中華民國國家標準 (CNS)。(2007)。乳品檢驗法-酸度之滴定。總號: 3441,類號: N6057。
王培銘、黃定國。2001。氣動攪拌式發酵槽。食品工業 33, 13-26。
江易原。2001。利用枯草桿菌突變株Bacillus subtilis NTU 710生產聚麩胺酸之研究。國立臺灣大學農業化學研究所碩士學位論文。臺北。臺灣。何仁為。2005。深層培養環境對生產豬苓 (Polyporus umbellatus) 菌絲體及多醣體之影響。私立東海大學食品科學系碩士學位論文。臺中。臺灣。吳文騰。2000。發酵槽之設計。生物產業 11, 91-97。
馬德威。1994。不同進料控制策略對酵母培養之影響。私立東海大學化學工程系碩士學位論文。臺中。臺灣。張芸瑈。2020。複合菌株半固態發酵黃豆條件探討及其發酵產物活性物質分析。國立臺灣海洋大學食品科學系碩士學位論文。基隆。臺灣。楊舒卉。2015。魚腸道具植酸酶活性之乳酸菌株篩選及其降解黃豆植酸能力探討。國立臺灣海洋大學食品科學系碩士學位論文。基隆。臺灣。楊慕義。2016。植酸酶活性乳酸菌於固態發酵槽降解豆粕中植酸之最適條件建立。國立臺灣海洋大學食品科學系碩士學位論文。基隆。臺灣。謝承哲。2018。利用 Lactobacillus sp. FPS 2520 和 Bacillus sp. N1 菌株發酵豆粕開發飼料營養添加劑及利用細胞模式探討發酵產品之抗肥胖和促進葡萄糖吸收活性。國立臺灣海洋大學食品科學系碩士學位論文。基隆。臺灣。謝素琴。2004。揮發性鹽基態氮測定方法。水產品檢驗中心檢測手冊。基隆。臺灣。
謝雅婷。2006。以本土根瘤菌降解酚之饋料批次進料策略探討。國立成功大學化學工程系碩士位論文。臺南。臺灣。鍾昀峰。2016。複合菌株發酵黃豆製品開發功能性魚類飼料添加劑。國立臺灣海洋大學食品科學系碩士學位論文。基隆。臺灣。蘇遠志。2003。納豆菌代謝產物的開發與應用。生物產業14(2): 117-130。
黨建章。2005。發酵技術概論。新文京開發出版股份有限公司。深圳。中國。
Abdel-Rahman, M. A., Tashiro, Y., Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances 31, 877-902.
Ahn‐Jarvis, J. H., Teegarden, M. D., Schwartz, S. J., Lee, K., & Vodovotz, Y. (2017). Modulating conversion of isoflavone glycosides to aglycones using crude beta‐glycosidase extracts from almonds and processed soy. Food Chemistry, 237, 685-692.
Bansemer, M., Forder, R., Howarth, G., Suitor, G., Bowyer, J., & Stone, D. (2015). The effect of dietary soybean meal and soy protein concentrate on the intestinal mucus layer and development of subacute enteritis in Yellowtail Kingfish (S eriola lalandi) at suboptimal water temperature. Aquaculture Nutrition, 21, 300-310.
Bondoc, K. G. V., Lee, H., Cruz, L. J., Lebrilla, C. B., & Juinio-Meñez, M. A. (2013). Chemical fingerprinting and phylogenetic mapping of saponin congeners from three tropical holothurian sea cucumbers. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 166, 182-193.
Canabady-Rochelle, L. L., Selmeczi, K., Collin, S., Pasc, A., Muhr, L., & Boschi-Muller, S. (2018). SPR screening of metal chelating peptides in a hydrolysate for their antioxidant properties. Food Chemistry, 239, 478-485.
Chang, C. T., Fan, M. H., Kuo, F. C., & Sung, H.-Y. (2000). Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. Journal of Agricultural and Food Chemistry, 48, 3210-3216.
