation and bacterial differentiation. Analytical and Bioanalytical Chemistry, 412(4), 871-880.
Ge, J., Lan, M., Zhou, B., Liu, W., Guo, L., Wang, H., Jia, Q., Niu, G., Huang, X., Zhou, H., Meng, X., Wang, P., Lee, C.-S., Zhang, W., & Han, X. (2014). A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nature Communications, 5(1), 4596.
Guo, C. X., Zhao, D., Zhao, Q., Wang, P., & Lu, X. (2014). Na+-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination. Chemical Communications, 50(55), 7318-7321.
Hao, J., Qin, T., Zhang, Y., Li, Y., & Zhang, Y. (2019). Synthesis, surface properties and antimicrobial performance of novel gemini pyridinium surfactants. Colloids and Surfaces B: Biointerfaces, 181, 814-821.
Hao, Z., Lin, X., Li, J., Yin, Y., Gao, X., Wang, S., & Liu, Y. (2021). Multifunctional nanoplatform for dual-mode sensitive detection of pathogenic bacteria and the real-time bacteria inactivation. Biosensors and Bioelectronics, 173, 112789.
Hassan, M., Gomes, V. G., Dehghani, A., & Ardekani, S. M. (2018). Engineering carbon quantum dots for photomediated theranostics. Nano Research, 11(1), 1-41.
He, G., Shu, M., Yang, Z., Ma, Y., Huang, D., Xu, S., Wang, Y., Hu, N., Zhang, Y., & Xu, L. (2017). Microwave formation and photoluminescence mechanisms of multi-states nitrogen doped carbon dots. Applied Surface Science, 422, 257-265.
He, Y., He, J., Yu, Z., Zhang, H., Liu, Y., Hu, G., Zheng, M., Dong, H., Zhuang, J., & Lei, B. (2018). Double carbon dot assembled mesoporous aluminas: solid-state dual-emission photoluminescence and multifunctional applications. Journal of Materials Chemistry C, 6(10), 2495-2501.
Himaja, A. L., Karthik, P. S., Sreedhar, B., & Singh, S. P. (2014). Synthesis of carbon dots from kitchen waste: conversion of waste to value added product. Journal of Fluorescence, 24(6), 1767-1773.
Hou, J., Wang, W., Zhou, T., Wang, B., Li, H., & Ding, L. (2016). Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence. Nanoscale, 8(21), 11185-11193.
Hu, S., Trinchi, A., Atkin, P., & Cole, I. (2015). Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angewandte Chemie International Edition, 54(10), 2970-2974.
Hu, S.-L., Niu, K.-Y., Sun, J., Yang, J., Zhao, N.-Q., & Du, X.-W. (2009). One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. Journal of Materials Chemistry, 19(4), 484-488.
Hu, X., Li, Y., Xu, Y., Gan, Z., Zou, X., Shi, J., Huang, X., Li, Z., & Li, Y. (2021). Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk. Food Chemistry, 339, 127775.
Hu, Y., Zhang, L., Li, X., Liu, R., Lin, L., & Zhao, S. (2017). Green preparation of S and N co-doped carbon dots from water chestnut and onion as well as their use as an off-on fluorescent probe for the quantification and imaging of coenzyme A. ACS Sustainable Chemistry and Engineering, 5(6), 4992-5000.
Hua, X.-W., Bao, Y.-W., Wang, H.-Y., Chen, Z., & Wu, F.-G. (2017). Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation. Nanoscale, 9(6), 2150-2161.
Huang, X., Fang, B., Xu, Z., Cao, Z., Zeng, R., Tu, M., & Zhao, J. (2018). Branched dicationically-charged phosphodicholine (Pdc) modified chitosan with specific associated water structure and unique interactions with biocomponents. Reactive and Functional Polymers, 123, 44-53.
Ignatova, M., Manolova, N., & Rashkov, I. (2007). Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidone) prepared by electrospinning. European Polymer Journal, 43(4), 1112-1122.
Jian, H.-J., Wu, R.-S., Lin, T.-Y., Li, Y.-J., Lin, H.-J., Harroun, S. G., Lai, J.-Y., & Huang, C.-C. (2017). Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano, 11(7), 6703-6716.
Jiang, Y.-W., Gao, G., Zhang, X., Jia, H.-R., & Wu, F.-G. (2017). Antimicrobial carbon nanospheres. Nanoscale, 9(41), 15786-15795.
