中華民國國家標準 (CNS)。1984。食品中水分之檢驗方法。總號:5033,類號:N6114。中央標準局。臺北。臺灣。
中華民國國家標準(CNS)。1984。食品中租灰分之檢驗方法。總號:5034,類號:N6115。中央標準局。臺北。臺灣。
中華民國國家標準(CNS) 。1984。食品中粗脂肪之檢驗方法。總號:5036,類號:N6117。中央標準局。臺北。臺灣。
中華民國國家標準(CNS)。1986。食品中租蛋白質之檢驗法。總號:5035,類號:N6116。中央標準局。臺北。臺灣。
中華民國國家標準(CNS)。1997。食品中租纖維之檢驗法。總號:5037,類號:N6118中央標準局。臺北。臺灣。
中華民國國家標準(CNS)。2007。·乳品檢驗法—酸度之滴定。總號:3441,類號:N6057。中央標準局。臺北。臺灣。
柯智元。2011。乳酸菌發酵黑豆奶最適產 丫胺基丁酸條件及以強迫游泳試驗探討其抗憂鬱效果。國立臺灣海洋大學食品科學研究所碩士學位論文。基隆。臺灣。衛生福利部食品藥物管理署。2017。飲料中咖啡因檢驗方法 (MOHWA0028.00)。衛授食字第1061902225號公告訂定。臺北。臺灣。
謝承哲。2017。利用 Lactobacillus sp. FPS 2520 和 Bacillus sp. N1 菌株發酵豆粕開發飼料營養添加劑及利用細胞模式探討發酵產品之抗肥胖和促進葡萄糖吸收活性。國立臺灣海洋大學食品科學研究所碩士學位論文。基隆。臺灣。Acevedo, F., Rubilar, M., Scheuermann, E., Cancino, B., Uquiche, E., Garcés, M. & Shene, C. (2013). Spent coffee grounds as a renewable source of bioactive compounds. Journal of Biobased Materials and Bioenergy, 7(3), 420-428.
Akash, M. S. H., Rehman, K., & Chen, S. (2014). Effects of coffee on type 2 diabetes mellitus. Nutrition, 30(7-8), 755-763.
American Diabetes Association. (2010). Diagnosis and classification of diabetes mellitus. Diabetes Care, 33; Suppl 1, S13
Andrade, K. S., Goncalvez, R. T., Maraschin, M., Ribeiro-do-Valle, R. M., Martínez, J., & Ferreira, S. R. (2012). Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition. Talanta, 88, 544-552.
Arya, M., & Rao, L. J. M. (2007). An impression of coffee carbohydrates. Critical Reviews in Food Science and Nutrition, 47(1), 51-67.
Asano, I., Nakamura, Y., Hoshino, H., Aoki, K., Fujii, S., Imura, N., & Iino, H. (2001). Use of mannooligosaccharides from coffee mannan by intestinal bacteria. Journal of the Agricultural Chemical Society of Japan (Japan).
Astrup, A., Toubro, S., Cannon, S., Hein, P., Breum, L., & Madsen, J. (1990). Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. The American Journal of Clinical Nutrition, 51(5), 759-767.
Baena, M., Sangüesa, G., Dávalos, A., Latasa, M. J., Sala-Vila, A., Sánchez, R. M., Roglans, N., Laguna, J. C., & Alegret, M. (2016). Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues. Scientific Reports, 6(1), 1-15.
Bah, C. S., Carne, A., McConnell, M. A., Mros, S., & Bekhit, A. E. D. A. (2016). Production of bioactive peptide hydrolysates from deer, sheep, pig and cattle red blood cell fractions using plant and fungal protease preparations. Food Chemistry, 202, 458-466.
Bakar, M.H.A., Sarmidi, M.R., Cheng, K.K., Khan, A.A., Suan, C.L., Huri, H.Z., Yaakob, H. (2015). Metabolomics–the complementary field in systems biology: are view on obesity and type 2 diabetes. Molecular BioSystems, 11 (7), 1742–1774.
Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191-203.