Chen, C. C., Lee, T. T., Hsu, C. B., Huang, C. W., & Yu, B. (2011). Associations of allergenic soybean proteins with piglet skin allergic reaction and application of polyclonal antibodies. Animal Production Science, 51, 1008-1014.
Chen, F., Li, H., Xu, Z., Hou, S., & Yang, D. (2015). User-friendly optimization approach of fed-batch fermentation conditions for the production of iturin A using artificial neural networks and support vector machine. Electronic Journal of Biotechnology, 18, 273-280.
Chen, K., Gao, C., Han, X., Li, D., Wang, H., & Lu, F. (2021). Co‐fermentation of lentils using lactic acid bacteria and Bacillus subtilis natto increases functional and antioxidant components. Journal of Food Science, 86, 475-483.
Chen, L., Vadlani, P. V., Madl, R. L., & Gibbons, W. (2016). Degradation of phytic acid and soy protein in soy meal via co-fermentation of Aspergillus oryzae and Aspergillus ficuum. Journal of the American Oil Chemists' Society, 93, 45-50.
Chen, Y., Wang, Y., Chen, J., Tang, H., Wang, C., Li, Z., & Xiao, Y. (2020). Bioprocessing of soybeans (Glycine max L.) by solid-state fermentation with Eurotium cristatum YL-1 improves total phenolic content, isoflavone aglycones, and antioxidant activity. Royal Society of Chemistry Advances, 10, 16928-16941.
Cheng, K. C., Lin, J. T., & Liu, W. H. (2011). Extracts from fermented black soybean milk exhibit antioxidant and cytotoxic activities. Food Technology and Biotechnology, 49, 111.
Chi, C. H., & Cho, S. J. (2016). Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobacillus spp. and Saccharomyces cerevisiae. LWT-Food Science and Technology, 68, 619-625.
Chien, H. L., Huang, H. Y., & Chou, C. C. (2006). Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbiology, 23, 772-778.
Choi, Y. B., Kim, K. S., & Rhee, J. S. (2002). Hydrolysis of soybean isoflavone glucosides by lactic acid bacteria. Biotechnology Letters, 24, 2113-2116.
Chun, J., Kim, G. M., Lee, K. W., Choi, I. D., Kwon, G. H., Park, J. Y., Jeong, S. J., Kim, J. S., & Kim, J. H. (2007). Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria. Journal of Food Science, 72, 39-44.
Cordle, C. T. (2004). Soy protein allergy: Incidence and relative severity. The Journal of Nutrition, 134, 1213-1219.
Coulon, S., Chemardin, P., Gueguen, Y., Arnaud, A., & Galzy, P. (1998). Purification and characterization of an intracellular β-glucosidase from Lactobacillus casei ATCC 393. Applied Biochemistry and Biotechnology, 74, 105-114.
Dai, C., Ma, H., He, R., Huang, L., Zhu, S., Ding, Q., & Luo, L. (2017). Improvement of nutritional value and bioactivity of soybean meal by solid-state fermentation with Bacillus subtilis. LWT-Food Science and Technology, 86, 1-7.
De Cremoux, P., This, P., Leclercq, G., & Jacquot, Y. (2010). Controversies concerning the use of phytoestrogens in menopause management: Bioavailability and metabolism. Maturitas, 65, 334-339.
Dhole, V. J., & Reddy, K. S. (2015). Genetic variation for phytic acid content in mungbean (Vigna radiata L. Wilczek). The Crop Journal, 3, 157-162.
Difo, H. V., Onyike, E., Ameh, D. A., Ndidi, U. S., & Njoku, G. C. (2014). Chemical changes during open and controlled fermentation of cowpea (Vigna unguiculata) flour. International Journal of Food Nutrition and Safety, 5, 1-10.
Egounlety, M., & Aworh, O. (2003). Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). Journal of Food Engineering, 56, 249-254.