Jijie, R., Barras, A., Bouckaert, J., Dumitrascu, N., Szunerits, S., & Boukherroub, R. (2018). Enhanced antibacterial activity of carbon dots functionalized with ampicillin combined with visible light triggered photodynamic effects. Colloids and Surfaces B: Biointerfaces, 170, 347-354.
Jin, J., Song, W., Zhang, N., Li, L., Liu, H., Yang, B., & Zhao, B. (2020). Highly efficient core–shell Ag@carbon dot modified TiO2 nanofibers for photocatalytic degradation of organic pollutants and their SERS monitoring. RSC Advances, 10(45), 26639-26645.
Ju, B., Nie, H., Zhang, X.-g., Chen, Q., Guo, X., Xing, Z., Li, M., & Zhang, S. X.-A. (2018). Inorganic salt incorporated solvothermal ynthesis of multicolor carbon dots, emission mechanism, and antibacterial study. ACS Applied Nano Materials, 1(11), 6131-6138.
Kakihana, Y., Cheng, L., Fang, L.-F., Wang, S.-Y., Jeon, S., Saeki, D., Rajabzadeh, S., & Matsuyama, H. (2017). Preparation of positively charged PVDF membranes with improved antibacterial activity by blending modification: effect of change in membrane surface material properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 533, 133-139.
Karthik, K., Dhanuskodi, S., Gobinath, C., Prabukumar, S., & Sivaramakrishnan, S. (2019). Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. Journal of Photochemistry and Photobiology B: Biology, 190, 8-20.
Kim, K. W., Choi, T.-Y., Kwon, Y. M., & Kim, J. Y. H. (2020). Simple synthesis of photoluminescent carbon dots from a marine polysaccharide found in shark cartilage. Electronic Journal of Biotechnology, 47, 36-42.
Kim, S., Hwang, S. W., Kim, M. K., Shin, D. Y., Shin, D. H., Kim, C. O., Yang, S. B., Park, J. H., Hwang, E., Choi, S.-H., Ko, G., Sim, S.,Sone, C.,Choi, H. J., Bae, S., & Hong, B. H. (2012). Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano, 6(9), 8203-8208.
Kong, B., Zhu, A., Ding, C., Zhao, X., Li, B., & Tian, Y. (2012). Carbon dot-based inorganic-organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Advanced Materials, 24(43), 5844-5848.
Koppel, K., Tang, H., Javed, I., Parsa, M., Mortimer, M., Davis, T. P., Lin, S., Chaffee, A. L., Ding, F., & Ke, P. C. (2020). Elevated amyloidoses of human IAPP and amyloid beta by lipopolysaccharide and their mitigation by carbon quantum dots. Nanoscale, 12(23), 12317-12328.
Kurian, M., & Paul, A. (2021). Recent trends in the use of green sources for carbon dot synthesis–A short review. Carbon Trends, 3, 100032.
Kusunoki, I., & Igari, Y. (1992). XPS study of a SiC film produced on Si (100) by reaction with a C2H2 beam. Applied Surface Science, 59(2), 95-104.
Lai, C.-W., Hsiao, Y.-H., Peng, Y.-K., & Chou, P.-T. (2012). Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. Journal of Materials Chemistry, 22(29), 14403-14409.
Lai, I. P.-J., Harroun, S. G., Chen, S.-Y., Unnikrishnan, B., Li, Y.-J., & Huang, C.-C. (2016). Solid-state synthesis of self-functional carbon quantum dots for detection of bacteria and tumor cells. Sensors and Actuators B: Chemical, 228, 465-470.
LeCroy, G. E., Sonkar, S. K., Yang, F., Veca, L. M., Wang, P., Tackett, K. N., Yu, J.-J., Vasile, E., Qian, H., Liu, Y., Luo,P. (G)., & Sun, Y.-P. (2014). Toward structurally defined carbon dots as ultracompact fluorescent probes. ACS Nano, 8(5), 4522-4529.
Li, C., Zhang, J., Han, J., & Yao, B. (2021). A numerical solution to the effects of surface roughness on water–coal contact angle. Scientific Reports, 11(1), 459.
Li, G., Kong, W., Zhao, M., Lu, S., Gong, P., Chen, G., Xia, L., Wang, H., You, J., & Wu, Y. (2016). A fluorescence resonance energy transfer (FRET) based “turn-on” nanofluorescence sensor using a nitrogen-doped carbon dot-hexagonal cobalt oxyhydroxide nanosheet architecture and application to α-glucosidase inhibitor screening. Biosensors and Bioelectronics, 79, 728-735.
