|
Akbulut, N., Tuzlakoğlu Öztürk, M., Pijning, T., İşsever Öztürk, S., & Gümüşel, F. (2013). Improved activity and thermostability of Bacillus pumilus lipase by directed evolution. Journal of Biotechnology, 164(1), 123-129. (doi:10.1016/j.jbiotec.2012.12.016). Aravind, L., Abhiman, S., & Iyer, L. M. (2011). Chapter 3 - Natural history of the eukaryotic chromatin protein methylation system. In: Cheng, X., Blumenthal, R. M. (eds.). Progress in Molecular Biology and Translational Science. Cambridge: Academic Press; Vol. 101, p. 105-176. Beck-Candanedo, S., Roman, M., & Gray, D. G. (2005). Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules, 6(2), 1048-1054. (doi:10.1021/bm049300p). Bosshart, A., Panke, S., & Bechtold, M. (2013). Systematic optimization of interface interactions increases the thermostability of a multimeric enzyme. Angewandte Chemie International Edition in English, 52(37), 9673-9676. (doi:10.1002/anie.201304141). Cai, X., Jiang, H., Zhang, T., Jiang, B., Mu, W., & Miao, M. (2018). Thermostability and specific-activity enhancement of an arginine deiminase from Enterococcus faecalis SK23.001 via semirational design for L-citrulline production. Journal of Agricultural and Food Chemistry, 66(33), 8841-8850. Das, K., Butler, G. H., Kwiatkowski, V., Clark, A. D., Jr., Yadav, P., & Arnold, E. (2004). Crystal structures of arginine deiminase with covalent reaction intermediates; implications for catalytic mechanism. Structure, 12(4), 657-667. (doi:10.1016/j.str.2004.02.017). Deng, Z., Yang, H., Shin, H. D., Li, J., & Liu, L. (2014). Structure-based rational design and introduction of arginines on the surface of an alkaline alpha-amylase from Alkalimonas amylolytica for improved thermostability. Applied Microbiology and Biotechnology, 98(21), 8937-8945. (doi:10.1007/s00253-014-5790-8). El-Sayed, A. S., Hassan, M. N., & Nada, H. M. (2015). Purification, immobilization, and biochemical characterization of L-arginine deiminase from thermophilic Aspergillus fumigatus KJ434941: anticancer activity in vitro. Biotechnology Progess, 31(2), 396-405. (doi:10.1002/btpr.2045). Fang, F., Zhang, J., Zhou, J., Zhou, Z., Li, T., Lu, L., Zeng, W., Du, G., & J. Chen, J. (2018). Accumulation of citrulline by microbial arginine metabolism during alcoholic fermentation of soy sauce. Journal of Agricultural and Food Chemistry, 66(9), 2108-2113. (doi:10.1021/acs.jafc.7b06053). Fernandez-Lafuente, R. (2009). Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzyme and Microbial Technology, 45(6), 405-418. (doi:https://doi.org/10.1016/j.enzmictec.2009.08.009). Fraczkiewicz, R., & Braun, W. (1998). Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. Journal of Computational Chemistry, 19(3), 319-333. (doi:https://doi.org/10.1002/(SICI)1096-987X(199802)19:3<319::AID-JCC6>3.0.CO;2-W). Galkin, A., Kulakova, L., Demirkan, E., Lim, K., Howard, A., & Herzberg, O. (2004). Structural insight into arginine degradation by arginine deiminase, an antibacterial and parasite drug target. The Journal of Biological Chemistry, 279, 14001-14008. (doi:10.1074/jbc.M313410200). Gallego, P., Planell, R., Benach, J., Querol, E., Perez-Pons, J. A., & Reverter, D. (2012). Structural characterization of the enzymes composing the arginine deiminase pathway in Mycoplasma penetrans. PLOS ONE, 7(10), e47886. (doi:10.1371/journal.pone.0047886). Gao, K., Oerlemans, R., & Groves, M. R. (2020). Theory and applications of differential scanning fluorimetry in early-stage drug discovery. Biophysical reviews, 12(1), 85-104. (doi:10.1007/s12551-020-00619-2). Golovanov, A. P., Hautbergue, G. M., Wilson, S. A., & Lian, L. Y. (2004). A simple method for improving protein solubility and long-term stability. Journal of the American Chemical Society, 126(29), 8933-8939. (doi:10.1021/ja049297h). Grunberg-Manago, M. (1999). Messenger RNA stability and its role in control of gene expression in bacteria and phages. The Annual Review of Genetics, 33, 193-227. (doi:10.1146/annurev.genet.33.1.193). Henningham, A., Ericsson, D. J., Langer, K., Casey, L. W., Jovcevski, B., Chhatwal, G. S., Aquilina, J.A., Batzloff, M.R., Kobe, B., & Walker, M. J. (2013). Structure-informed design of an enzymatically inactive vaccine component for group A Streptococcus. mBio, 