El-Kordy, E. A., & Alshahrani, A. M. (2015). Effect of genistein, a natural soy isoflavone, on pancreatic β-cells of streptozotocin-induced diabetic rats: Histological and immunohistochemical study. Journal of Microscopy and Ultrastructure, 3, 108-119.
Fahim, S., Dimitrov, K., Vauchel, P., Gancel, F., Delaplace, G., Jacques, P., & Nikov, I. (2013). Oxygen transfer in three phase inverse fluidized bed bioreactor during biosurfactant production by Bacillus subtilis. Biochemical Engineering Journal, 76, 70-76.
Gemede, H. F., & Ratta, N. (2014). Antinutritional factors in plant foods: Potential health benefits and adverse effects. International Journal of Nutrition and Food Sciences, 3, 284-289.
Genovese, M. I., Davila, J., & Lajolo, F. M. (2006). Isoflavones in processed soybean products from Ecuador. Brazilian Archives of Biology and Technology, 49, 853-859.
Gibbs, B. F., Zougman, A., Masse, R., & Mulligan, C. (2004). Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International, 37, 123-131.
Gonzalez de Mejia, E., Vásconez, M., de Lumen, B. O., & Nelson, R. (2004). Lunasin concentration in different soybean genotypes, commercial soy protein, and isoflavone products. Journal of Agricultural and Food Chemistry, 52, 5882-5887.
Greiner, R., & Konietzny, U. (2006). Phytase for food application. Food Technology & Biotechnology, 44, 125-140.
Han, Y., & Chen, H. (2008). Characterization of β-glucosidase from corn stover and its application in simultaneous saccharification and fermentation. Bioresource Technology, 99, 6081-6087.
Handa, C. L., Couto, U. R., Vicensoti, A. H., Georgetti, S. R., & Ida, E. I. (2014). Optimisation of soy flour fermentation parameters to produce β-glucosidase for bioconversion into aglycones. Food Chemistry, 152, 56-65.
Hernández-Ledesma, B., Hsieh, C. C., & Ben, O. (2009). Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochemical and Biophysical Research Communications, 390, 803-808.
Holzhauser, T., Wackermann, O., Ballmer-Weber, B. K., Bindslev-Jensen, C., Scibilia, J., Perono-Garoffo, L., Utsumi, S., Poulsen, L. K., & Vieths, S. (2009). Soybean (Glycine max) allergy in Europe: Gly m 5 (β-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. Journal of Allergy and Clinical Immunology, 123, 452-458.
Hong, K. J., Lee, C. H., & Kim, S. W. (2004). Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. Journal of Medicinal Food, 7, 430-435.
Hsiao, Y. H., Hsia, S. Y., Chan, Y. C., & Hsieh, J. F. (2017). Complex coacervation of soy proteins, isoflavones and chitosan. Molecules, 22, 1022.
Huang, C. H., Chen, C. L., Chang, S. H., & Tsai, G. J. (2020). Evaluation of antiobesity activity of soybean meal products fermented by Lactobacillus plantarum FPS 2520 and Bacillus subtilis N1 in rats fed with high-fat diet. Journal of Medicinal Food, 23, 667-675.
Huang, C., Pang, D., Luo, Q., Chen, X., Gao, Q., Shi, L., Liu, W., Zou, Y., Li, L., & Chen, Z. (2016). Soy isoflavones regulate lipid metabolism through an AKT/mTORC1 pathway in diet-induced obesity (DIO) male rats. Molecules, 21, 586.
Izumi, T., Piskula, M. K., Osawa, S., Obata, A., Tobe, K., Saito, M., KataoKa, S., Kubota, Y., & Kikuchi, M. (2000). Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. The Journal of Nutrition, 130, 1695-1699.
Jhan, J. K., Chang, W. F., Wang, P. M., Chou, S. T., & Chung, Y. C. (2015). Production of fermented red beans with multiple bioactivities using co-cultures of Bacillus subtilis and Lactobacillus delbrueckii subsp. bulgaricus. LWT-food Science and Technology, 63, 1281-1287.