Li, H., Huang, J., Song, Y., Zhang, M., Wang, H., Lu, F., Huang, H., Liu, Y., Dai, X., Gu, Z., Yang, Z., Zhou, R., & Kang, Z. (2018). Degradable carbon dots with broad-spectrum antibacterial activity. ACS Applied Materials and Interfaces, 10(32), 26936-26946.
Li, P., Liu, S., Cao, W., Zhang, G., Yang, X., Gong, X., & Xing, X. (2020). Low-toxicity carbon quantum dots derived from gentamicin sulfate to combat antibiotic resistance and eradicate mature biofilms. Chemical Communications, 56(15), 2316-2319.
Li, W., Zhang, Z., Kong, B., Feng, S., Wang, J., Wang, L., Yang, J., Zhang, F., Wu, P., & Zhao, D. (2013). Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angewandte Chemie International Edition, 52(31), 8151-8155.
Li, X., Robinson, S. M., Gupta, A., Saha, K., Jiang, Z., Moyano, D. F., Sahar, A., Riley, M. A., & Rotello, V. M. (2014a). Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano, 8(10), 10682-10686.
Li, X., Zhang, S., Kulinich, S. A., Liu, Y., & Zeng, H. (2014b). Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Scientific Reports, 4(1), 4976.
Lim, S. Y., Shen, W., & Gao, Z. (2015). Carbon quantum dots and their applications. Chemical Society Reviews, 44(1), 362-381.
Lim, S.-H., & Hudson, S. M. (2004). Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydrate Research, 339(2), 313-319.
Lin, T.-C., Seshadri, G., & Kelber, J. A. (1997). A consistent method for quantitative XPS peak analysis of thin oxide films on clean polycrystalline iron surfaces. Applied Surface Science, 119(1), 83-92.
Liu, C., Zhang, P., Zhai, X., Tian, F., Li, W., Yang, J., Liu, Y., Wang, H., Wang, W., & Liu, W. (2012). Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials, 33(13), 3604-3613.
Liu, J., Lu, S., Tang, Q., Zhang, K., Yu, W., Sun, H., & Yang, B. (2017b). One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis. Nanoscale, 9(21), 7135-7142.
Liu, M. L., Chen, B. B., Li, C. M., & Huang, C. Z. (2019). Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chemistry, 21(3), 449-471.
Liu, M. L., Yang, L., Li, R. S., Chen, B. B., Liu, H., & Huang, C. Z. (2017a). Large-scale simultaneous synthesis of highly photoluminescent green amorphous carbon nanodots and yellow crystalline graphene quantum dots at room temperature. Green Chemistry, 19(15), 3611-3617.
Liu, Q., Xu, S., Niu, C., Li, M., He, D., Lu, Z., Ma, L., Na, N., Huang, F., Jiang, H., & Ouyang, J. (2015a). Distinguish cancer cells based on targeting turn-on fluorescence imaging by folate functionalized green emitting carbon dots. Biosensors and Bioelectronics, 64, 119-125.
Liu, S.-S., Wang, C.-F., Li, C.-X., Wang, J., Mao, L.-H., & Chen, S. (2014a). Hair-derived carbon dots toward versatile multidimensional fluorescent materials. Journal of Materials Chemistry C, 2(32), 6477-6483.
Liu, W., Li, C., Ren, Y., Sun, X., Pan, W., Li, Y., Wang, J., & Wang, W. (2016). Carbon dots: surface engineering and applications. Journal of Materials Chemistry B, 4(35), 5772-5788.
Liu, W., Yao, J., Jin, J., Ma, J., & Masakorala, K. (2015b). Microbial toxicity of a type of carbon dots to Escherichia coli. Archives of Environmental Contamination and Toxicology, 69(4), 506-514.
Liu, Y., Zhao, Y., & Zhang, Y. (2014b). One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sensors and Actuators B: Chemical, 196, 647-652.
Loo, A. H., Sofer, Z., Bouša, D., Ulbrich, P., Bonanni, A., & Pumera, M. (2016). Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection. ACS Applied Materials and Interfaces, 8(3), 1951-1957.
Lu, F., Song, Y., Huang, H., Liu, Y., Fu, Y., Huang, J., Li, H., Qu, H., & Kang, Z. (2017).Fluorescent carbon dots with tunable negative charges for bio-imaging in bacterial viability assessment. Carbon, 120, 95-102.