Barbagallo, M., Dominguez, L. J., Galioto, A., Ferlisi, A., Cani, C., Malfa, L., Pineo A, Busardo A, & Paolisso, G. (2003). Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Molecular Aspects of Medicine, 24(1-3), 39-52.
Bekalo, S. A., &Reinhardt, H. W. (2010). Fibers of coffee husk and hulls for the production of particleboard. Materials and Structures/Materiaux et Constructions, 43(8), 1049–1060. https://doi.org/10.1617/s11527-009-9565-0
Belin, R. J., & He, K. (2007). Magnesium physiology and pathogenic mechanisms that contribute to the development of the metabolic syndrome. Magnesium Research, 20(2), 107-129.
Bergman, R. N., & Ader, M. (2000). Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends in Endocrinology & Metabolism, 11(9), 351-356.
Bicho, N. C., Leitão, A. E., Ramalho, J. C., & Lidon, F. C. (2012). Use of colour parameters for roasted coffee assessment. Food Science and Technology, 32(3), 436-442.
Bradbury, A. G., & Halliday, D. J. (1990). Chemical structures of green coffee bean polysaccharides. Journal of Agricultural and Food Chemistry, 38(2), 389-392.
Bravo, J., Juaniz, I., Monente, C., Caemmerer, B., Kroh, L. W., De Peña, M. P., & Cid, C. (2012). Evaluation of spent coffee obtained from the most common coffeemakers as a source of hydrophilic bioactive compounds. Journal of Agricultural and Food Chemistry, 60(51), 12565-12573.
Burgos-Morón, E., Calderón-Montaño, J. M., Orta, M. L., Pastor, N., Pérez-Guerrero, C., Austin, C., Mateos, S., & López-Lázaro, M. (2012). The coffee constituent chlorogenic acid induces cellular DNA damage and formation of topoisomerase I–and II–DNA complexes in cells. Journal of Agricultural and Food Chemistry, 60(30), 7384-7391.
Campos-Vega, R., Loarca-Pina, G., Vergara-Castaneda, H. A., & Oomah, B. D. (2015). Spent coffee grounds: A review on current research and future prospects. Trends in Food Science & Technology, 45(1), 24-36.
Carrera, F., León-Camacho, M., Pablos, F., & González, A. G. (1998). Authentication of green coffee varieties according to their sterolic profile. Analytica Chimica acta, 370(2-3), 131-139.
Cavin, C., Holzhaeuser, D., Scharf, G., Constable, A., Huber, W. W., & Schilter, B. (2002). Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity. Food and Chemical Toxicology, 40(8), 1155-1163.
Ceriello, A., & Motz, E. (2004). Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(5), 816-823.
Chen, G. W., Chen, T. Y., & Yang, P. M. (2019). Differential effect of herbal tea extracts on free fatty acids-, ethanol-and acetaminophen-induced hepatotoxicity in FL83B hepatocytes. Drug and Chemical Toxicology, 1-6.
Chen, L., Cao, H., Xiao, J.B. (2018). Polyphenols: absorption, bioavailability, and metabolomics. Polyphenols: Properties, Recovery, and Applications, pp. 45–67.
Chen, L., Teng, H., & Cao, H. (2019). Chlorogenic acid and caffeic acid from Sonchus oleraceus Linn synergistically attenuate insulin resistance and modulate glucose uptake in HepG2 cells. Food and Chemical Toxicology, 127, 182-187.
Codex Alimentarius Commission (2011) Milk and Milk Products (CODEX STAN 243-2003), vol. 2 edition, pp. 6–16. Rome, Italy: World Health Organization (WHO) and Food and Agriculture Organization of the United Nations (FAO).
Craig, A. P., Fields, C., Liang, N., Kitts, D., & Erickson, A. (2016). Performance review of a fast HPLC-UV method for the quantification of chlorogenic acids in green coffee bean extracts. Talanta, 154, 481-485.
Cruz, R., Cardoso, M. M., Fernandes, L., Oliveira, M., Mendes, E., Baptista, P., Morais, S. & Casal, S. (2012). Espresso coffee residues: a valuable source of unextracted compounds. Journal of Agricultural and Food Chemistry, 60(32), 7777-7784.