Jinadasa, B. K. K. K. (2014). Determination of quality of marine fishes based on total volatile base nitrogen test (TVB-N). Nature and Science, 5, 106-111.
Jung, K. O., Park, S. Y., & Park, K. Y. (2006). Longer aging time increases the anticancer and antimetastatic properties of doenjang. Nutrition, 22, 539-545.
Ko, C. Y., Lin, H. T. V., & Tsai, G. J. (2013). Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochemistry, 48, 559-568.
Kok, F. S., Muhamad, I. I., Lee, C. T., Razali, F., Pa'e, N., & Shaharuddin, S. (2012). Effects of pH and temperature on the growth and beta-glucosidase activity of Lactobacillus rhamnosus NRRL 442 in anaerobic fermentation. International Review of Chemical Engineering, 4, 293-299.
Kuo, L. C., Cheng, W. Y., Wu, R. Y., Huang, C. J., & Lee, K. T. (2006). Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis natto. Applied Microbiology and Biotechnology, 73, 314-320.
Kwon, D. Y., Hong, S. M., Ahn, I. S., Kim, M. J., Yang, H. J., & Park, S. (2011). Isoflavonoids and peptides from meju, long-term fermented soybeans, increase insulin sensitivity and exert insulinotropic effects in vitro. Nutrition, 27, 244-252.
Lai, L. R., Hsieh, S. C., Huang, H. Y., & Chou, C. C. (2013). Effect of lactic fermentation on the total phenolic, saponin and phytic acid contents as well as anti-colon cancer cell proliferation activity of soymilk. Journal of Bioscience and Bioengineering, 115, 552-556.
Lan, G., Li, C., He, L., Zeng, X., & Zhu, Q. (2020). Effects of different strains and fermentation method on nattokinase activity, biogenic amines, and sensory characteristics of natto. Journal of Food Science and Technology, 57, 4414-4423.
Latta, M., & Eskin, M. (1980). A simple and rapid colorimetric method for phytate determination. Journal of Agricultural and Food Chemistry, 28, 1313-1315.
Lecas, M., Gunata, Z. Y., Sapis, J. C., & Bayonove, C. L. (1991). Purification and partial characterization of β-glucosidase from grape. Phytochemistry, 30, 451-454.
Lee, M. K., Kim, J. K., & Lee, S. Y. (2018). Effects of fermentation on SDS-PAGE patterns, total peptide, isoflavone contents and antioxidant activity of freeze-thawed tofu fermented with Bacillus subtilis. Food Chemistry, 249, 60-65.
Lee, S. J., Ahn, J. K., Khanh, T. D., Chun, S. C., Kim, S. L., Ro, H. M., Song, H. K., & Chung, I. M. (2007). Comparison of isoflavone concentrations in soybean (Glycine max (L.) Merrill) sprouts grown under two different light conditions. Journal of Agricultural and Food Chemistry, 55, 9415-9421.
Lee, S. Y. (1996). High cell-density culture of Escherichia coli. Trends in Biotechnology, 14, 98-105.
Liener, I. E., Goodale, R. L., Deshmukh, A., Satterberg, T. L., Ward, G., DiPietro, C. M., Bankey, P. E., & Borner, J. W. (1988). Effect of a trypsin inhibitor from soybeans (Bowman-Birk) on the secretory activity of the human pancreas. Gastroenterology, 94, 419-427.
Lim, Y. J., Lim, B., Kim, H. Y., Kwon, S. J., & Eom, S. H. (2020). Deglycosylation patterns of isoflavones in soybean extracts inoculated with two enzymatically different strains of lactobacillus species. Enzyme and Microbial Technology, 132, 109394.