Ma, Y., Zhang, M., Wang, H., Wang, B., Huang, H., Liu, Y., & Kang, Z. (2020). N-doped carbon dots derived from leaves with low toxicity via damaging cytomembrane for broad-spectrum antibacterial activity. Materials Today Communications, 24, 101222.
Mandal, T. K., & Parvin, N. (2011). Rapid detection of bacteria by carbon quantum dots. Journal of Biomedical Nanotechnology, 7(6), 846-848.
Mehta, V. N., Jha, S., & Kailasa, S. K. (2014). One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Materials Science and Engineering: C, 38, 20-27.
Mehta, V. N., Jha, S., Basu, H., Singhal, R. K., & Kailasa, S. K. (2015). One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sensors and Actuators B: Chemical, 213, 434-443.
Miao, S., Liang, K., Zhu, J., Yang, B., Zhao, D., & Kong, B. (2020). Hetero-atom-doped carbon dots: doping strategies, properties and applications. Nano Today, 33, 100879.
Miao, X., Qu, D., Yang, D., Nie, B., Zhao, Y., Fan, H., & Sun, Z. (2018). Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Advanced Materials, 30(1), 1704740.
Nandi, S., Ritenberg, M., & Jelinek, R. (2015). Bacterial detection with amphiphilic carbon dots. Analyst, 140(12), 4232-4237.
Pal, T., Mohiyuddin, S., & Packirisamy, G. (2018). Facile and green synthesis of multicolor fluorescence carbon dots from curcumin: in vitro and in vivo bioimaging and other applications. ACS Omega, 3(1), 831-843.
Pandey, F. P., Rastogi, A., & Singh, S. (2020). Optical properties and zeta potential of carbon quantum dots (CQDs) dispersed nematic liquid crystal 4'-heptyl-4-biphenylcarbonitrile (7CB). Optical Materials, 105, 109849.
Park, Y., Yoo, J., Lim, B., Kwon, W., & Rhee, S.-W. (2016). Improving the functionality of carbon nanodots: doping and surface functionalization. Journal of Materials Chemistry A, 4(30), 11582-11603.
Pathak, A., Suneesh, P., Stanley, J., & Babu, T. S. (2019). Multicolor emitting N/S-doped carbon dots as a fluorescent probe for imaging pathogenic bacteria and human buccal epithelial cells. Microchimica Acta, 186(3), 157.
Peng, Z., Ji, C., Zhou, Y., Zhao, T., & Leblanc, R. M. (2020). Polyethylene glycol (PEG) derived carbon dots: preparation and applications. Applied Materials Today, 20, 100677.
Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4(6), 1457-1465.
Righetto, M., Privitera, A., Fortunati, I., Mosconi, D., Zerbetto, M., Curri, M. L., Corricelli, M., Moretto, A., Agnoli, S., Franco, L., Bozio, R., & Ferrante, C. (2017). Spectroscopic insights into carbon dot systems. The Journal of Physical Chemistry Letters, 8(10), 2236-2242.
Ruihua, H., Bingchao, Y., Zheng, D., & Wang, B. (2012). Preparation and characterization of a quaternized chitosan. Journal of Materials Science, 47(2), 845-851.
Saad, S. M., Abdullah, J., Abd Rashid, S., Fen, Y. W., Salam, F., & Yih, L. H. (2020). A carbon dots based fluorescence sensing for the determination of Escherichia coli O157:H7. Measurement, 160, 107845.
Sahu, S., Behera, B., Maiti, T. K., & Mohapatra, S. (2012). Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chemical Communications, 48(70), 8835-8837.
Sajomsang, W., Gonil, P., & Tantayanon, S. (2009). Antibacterial activity of quaternary ammonium chitosan containing mono or disaccharide moieties: preparation and characterization. International Journal of Biological Macromolecules, 44(5), 419-427.
Salinas-Castillo, A., Ariza-Avidad, M., Pritz, C., Camprubí-Robles, M., Fernández, B., Ruedas-Rama, M. J., Megia-Fernández, A., Lapresta-Fernández, A., Santoyo-Gonzalez, F., Schrott-Fischer, A., & Capitan-Vallvey, L. F. (2013). Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chemical Communications, 49(11), 1103-1105.
Saravanan, A., Maruthapandi, M., Das, P., Luong, J. H., & Gedanken, A. (2021). Green synthesis of multifunctional carbon dots with antibacterial activities. Nanomaterials, 11(2), 369.