Davis, A. P., Govaerts, R., Bridson, D. M., &Stoffelen, P. (2006). An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Botanical Journal of the Linnean Society, 152(4), 465–512. https://doi.org/10.1111/j.1095-8339.2006.00584.x
DeBruyn, F., Zhang, S. J., Pothakos, V., Torres, J., Lambot, C., Moroni, A.V., Callanan, M., Sybesma, W., Weckx, S., & DeVuysta, L. (2017). Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production. Applied and Environmental Microbiology, 83(1), 1–16.
Delgado, P. A., Vignoli, J. A., Siika-aho, M., & Franco, T. T. (2008). Sediments in coffee extracts: Composition and control by enzymatic hydrolysis. Food Chemistry, 110(1), 168-176.
Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling, 18(14), 1818-1892.
deMelo Pereira, G.V., deCarvalho Neto, D. P., Magalhães Júnior, A. I., Vásquez, Z. S., Medeiros, A. B. P., Vandenberghe, L. P. S., &Soccol, C. R. (2019). Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review. Food Chemistry, 272 (August 2018), 441–452. https://doi.org/10.1016/j.foodchem.2018.08.061
Denis O. Seudieu. (2008). The Coffee Industry: History and Future Perspectives. In Plant-Parasitic Nematodes of Coffee. Springer Science. https://doi.org/10.1017/CBO9781107415324.004
De Souza, A., Yucel, S., Konijeti, R., Elliott, S. P., & Baskin, L. S. (2004). 195: Genital Anomalies with Maternal Exposure to Progesterone in Mice. The Journal of Urology, 171(4S), 51-52.
de Valk, H. W. (1999). Magnesium in diabetes mellitus. The Netherlands Journal of Medicine, 54(4), 139-146.
Esquivel, P., &Jiménez, V. M. (2012). Functional properties of coffee and coffee by-products. Food Research International, 46(2), 488–495. https://doi.org/10.1016/j.foodres.2011.05.028
Fan, L., Pandey, A., Mohan, R., & Soccol, C. R. (2000). Use of various coffee industry residues for the cultivation of Pleurotus ostreatus in solid state fermentation. Acta Biotechnologica, 20(1), 41-52.
Farah, A., &DosSantos, T. F. (2015). The Coffee Plant and Beans: An Introduction. In Coffee in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-409517-5.00001-2
Fernandes, A. S., Mello, F. V. C., Thode Filho, S., Carpes, R. M., Honório, J. G., Marques, M. R. C., Felzenszwalb, I., & Ferraz, E. R. A. (2017). Impacts of discarded coffee waste on human and environmental health. Ecotoxicology and Environmental Safety, 141, 30-36.
García-Gutiérrez, N., Maldonado-Celis, M. E., Rojas-López, M., Loarca-Piña, G. F., &Campos-Vega, R. (2017). The fermented non-digestible fraction of spent coffee grounds induces apoptosis in human colon cancer cells (SW480). Journal of Functional Foods, 30, 237–246. https://doi.org/10.1016/j.jff.2017.01.014
Getachew, A. T., & Chun, B. S. (2017). Influence of pretreatment and modifiers on subcritical water liquefaction of spent coffee grounds: a green waste valorization approach. Journal of Cleaner Production, 142, 3719-3727.
Gezginc, Y., & Maranci, C. (2018). Effect of fermented food consumption on biochemical parameters and adipokines levels. Progress In Nutrition, 20(4), 642-647.
Greenberg, J. A., Axen, K. V., Schnoll, R., & Boozer, C. N. (2005). Coffee, tea and diabetes: the role of weight loss and caffeine. International Journal of Obesity, 29(9), 1121-1129.
Grembecka, M., Malinowska, E., & Szefer, P. (2007). Differentiation of market coffee and its infusions in view of their mineral composition. Science of the Total Environment, 383(1-3), 59-69.
H.-D. Belitz, W. Grosch, &P. Schieberle. (2009). Food Chemistry 4th. In Springer. https://doi.org/10.1017/CBO9781107415324.004
Hernández-Arriaga, A. M., Oomah, B. D., & Campos-Vega, R. (2017). Microbiota source impact in vitro metabolite colonic production and anti-proliferative effect of spent coffee grounds on human colon cancer cells (HT-29). Food Research International, 97, 191-198.