Lin, H. T. V., Wu, G. J., Hsieh, M. C., Chang, S. H., & Tsai, G. J. (2015). Purification and characterization of Nattokinase from cultural filtrate of red alga Porphyra dentata fermented by Bacillus subtilis N1. Journal of Marine Science and Technology, 23, 240-248.
Lin, W. H., Hwang, C. F., Chen, L. W., & Tsen, H. Y. (2006). Viable counts, characteristic evaluation for commercial lactic acid bacteria products. Food Microbiology, 23, 74-81.
Lu, J., Zeng, Y., Hou, W., Zhang, S., Li, L., Luo, X., Xi, W., Chen, Z., & Xiang, M. (2012). The soybean peptide aglycin regulates glucose homeostasis in type 2 diabetic mice via IR/IRS1 pathway. The Journal of Nutritional Biochemistry, 23, 1449-1457.
Lule, V. K., Garg, S., Pophaly, S. D., & Tomar, S. K. (2015). Potential health benefits of lunasin: A multifaceted soy‐derived bioactive peptide. Journal of Food Science, 80, R485-R494.
Luthria, D. L., Biswas, R., & Natarajan, S. (2007). Comparison of extraction solvents and techniques used for the assay of isoflavones from soybean. Food Chemistry, 105, 325-333.
Mantzouridou, F., Roukas, T., & Kotzekidou, P. (2002). Effect of the aeration rate and agitation speed on β-carotene production and morphology of Blakeslea trispora in a stirred tank reactor: Mathematical modeling. Biochemical Engineering Journal, 10, 123-135.
Mathias, K., Ismail, B., Corvalan, C. M., & Hayes, K. D. (2006). Heat and pH effects on the conjugated forms of genistin and daidzin isoflavones. Journal of Agricultural and Food Chemistry, 54, 7495-7502.
Mukherjee, R., Chakraborty, R., & Dutta, A. (2016). Role of fermentation in improving nutritional quality of soybean meal-a review. Asian-Australasian Journal of Animal Sciences, 29, 1523.
Niamnuy, C., Nachaisin, M., Laohavanich, J., & Devahastin, S. (2011). Evaluation of bioactive compounds and bioactivities of soybean dried by different methods and conditions. Food Chemistry, 129, 899-906.
Oda, K., Matsuda, H., Murakami, T., Katayama, S., Ohgitani, T., & Yoshikawa, M. (2000). Adjuvant and haemolytic activities of 47 saponins derived from medicinal and food plants. Biological Chemistry, 381, 67-74.
Pan, S., Chen, G., Zeng, J., Cao, X., Zheng, X., Zeng, W., & Liang, Z. (2019). Fibrinolytic enzyme production from low-cost substrates by marine Bacillus subtilis: Process optimization and kinetic modeling. Biochemical Engineering Journal, 141, 268-277.
Pant, G., Prakash, A., Pavani, J. V. P., Bera, S., Deviram, G. V. N. S., Kumar, A., Panchchpuri, M., & Prasuna, R. G. (2015). Production, optimization and partial purification of protease from Bacillus subtilis. Journal of Taibah University for Science, 9, 50-55.
Park, S., Kim, D. S., Kim, J. H., Kim, J. S., & Kim, H. J. (2012). Glyceollin-containing fermented soybeans improve glucose homeostasis in diabetic mice. Nutrition, 28, 204-211.
Popova, A., & Mihaylova, D. (2019). Antinutrients in plant-based foods: A review. The Open Biotechnology Journal, 13, 68.
Pyo, Y. H., Lee, T. C., & Lee, Y. C. (2005). Enrichment of bioactive isoflavones in soymilk fermented with β-glucosidase-producing lactic acid bacteria. Food Research International, 38, 551-559.
Rayaprolu, S. J., Hettiarachchy, N. S., Chen, P., Kannan, A., & Mauromostakos, A. (2013). Peptides derived from high oleic acid soybean meals inhibit colon, liver and lung cancer cell growth. Food Research International, 50, 282-288.