Schneider, J., Reckmeier, C. J., Xiong, Y., von Seckendorff, M., Susha, A. S., Kasák, P., & Rogach, A. L. (2017). Molecular fluorescence in citric acid-based carbon dots. The Journal of Physical Chemistry C, 121(3), 2014-2022.
Shahshahanipour, M., Rezaei, B., Ensafi, A. A., & Etemadifar, Z. (2019). An ancient plant for the synthesis of a novel carbon dot and its applications as an antibacterial agent and probe for sensing of an anti-cancer drug. Materials Science and Engineering: C, 98, 826-833.
Shariatinia, Z. (2018). Carboxymethyl chitosan: properties and biomedical applications. International Journal of Biological Macromolecules, 120, 1406-1419.
Shen, P., & Xia, Y. (2014). Synthesis-modification integration: one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Analytical Chemistry, 86(11), 5323-5329.
Shi, Y., Pan, Y., Zhang, H., Zhang, Z., Li, M.-J., Yi, C., & Yang, M. (2014). A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma. Biosensors and Bioelectronics, 56, 39-45.
Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cell Biology of Bacteria. Shapiro, L., & Losick. R. M. (Eds). Cold Spring Harbor Laboratory Press. New York, U.S.A. a000414.
Singh, J., Kaur, S., Lee, J., Mehta, A., Kumar, S., Kim, K.-H., Basu, S., & Rawat, M. (2020). Highly fluorescent carbon dots derived from Mangifera indica leaves for selective detection of metal ions. Science of the Total Environment, 720, 137604.
Song, J., Liang, X., Ma, Q., An, J., & Feng, F. (2019). Fluorescent boron and nitrogen co-doped carbon dots with high quantum yield for the detection of nimesulide and fluorescence staining. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 216, 296-302.
Song, Y., Li, H., Lu, F., Wang, H., Zhang, M., Yang, J., Huang, J., Huang, H., Liu, Y., & Kang, Z. (2017). Fluorescent carbon dots with highly negative charges as a sensitive probe for real-time monitoring of bacterial viability. Journal of Materials Chemistry B, 5(30), 6008-6015.
Song, Y., Shi, W., Chen, W., Li, X., & Ma, H. (2012). Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells. Journal of Materials Chemistry, 22(25), 12568-12573.
Su, Y., Shi, B., Liao, S., Zhao, J., Chen, L., & Zhao, S. (2016). Silver nanoparticles/N-doped carbon-dots nanocomposites derived from Siraitia grosvenorii and its logic gate and surface-enhanced raman scattering characteristics. ACS Sustainable Chemistry and Engineering, 4(3), 1728-1735.
Su, Y., Zhang, M., Zhou, N., Shao, M., Chi, C., Yuan, P., & Zhao, C. (2017). Preparation of fluorescent N,P-doped carbon dots derived from adenosine 5'-monophosphate for use in multicolor bioimaging of adenocarcinomic human alveolar basal epithelial cells. Microchimica Acta, 184(3), 699-706.
Sun, B., Wu, F., Zhang, Q., Chu, X., Wang, Z., Huang, X., Li, J., Yao, C., Zhou, N., & Shen, J. (2021a). Insight into the effect of particle size distribution differences on the antibacterial activity of carbon dots. Journal of Colloid and Interface Science, 584, 505-519.
Sun, L., Zhang, H., Wang, Y., Xiong, Z., Zhao, X., & Xia, Y. (2021b). Chitosan-derived N-doped carbon dots for fluorescent determination of nitrite and bacteria imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 251, 119468.
Sun, W., & Wu, F.-G. (2018). Two-dimensional materials for antimicrobial applications: graphene materials and beyond. Chemistry-An Asian Journal, 13(22), 3378-3410.
Sun, Y.-P., Zhou, B., Lin, Y., Wang, W., Fernando, K. A. S., Pathak, P., Meziani, M. J., & Xie, S.-Y. (2006). Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 128(24), 7756-7757.
Surendran, P., Lakshmanan, A., Priya, S. S., Balakrishnan, K., Rameshkumar, P., Kannan, K., Geetha, P., Hegde, T. A., & Vinitha, G. (2020). Bioinspired fluorescence carbon quantum dots extracted from natural honey: efficient material for photonic and antibacterial applications. Nano-Structures and Nano-Objects, 24, 100589.