Hudeckova, H., Neureiter, M., Obruca, S., Frühauf, S., & Marova, I. (2018). Biotechnological conversion of spent coffee grounds into lactic acid. Letters in Applied Microbiology, 66(4), 306-312.
ICO. (2016). Trade statistics tables.
Illy, E. (2002). The complexity of Coffee. Scientific American, 286(6), 86–91. https://doi.org/10.1017/CBO9781107415324.004
Janissen, B., &Huynh, T. (2018). Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and Recycling, 128(October 2017), 110–117. https://doi.org/10.1016/j.resconrec.2017.10.001
Jia, H., Aw, W., Egashira, K., Takahashi, S., Aoyama, S., Saito, K., Kishimoto Y & Kato, H. (2014). Coffee intake mitigated inflammation and obesity-induced insulin resistance in skeletal muscle of high-fat diet-induced obese mice. Genes & Nutrition, 9(3), 389.
Johnston, K. L., Clifford, M. N., & Morgan, L. M. (2003). Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. The American Journal of Clinical Nutrition, 78(4), 728-733.
Jung, W. K., Park, P. J., Ahn, CRamalakshmi, K., Rao, L. J. M., Takano-Ishikawa, Y., & Goto, M. (2009). Bioactivities of low-grade green coffee and spent coffee in different in vitro model systems. Food Chemistry, 115(1), 79-85.. B., & Je, J. Y. (2014). Preparation and antioxidant potential of maillard reaction products from (MRPs) chitooligomer. Food Chemistry, 145, 173-178.
Kovalcik, A., Obruca, S., & Marova, I. (2018). Valorization of spent coffee grounds: A review. Food and Bioproducts Processing, 110, 104-119.
Kroder, G., Bossenmaier, B., Kellerer, M., Capp, E., Stoyanov, B., Mühlhöfer, A., ... & Häring, H. (1996). Tumor necrosis factor-alpha-and hyperglycemia-induced insulin resistance. Evidence for different mechanisms and different effects on insulin signaling. The Journal of clinical investigation, 97(6), 1471-1477.
Leite, A. M., Mayo, B., Rachid, C. T., Peixoto, R. S., Silva, J. T., Paschoalin, V. M. F., & Delgado, S. (2012). Assessment of the microbial diversity of Brazilian kefir grains by PCR-DGGE and pyrosequencing analysis. Food microbiology, 31(2), 215-221.
Lenzen, S. (2008). Oxidative stress: the vulnerable β-cell. Biochemical Society Transactions, 36(3), 343-347.
Lin, W. K., & Tsai, G. J. (2015). Evaluation of hypoglycemic activity of Yam and Yam drink Fermented by the lactic acid bacteria. The 8th Asian Conference on Lactic Acid Bacteria. (8-10 July 2015), Bangkok, Thailand
López-Barrera, D. M., Vázquez-Sánchez, K., Loarca-Piña, M. G. F., & Campos-Vega, R. (2016). Spent coffee grounds, an innovative source of colonic fermentable compounds, inhibit inflammatory mediators in vitro. Food Chemistry, 212, 282-290.
Ludwig, I. A., Clifford, M. N., Lean, M. E., Ashihara, H., & Crozier, A. (2014). Coffee: biochemistry and potential impact on health. Food & function, 5(8), 1695-1717.
Ludwig, I. A., Sanchez, L., Caemmerer, B., Kroh, L. W., De Peña, M. P., & Cid, C. (2012). Extraction of coffee antioxidants: Impact of brewing time and method. Food Research International, 48(1), 57-64.
Matsui, T., Ueda, T., Oki, T., Sugita, K., Terahara, N., & Matsumoto, K. (2001). α-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. Journal of Agricultural and Food Chemistry, 49(4), 1948-1951.
Mellbye, F. B., Jeppesen, P. B., Hermansen, K., & Gregersen, S. (2015). Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells: studies in vitro. Journal of Natural Products, 78(10), 2447-2451.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), 426-428.