Reddy, N., & Pierson, M. (1994). Reduction in antinutritional and toxic components in plant foods by fermentation. Food Research International, 27, 281-290.
Sanjukta, S., Rai, A. K., Muhammed, A., Jeyaram, K., & Talukdar, N. C. (2015). Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation. Journal of Functional Foods, 14, 650-658.
Seo, W. D., Kang, J. E., Choi, S. W., Lee, K. S., Lee, M. J., Park, K. D., & Lee, J. H. (2017). Comparison of nutritional components (isoflavone, protein, oil, and fatty acid) and antioxidant properties at the growth stage of different parts of soybean [Glycine max (L.) Merrill]. Food Science and Biotechnology, 26, 339-347.
Setchell, K. D., & Cassidy, A. (1999). Dietary isoflavones: Biological effects and relevance to human health. The Journal of Nutrition, 129, 758-767.
Shori, A. B., & Baba, A. S. (2012). Viability of lactic acid bacteria and sensory evaluation in Cinnamomum verum and Allium sativum-bio-yogurts made from camel and cow milk. Journal of the Association of Arab Universities for Basic and Applied Sciences, 11, 50-55.
Silva, P., Ribeiro, T. A., Tófolo, L. P., Prates, K. V., Francisco, F. A., Silveira, S. d. S., Malta, A., Lopes, D. A., Miranda, R. A., & Palma-Rigo, K. (2018). Treatment with soy isoflavones during early adulthood improves metabolism in early postnatally overfed rats. Nutritional Neuroscience, 21, 25-32.
Singh, B. P., Vij, S., & Hati, S. (2014). Functional significance of bioactive peptides derived from soybean. Peptides, 54, 171-179.
Tang, J., Xu, N., Ji, H., Liu, H., Wang, Z., & Wu, L. (2011). Eudragit nanoparticles containing genistein: Formulation, development, and bioavailability assessment. International Journal of Nanomedicine, 6, 2429.
Taylor, W. (1957). Formol titration: An evaluation of its various modifications. Analyst, 82, 488-498.
Teng, D., Gao, M., Yang, Y., Liu, B., Tian, Z., & Wang, J. (2012). Bio-modification of soybean meal with Bacillus subtilis or Aspergillus oryzae. Biocatalysis and Agricultural Biotechnology, 1, 32-38.
Triana, B. M., Adele, C., Gemma, W., Miriam, M. M., Alfonso, R. B., María, D. R. L. (2015). In vitro evaluation of the fermentation properties and potential probiotic activity of Lactobacillus plantarum C4 in batch culture systems. Food Science and Technology, 60, 420-426.
Tsai, T. Y., Chu, L. H., Lee, C. L., & Pan, T. M. (2009). Atherosclerosis-preventing activity of lactic acid bacteria-fermented milk-soymilk supplemented with Momordica charantia. Journal of Agricultural and Food Chemistry, 57, 2065-2071.
Vantyghem, S. A., Wilson, S. M., Postenka, C. O., Al-Katib, W., Tuck, A. B., & Chambers, A. F. (2005). Dietary genistein reduces metastasis in a postsurgical orthotopic breast cancer model. Cancer Research, 65, 3396-3403.
Vitale, D. C., Piazza, C., Melilli, B., Drago, F., & Salomone, S. (2013). Isoflavones: Estrogenic activity, biological effect and bioavailability. European Journal of Drug Metabolism and Pharmacokinetics, 38, 15-25.
Wang, H. J., & Murphy, P. A. (1994). Isoflavone composition of American and Japanese soybeans in Iowa: Effects of variety, crop year, and location. Journal of Agricultural and Food Chemistry, 42, 1674-1677.
Wang, H., Zhang, F., Cao, J., Zhang, Q., & Chen, Z. (2012). Comparison of chromatographic and titrimetric methods for the determination of the [alpha]-amino nitrogen in standard solution and fish protein hydrolysates. Journal of Food Research, 1, 174.