Tammina, S. K., Wan, Y., Li, Y., & Yang, Y. (2020). Synthesis of N, Zn-doped carbon dots for the detection of Fe3+ ions and bactericidal activity against Escherichia coli and Staphylococcus aureus. Journal of Photochemistry and Photobiology B: Biology, 202, 111734.
Tan, H., Ma, R., Lin, C., Liu, Z., & Tang, T. (2013). Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. International Journal of Molecular Sciences, 14(1), 1854-1869.
Tang, L., Ji, R., Li, X., Bai, G., Liu, C. P., Hao, J., Lin, J., Jiang, H., Teng, K. S., Yang, Z., & Lau, S. P. (2014). Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano, 8(6), 6312-6320.
Tang, X., Yu, H., Bui, B., Wang, L., Xing, C., Wang, S., Chen, M., Hu, Z., & Chen, W. (2021). Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioactive Materials, 6(6), 1541-1554.
Tao, S., Song, Y., Zhu, S., Shao, J., & Yang, B. (2017b). A new type of polymer carbon dots with high quantum yield: from synthesis to investigation on fluorescence mechanism. Polymer, 116, 472-478.
Tao, S., Zhu, S., Feng, T., Xia, C., Song, Y., & Yang, B. (2017a). The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: A review. Materials Today Chemistry, 6, 13-25.
Tejwan, N., Saha, S. K., & Das, J. (2020). Multifaceted applications of green carbon dots synthesized from renewable sources. Advances in Colloid and Interface Science, 275, 102046.
Travlou, N. A., Giannakoudakis, D. A., Algarra, M., Labella, A. M., Rodríguez-Castellón, E., & Bandosz, T. J. (2018). S- and N-doped carbon quantum dots: surface chemistry dependent antibacterial activity. Carbon, 135, 104-111.
Tuerhong, M., Xu, Y., & Yin, X.-B. (2017). Review on carbon dots and their applications. Chinese Journal of Analytical Chemistry, 45(1), 139-150.
Wang, H., Song, Z., Gu, J., Li, S., Wu, Y., & Han, H. (2019). Nitrogen-doped carbon quantum dots for preventing biofilm formation and eradicating drug-resistant bacteria infection. ACS Biomaterials Science and Engineering, 5(9), 4739-4749.
Wang, H., Zhang, M., Ma, Y., Wang, B., Shao, M., Huang, H., Liu, Y., & Kang, Z. (2020). Selective inactivation of gram-negative bacteria by carbon dots derived from natural biomass: Artemisia argyi leaves. Journal of Materials Chemistry B, 8(13), 2666-2672.
Wang, H.-Y., Hua, X.-W., Wu, F.-G., Li, B., Liu, P., Gu, N., Wang, Z., & Chen, Z. (2015). Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications. ACS Applied Materials and Interfaces, 7(13), 7082-7092.
Wang, J., & Qiu, J. (2016). A review of carbon dots in biological applications. Journal of Materials Science, 51(10), 4728-4738.
Wang, L., & Zhou, H. S. (2014). Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Analytical Chemistry, 86(18), 8902-8905.
Wang, L., Li, B., Xu, F., Shi, X., Feng, D., Wei, D., Li, Y., Feng, Y., Wang, Y., Jia, D., & Zhou, Y. (2016b). High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP. Biosensors and Bioelectronics, 79, 1-8.
Wang, L., Zhu, S. J., Wang, H. Y., Qu, S. N., Zhang, Y. L., Zhang, J. H., Chen, Q.-D., Xu, H.-L., Han, W., Yang, B., & Sun, H. B. (2014b). Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano, 8(3), 2541-2547.
Wang, N., Wang, Y., Guo, T., Yang, T., Chen, M., & Wang, J. (2016a). Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosensors and Bioelectronics, 85, 68-75.
Wang, N., Wei, X., Zheng, A.-Q., Yang, T., Chen, M.-L., & Wang, J.-H. (2017b). Dual functional core–shell fluorescent Ag2S@Carbon nanostructure for selective assay of E. coli O157:H7 and bactericidal treatment. ACS Sensors, 2(3), 371-378.
Wang, R., Wang, X., & Sun, Y. (2017d). Aminophenol-based carbon dots with dual wavelength fluorescence emission for determination of heparin. Microchimica Acta, 184(1), 187-193.
Wang, R., Wang, X., & Sun, Y. (2017c). One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH. Sensors and Actuators B: Chemical, 241, 73-79.
Wang, W., Cheng, L., & Liu, W. (2014a). Biological applications of carbon dots. Science China Chemistry, 57(4), 522-539.