Moreira, A. S., Nunes, F. M., Domingues, M. R., & Coimbra, M. A. (2012). Coffee melanoidins: structures, mechanisms of formation and potential health impacts. Food & Function, 3(9), 903-915.
Murphy, L.O. (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New England Journal of Medicine, 329(14), 977-986
Murthy, P. S., & Naidu, M. M. (2012). Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food and Bioprocess Technology, 5(3), 897-903.
Murthy, P. S., &Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition - A review. Resources, Conservation and Recycling, 66, 45–58. https://doi.org/10.1016/j.resconrec.2012.06.005
Mussatto, S. I., Ballesteros, L. F., Martins, S., & Teixeira, J. A. (2011). Extraction of antioxidant phenolic compounds from spent coffee grounds. Separation and Purification Technology, 83, 173-179.
Mussatto, S. I., Machado, E. M. S., Martins, S., &Teixeira, J. A. (2011). Production, Composition, and Application of Coffee and Its Industrial Residues. Food and Bioprocess Technology, 4(5), 661–672. https://doi.org/10.1007/s11947-011-0565-z
Mussatto, S. I., Machado, E. M., Carneiro, L. M., & Teixeira, J. A. (2012). Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Applied Energy, 92, 763-768.
Narita, Y., & Inouye, K. (2009). Kinetic analysis and mechanism on the inhibition of chlorogenic acid and its components against porcine pancreas α-amylase isozymes I and II. Journal of Agricultural and Food Chemistry, 57(19), 9218-9225.
Natella, F., & Scaccini, C. (2012). Role of coffee in modulation of diabetes risk. Nutrition Reviews, 70(4), 207-217.
Nordlie, R. C., Foster, J. D., & Lange, A. J. (1999). Regulation of glucose production by the liver. Annual review of nutrition, 19(1), 379-406.
Nunes, F. M., & Coimbra, M. A. (2010). Role of hydroxycinnamates in coffee melanoidin formation. Phytochemistry Reviews, 9(1), 171-185.
Obruca, S., Benesova, P., Petrik, S., Oborna, J., Prikryl, R., & Marova, I. (2014). Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds. Process Biochemistry, 49(9), 1409-1414.
Oestreich-Janzen, S. (2010). Chemistry of coffee. In L. Mander, & H.-W. Liu (Eds.), Comprehensive natural products II chemistry and biology. Development & Modification of Bioactivity, (Vol. 3 pp. 1085-1117). Oxford, UK: Elsevier.
Oomah, B. D. (2001). Flaxseed as a functional food source. Journal of the Science of Food and Agriculture, 81(9), 889-894.
Panusa, A., Zuorro, A., Lavecchia, R., Marrosu, G., & Petrucci, R. (2013). Recovery of natural antioxidants from spent coffee grounds. Journal of Agricultural and Food Chemistry, 61(17), 4162-4168.
Paolisso, G., Scheen, A., d'Onofrio, F., & Lefebvre, P. (1990). Magnesium and glucose homeostasis. Diabetologia, 33(9), 511-514.
Passos, C. P., & Coimbra, M. A. (2013). Microwave superheated water extraction of polysaccharides from spent coffee grounds. Carbohydrate Polymers, 94(1), 626-633.
Patel, D. K., Kumar, R., Laloo, D., & Hemalatha, S. (2012). Diabetes mellitus: an overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pacific Journal of Tropical Biomedicine, 2(5), 411-420.
Qi, H. Y., Chai, S. J., Deng, C., & Zhang, X. K. (2014). Effect for six kinds of sour-flavor traditional chinese medicines on oxidative stress and pathological state on liver of diabetic mice. Lishizhen Medicine and Materia Medica Research, 25(7), 1573-5.
Oki, T., Matsui, T., & Osajima, Y. (1999). Inhibitory effect of α-glucosidase inhibitors varies according to its origin. Journal of Agricultural and Food Chemistry, 47(2), 550-553.