Wang, Y. C., Yu, R. C., & Chou, C. C. (2006). Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiology, 23, 128-135.
Wu, R., Chen, G., Pan, S., Zeng, J., & Liang, Z. (2019). Cost-effective fibrinolytic enzyme production by Bacillus subtilis WR350 using medium supplemented with corn steep powder and sucrose. Scientific Reports, 9, 1-10.
Xie, C. L., Hwang, C. E., Oh, C. K., Yoon, N. A., Ryu, J. H., Jeong, J. Y., Roh, G. S., Kim, H. J., Cho, G. J., & Choi, W. S. (2017). Fermented soy‐powder milk with Lactobacillus plantarum P1201 protects against high‐fat diet‐induced obesity. International Journal of Food Science and Technology, 52, 1614-1622.
Xu, L., Du, B., & Xu, B. (2015). A systematic, comparative study on the beneficial health components and antioxidant activities of commercially fermented soy products marketed in China. Food Chemistry, 174, 202-213.
Yang, J., Wu, X. B., Chen, H. L., Sun-waterhouse, D., Zhong, H. B., & Cui, C. (2019). A value-added approach to improve the nutritional quality of soybean meal byproduct: Enhancing its antioxidant activity through fermentation by Bacillus amyloliquefaciens SWJS22. Food Chemistry, 272, 396-403.
Yee, L., & Blanch, H. (1992). Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Nature Biotechnology, 10, 1550-1556.
Yuksekdag, Z., Cinar Acar, B., Aslim, B., & Tukenmez, U. (2018). β‐Glucosidase activity and bioconversion of isoflavone glycosides to aglycones by potential probiotic bacteria. International Journal of Food Properties, 20, 1-9.
Zhang, J. H., Tatsumi, E., Ding, C. H., & Li, L. T. (2006). Angiotensin I-converting enzyme inhibitory peptides in douchi, a Chinese traditional fermented soybean product. Food Chemistry, 98, 551-557.
Zhang, J., Zhang, X., Zhang, L., Zhao, Y., Niu, C., Yang, Z., & Li, S. (2014). Potential probiotic characterization of Lactobacillus plantarum strains isolated from Inner Mongolia “Hurood” cheese. Journal of Microbiology and Biotechnology, 24, 225-235.
Zhang, X. L., Wu, Y. F., Wang, Y. S., Wang, X. Z., Piao, C. H., Liu, J. M., Liu, Y. L., & Wang, Y. H. (2017). The protective effects of probiotic-fermented soymilk on high-fat diet-induced hyperlipidemia and liver injury. Journal of Functional Foods, 30, 220-227.
Zhao, Y., Sun-Waterhouse, D., Zhao, M., Zhao, Q., Qiu, C., & Su, G. (2018). Effects of solid-state fermentation and proteolytic hydrolysis on defatted soybean meal. LWT-Food Science and Technology, 97, 496-502.
Zheng, L., Li, D., Li, Z. L., Kang, L. N., Jiang, Y. Y., Liu, X. Y., Chi, Y. P., Li, Y. Q., & Wang, J. H. (2017). Effects of Bacillus fermentation on the protein microstructure and anti‐nutritional factors of soybean meal. Letters in Applied Microbiology, 65, 520-526.
Zhou, X., Zhou, X., & Xu, Y. (2017). Improvement of fermentation performance of Gluconobacter oxydans by combination of enhanced oxygen mass transfer in compressed-oxygen-supplied sealed system and cell-recycle technique. Bioresource Technology, 244, 1137-1141.
Zhou, Y., Han, L. R., He, H. W., Sang, B., Yu, D. L., Feng, J. T., & Zhang, X. (2018). Effects of agitation, aeration and temperature on production of a novel glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and scale-up based on volumetric oxygen transfer coefficient. Molecules, 23, 125. Doi: 10.3390/molecules23010125.