Wang, Y., & Hu, A. (2014). Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C, 2(34), 6921-6939.
Wang, Z., Xu, C., Lu, Y., Chen, X., Yuan, H., Wei, G., Ye, G., & Chen, J. (2017a). Fluorescence sensor array based on amino acid derived carbon dots for pattern-based detection of toxic metal ions. Sensors and Actuators B: Chemical, 241, 1324-1330.
Weng, C.-I., Chang, H.-T., Lin, C.-H., Shen, Y.-W., Unnikrishnan, B., Li, Y.-J., & Huang, C.-C. (2015). One-step synthesis of biofunctional carbon quantum dots for bacterial labeling. Biosensors and Bioelectronics, 68, 1-6.
Xu, T., Xin, M., Li, M., Huang, H., Zhou, S., & Liu, J. (2011). Synthesis, characterization, and antibacterial activity of N,O-quaternary ammonium chitosan. Carbohydrate Research, 346(15), 2445-2450.
Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736-12737.
Xue, M., Zou, M., Zhao, J., Zhan, Z., & Zhao, S. (2015). Green preparation of fluorescent carbon dots from lychee seeds and their application for the selective detection of methylene blue and imaging in living cells. Journal of Materials Chemistry B, 3(33), 6783-6789.
Yang, J., Gao, G., Zhang, X., Ma, Y.-H., Chen, X., & Wu, F.-G. (2019). One-step synthesis of carbon dots with bacterial contact-enhanced fluorescence emission: fast gram-type identification and selective gram-positive bacterial inactivation. Carbon, 146, 827-839.
Yang, J., Zhang, X., Ma, Y.-H., Gao, G., Chen, X., Jia, H.-R., Li, Y.-H., Chen, Z., & Wu, F.-G. (2016). Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Applied Materials and Interfaces, 8(47), 32170-32181.
Yang, L., Deng, W., Cheng, C., Tan, Y., Xie, Q., & Yao, S. (2018a). Fluorescent immunoassay for the detection of pathogenic bacteria at the single-cell level using carbon dots-encapsulated breakable organosilica nanocapsule as labels. ACS Applied Materials and Interfaces, 10(4), 3441-3448.
Yang, L., Jiang, W., Qiu, L., Jiang, X., Zuo, D., Wang, D., & Yang, L. (2015a). One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging. Nanoscale, 7(14), 6104-6113.
Yang, S., Sun, J., Li, X., Zhou, W., Wang, Z., He, P., Ding, G., Xie, X., Kang, Z., & Jiang, M. (2014b). Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. Journal of Materials Chemistry A, 2(23), 8660-8667.
Yang, X., Yang, X., Li, Z., Li, S., Han, Y., Chen, Y., Bu, X., Su, C., Xu, H., Jiang, Y., & Lin, Q. (2015b). Photoluminescent carbon dots synthesized by microwave treatment for selective image of cancer cells. Journal of Colloid and Interface Science, 456, 1-6.
Yang, X., Zhuo, Y., Zhu, S., Luo, Y., Feng, Y., & Dou, Y. (2014c). Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosensors and Bioelectronics, 60, 292-298.
Yang, Z., Wang, Y., & Zhang, D. (2018b). An integrated multifunctional photoelectrochemical platform for simultaneous capture, detection, and inactivation of pathogenic bacteria. Sensors and Actuators B: Chemical, 274, 228-234.
Yang, Z., Xu, M., Liu, Y., He, F., Gao, F., Su, Y., Wei, H., Zhang, Y. (2014a). Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale, 6(3), 1890-1895.
Yao, B., Huang, H., Liu, Y., & Kang, Z. (2019). Carbon dots: a small conundrum. Trends in Chemistry, 1(2), 235-246.
Yuan, F., Li, S., Fan, Z., Meng, X., Fan, L., & Yang, S. (2016a). Shining carbon dots: synthesis and biomedical and optoelectronic applications. Nano Today, 11(5), 565-586.
Yuan, Q., Shah, J., Hein, S., & Misra, R. D. K. (2010). Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomaterialia, 6(3), 1140-1148.
Yuan, Y. H., Liu, Z. X., Li, R. S., Zou, H. Y., Lin, M., Liu, H., & Huang, C. Z. (2016b). Synthesis of nitrogen-doping carbon dots with different photoluminescence properties by controlling the surface states. Nanoscale, 8(12), 6770-6776.