Ortiz-Andrade, R. R., Garcia-Jimenez, S., Castillo-Espana, P., Ramirez-Avila, G., Villalobos-Molina, R., & Estrada-Soto, S. (2007). α-Glucosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: an anti-hyperglycemic agent. Journal of Ethnopharmacology, 109(1), 48-53.
Ramalakshmi, K., Rao, L. J. M., Takano-Ishikawa, Y., & Goto, M. (2009). Bioactivities of low-grade green coffee and spent coffee in different in vitro model systems. Food Chemistry, 115(1), 79-85.
Ren, Y., Wang, C., Xu, J., & Wang, S. (2019). Cafestol and kahweol: A review on their bioactivities and pharmacological properties. International Journal of Molecular Sciences, 20(17), 4238.
Ribarova, F., & Atanassova, M. (2005). Total phenolics and flavonoids in Bulgarian fruits and vegetables. Journal of The University of Chemical Technology and Metallurgy, 40(3), 255-260.
Ribeiro, V. S., Lidon, F. C., Leitão, A. E., & Ramalho, J. C. (2017). Microparticles of golden coffee from Angola (Amboim) in coffee blends: chemical and prophylatic implications. International Food Research Journal, 24(1), 253.
Rocha, M. V. P., de Matos, L. J. B. L., de Lima, L. P., da Silva Figueiredo, P. M., Lucena, I. L., Fernandes, F. A. N., & Gonçalves, L. R. B. (2014). Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds. Bioresource Technology, 167, 343-348.
Rosa, D. D., Dias, M. M., Grześkowiak, Ł. M., Reis, S. A., Conceição, L. L., & Maria do Carmo, G. P. (2017). Milk kefir: nutritional, microbiological and health benefits. Nutrition research reviews, 30(1), 82-96.
Rosiak, M., Grzeszczak, S., Kosior, D. A., & Postuła, M. (2014). Emerging treatments in type 2 diabetes: focus on canagliflozin. Therapeutics and Clinical Risk Management, 10, 683.
Saeed A, H., & Salam A, I. (2013). Current limitations and challenges with lactic acid bacteria: a review. Food and Nutrition Sciences, 2013.
Saltiel, A. R., & Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414(6865), 799-806.
Santos, R. M. M., & Lima, D. R. A. (2016). Coffee consumption, obesity and type 2 diabetes: a mini-review. European Journal of Nutrition, 55(4), 1345-1358.
Seninde, D. R., &Chambers, E. (2020). Coffee Flavor: A Review. Beverages, 6(3), 44. https://doi.org/10.3390/beverages6030044
Serino, M., Menghini, R., Fiorentino, L., Amoruso, R., Mauriello, A., Lauro, D., Sbraccia, P., Hribal,M.L., Lauro, R. & Federici, M. (2007). Mice heterozygous for tumor necrosis factor-α converting enzyme are protected from obesity-induced insulin resistance and diabetes. Diabetes, 56(10), 2541-2546.
Silva, M. A., Nebra, S. A., Silva, M. M., & Sanchez, C. G. (1998). The use of biomass residues in the Brazilian soluble coffee industry. Biomass and Bioenergy, 14(5-6), 457-467.
Simões, J., Madureira, P., Nunes, F. M., do Rosário Domingues, M., Vilanova, M., & Coimbra, M. A. (2009). Immunostimulatory properties of coffee mannans. Molecular Nutrition &Food Research, 53(8), 1036-1043.
Simões, J., Nunes, F. M., Domingues, M. R., & Coimbra, M. A. (2013). Extractability and structure of spent coffee ground polysaccharides by roasting pre-treatments. Carbohydrate Polymers, 97(1), 81-89.
Simons, M., Gordon, E., Claesson-Welsh, L. (2016). Mechanisms and regulation of endothelial VEGF receptor signalling. Nature Reviews Molecular Cell Biology, 17 (10), 611.
Song, S. J., Choi, S., & Park, T. (2014). Decaffeinated green coffee bean extract attenuates diet-induced obesity and insulin resistance in mice. Evidence-based Complementary and Alternative Medicine, 2014.
Shori, A. B., & Baba, A. S. (2013). Antioxidant activity and inhibition of key enzymes linked to type-2 diabetes and hypertension by Azadirachta indica-yogurt. Journal of Saudi Chemical Society, 17(3), 295-301.
Spiller, M. A. (1998). The chemical components of coffee. Caffeine, 1998, 97-161.
Stadie, J., Gulitz, A., Ehrmann, M. A., & Vogel, R. F. (2013). Metabolic activity and symbiotic interactions of lactic acid bacteria and yeasts isolated from water kefir. Food Microbiology, 35(2), 92-98.
Suomalainen, H., & Lehtonen, M. (1979). The production of aroma compounds by yeast. Journal of the Institute of Brewing, 85(3), 149-156.
Takahashi, S., Saito, K., Jia, H., & Kato, H. (2014). An integrated multi-omics study revealed metabolic alterations underlying the effects of coffee consumption. PloS one, 9(3), e91134.
Takao, I., Fujii, S., Ishii, A., Han, L. K., Kumao, T., Ozaki, K., & Asakawa, A. (2006). Effects of mannooligosaccharides from coffee mannan on fat storage in mice fed a high fat diet. Journal of Health Science, 52(3), 333-337.
Toci, A. T., &Boldrin, M. V. Z. (2018). Coffee Beverages and Their Aroma Compounds. In Natural and Artificial Flavoring Agents and Food Dyes. Elsevier Inc. https://doi.org/10.1016/B978-0-12-811518-3/00012-0
Toledo, P. R. A. B., Pezza, L., Pezza, H. R., &Toci, A. T. (2016). Relationship Between the Different Aspects Related to Coffee Quality and Their Volatile Compounds. Comprehensive Reviews in Food Science and Food Safety, 15(4), 705–719. https://doi.org/10.1111/1541-4337.12205
Udenigwe, C. C., & Aluko, R. E. (2010). Antioxidant and angiotensin converting enzyme-inhibitory properties of a flaxseed protein-derived high Fischer ratio peptide mixture. Journal of Agricultural and Food Chemistry, 58(8), 4762-4768.
Ulloa Rojas, J. B., Verreth, J. A. J., Amato, S., &Huisman, E. A. (2003). Biological treatments affect the chemical composition of coffee pulp. Bioresource Technology, 89(3), 267–274. https://doi.org/10.1016/S0960-8524(03)00070-1
Van Dam, R. M. (2006). Coffee and type 2 diabetes: from beans to beta-cells. Nutrition, Metabolism and Cardiovascular Diseases, 16(1), 69-77.
Vinícius de Melo Pereira, G., Soccol, V. T., Brar, S. K., Neto, E., &Soccol, C. R. (2017). Microbial ecology and starter culture technology in coffee processing. Critical Reviews in Food Science and Nutrition, 57(13), 2775–2788. https://doi.org/10.1080/10408398.2015.1067759
Vinson, J. A., Burnham, B. R., & Nagendran, M. V. (2012). Randomized, double-blind, placebo-controlled, linear dose, crossover study to evaluate the efficacy and safety of a green coffee bean extract in overweight subjects. Diabetes, Metabolic Syndrome and Obesity: targets and therapy, 5, 21.
Wang, H. W., Xu, T. X., & Wang, W. Y. (2016). Remaining life prediction based on Wiener processes with ADT prior information. Quality and Reliability Engineering International, 32(3), 753-765.
Wei, F., &Tanokura, M. (2015a). Chemical Changes in the Components of Coffee Beans during Roasting. In Coffee in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-409517-5.00010-3
Wei, F., &Tanokura, M. (2015b). Organic Compounds in Green Coffee Beans. In Coffee in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-409517-5.00017-6
World Health Organization Department of Noncommucable Disease Surveillance Geneva. (1999). Defination, diagnosis and classification of diabetes mellitus and its complications. Report of a WHO Consultation.
Wu, C. H., Lin, H. T., Wu, G. J., Wang, S. H., & Tsai, G. J. (2011). Effects of cultural medium and conditions on the proliferation and hypoglycemic activity of Saccharomyces pastorianus no. 54. Journal of Bioscience and Bioengineering, 112(2), 159-165.