Zhang, B.-X., Gao, H., & Li, X.-L. (2014). Synthesis and optical properties of nitrogen and sulfur co-doped graphene quantum dots. New Journal of Chemistry, 38(9), 4615-4621.
Zhang, J., & Yu, S.-H. (2016). Carbon dots: large-scale synthesis, sensing and bioimaging. Materials Today, 19(7), 382-393.
Zhang, Y., Yuan, R., He, M., Hu, G., Jiang, J., Xu, T., Zhou, L., Chen, W., Xiang, W., & Liang, X. (2017). Multicolour nitrogen-doped carbon dots: tunable photoluminescence and sandwich fluorescent glass-based light-emitting diodes. Nanoscale, 9(45), 17849-17858.
Zhao, C., Deng, B., Chen, G., Lei, B., Hua, H., Peng, H., & Yan, Z. (2016). Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Research, 9(4), 963-973.
Zhao, C., Wang, X., Wu, L., Wu, W., Zheng, Y., Lin, L., Weng, S., & Lin, X. (2019a). nitrogen-doped carbon quantum dots as an antimicrobial agent against Staphylococcus for the treatment of infected wounds. Colloids and Surfaces B: Biointerfaces, 179, 17-27.
Zhao, C., Wu, L., Wang, X., Weng, S., Ruan, Z., Liu, Q., Lin, L., & Lin, X. (2020). Quaternary ammonium carbon quantum dots as an antimicrobial agent against gram-positive bacteria for the treatment of MRSA-infected pneumonia in mice. Carbon, 163, 70-84.
Zhao, J., Huang, M., Zhang, L., Zou, M., Chen, D., Huang, Y., & Zhao, S. (2017). Unique approach to develop carbon dot-based nanohybrid near-infrared ratiometric fluorescent sensor for the detection of mercury ions. Analytical Chemistry, 89(15), 8044-8049.
Zhao, L., Cai, T., Ye, M., Liu, D., & Liu, S. (2019b). The regulation of the microstructure, luminescence and lubricity of multi-element doped carbon nanodots with alkylated diquaternary 1, 4-diazabicyclo [2.2.2] octane derived dicationic ionic liquids inserted in carbon skeleton. Carbon, 150, 319-333.
Zhao, Q.-L., Zhang, Z.-L., Huang, B.-H., Peng, J., Zhang, M., & Pang, D.-W. (2008). Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chemical Communications(41), 5116-5118.
Zheng, B., Liu, T., Paau, M. C., Wang, M., Liu, Y., Liu, L., Wu, C., Du, J, Xiao, D., & Choi, M. M. F. (2015). One pot selective synthesis of water and organic soluble carbon dots with green fluorescence emission. RSC Advances, 5(15), 11667-11675.
Zheng, L., Qi, P., & Zhang, D. (2019). Identification of bacteria by a fluorescence sensor array based on three kinds of receptors functionalized carbon dots. Sensors and Actuators B: Chemical, 286, 206-213.
Zhong, D., Zhuo, Y., Feng, Y., & Yang, X. (2015). Employing carbon dots modified with vancomycin for assaying gram-positive bacteria like Staphylococcus aureus. Biosensors and Bioelectronics, 74, 546-553.
Zhu, C., Yang, Q., Liu, L., Lv, F., Li, S., Yang, G., & Wang, S. (2011). Multifunctional cationic poly(p-phenylene vinylene) polyelectrolytes for selective recognition, imaging, and killing of bacteria over mammalian cells. Advanced Materials, 23(41), 4805-4810.
Zhu, C., Zhai, J., & Dong, S. (2012). Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chemical Communications, 48(75), 9367-9369.
Zhu, S., Wang, L., Zhou, N., Zhao, X., Song, Y., Maharjan, S., Zhang, J., Lu, L., Wang, H., & Yang, B. (2014). The crosslink enhanced emission (CEE) in non-conjugated polymer dots: from the photoluminescence mechanism to the cellular uptake mechanism and internalization. Chemical Communications, 50(89), 13845-13848.
Zhuo, S., Shao, M., & Lee, S.-T. (2012). Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano, 6(2), 1059-1064.
Zor, E., Alpaydin, S., Arici, A., Saglam, M. E., & Bingol, H. (2018). Photoluminescent nanopaper-based microcuvette for iodide detection in seawater. Sensors and Actuators B: Chemical, 254, 1216-1224.
Zuo, P., Lu, X., Sun, Z., Guo, Y., & He, H. (2016). A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchimica Acta, 183(2), 519-542.