4(4), e00509-00513. (doi:10.1128/mBio.00509-13). Jaenicke, R., & Böhm, G. (1998). The stability of proteins in extreme environments. Current Opinion in Structural Biology, 8(6), 738-748. (doi:10.1016/s0959-440x(98)80094-8). Jeong, H., Barbe, V., Lee, C. H., Vallenet, D., Yu, D. S., Choi, S. H., Couloux, A., Lee, S.W., Yoon, S.H., Cattolico, L., Hur, C.G., Park, H.S., Segurens, B., Kim, S.C., Oh, T.K., Lenski, R.E., Studier, F.W., Daegelen, P., & Kim, J. F. (2009). Genome sequences of Escherichia coli B strains REL606 and BL21(DE3). Journal of Molecular Biology, 394(4), 644-652. (doi:10.1016/j.jmb.2009.09.052). Jeong, H., Kim, H. J., & Lee, S. J. (2015). Complete genome sequence of Escherichia coli strain BL21. Genome Announcements, 3(2), e-00134-15. (doi:10.1128/genomeA.00134-15). Jhamb, K., & Sahoo, D. K. (2012). Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresource Technology, 123, 135-143. (doi:https://doi.org/10.1016/j.biortech.2012.07.011). Jiang, H. (2017). Characterization of a recombinant arginine deiminase from Enterococcus faecalis SK32.001 for L-citrulline production. Process Biochemistry, 64, 136-142. (doi:10.1016/j.procbio.2017.06.006). Kaore, S. N., Amane, H. S., & Kaore, N. M. (2013). Citrulline: pharmacological perspectives and its role as an emerging biomarker in future. Fundamental & Clinical Pharmacology, 27(1), 35-50. (doi:10.1111/j.1472-8206.2012.01059.x). Kaore, S. N., & Kaore, N. M. (2016). Chapter 37 - Arginine and citrulline as nutraceuticals: efficacy and safety in diseases. In: Gupta, R. C. (eds). Nutraceuticals, Cambridge: Academic Press; p. 511-529. Kido, M., Yamanaka, K., Mitani, T., Niki, H., Ogura, T., & Hiraga, S. (1996). RNase E polypeptides lacking a carboxyl-terminal half suppress a mukB mutation in Escherichia coli. Journal of Bacteriology, 178(13), 3917-3925. (doi:10.1128/jb.178.13.3917-3925.1996). Kim, J. E., Jeong, D. W., & Lee, H. J. (2007). Expression, purification, and characterization of arginine deiminase from Lactococcus lactis ssp. lactis ATCC 7962 in Escherichia coli BL21. Protein Expression and Purification, 53(1), 9-15. (doi:10.1016/j.pep.2006.12.002). Kleber-Janke, T., & Becker, W.-M. (2000). Use of modified BL21(DE3) Escherichia coli cells for high-level expression of recombinant peanut allergens affected by poor codon usage. Protein Expression and Purification, 19(3), 419-424. (doi:https://doi.org/10.1006/prep.2000.1265). Klock, H. E., Koesema, E. J., Knuth, M. W., & Lesley, S. A. (2008). Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts. Proteins, 71(2), 982-994. (doi:10.1002/prot.21786). Li, G., Fang, X., Su, F., Chen, Y., Xu, L., & Yan, Y. (2018). Enhancing the thermostability of Rhizomucor miehei lipase with a limited screening library by rational-design point mutations and disulfide bonds. Applied and Environmental Microbiology, 84(2). (doi:10.1128/aem.02129-17). Li, L., Li, Z., Wang, C., Xu, D., Mariano, P. S., Guo, H., & Dunaway-Mariano, D. (2008). The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study. Biochemistry, 47(16), 4721-4732. (doi:10.1021/bi7023496). Liang, X., Peng, L., Li, K., Peterson, T., & Katzen, F. (2012). A method for multi-site-directed mutagenesis based on homologous recombination. Analytical Biochemistry, 427(1), 99-101. (doi:10.1016/j.ab.2012.05.002). Ling, M. M., & Robinson, B. H. (1997). Approaches to DNA mutagenesis: an overview. Analytical Biochemistry, 254(2), 157-178. (doi:10.1006/abio.1997.2428). Lopez, P. J., Marchand, I., Joyce, S. A., & Dreyfus, M. (1999). The C-terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo. Molecular Microbiology, 33(1), 188-199. (doi:10.1046/j.1365-2958.1999.01465.x). Marshall, S. A., Morgan, C. S., & Mayo, S. L. (2002). Electrostatics significantly affect the stability of designed homeodomain variants. Journal of Molecular Biology, 316(1), 189-199. (doi:10.1006/jmbi.2001.5326). Matsudo, T., & Sasaki, M. (1995). Determination of urea and citrulline in fermented foods and beverages. Bioscience, Biotechnology, and Biochemistry, 59(5), 827-830. (doi:10.1271/bbb.59.827). Maxwell, K. L., Mittermaier, A. K., Forman-Kay, J. D., & Davidson, A. R. (1999). A simple in vivo assay for increased protein solubility. Protein Science, 8(9), 1908-1911. (doi:10.1110/ps.8.9.1908). Modarres, H. P., Mofrad, M. R., & Sanati-Nezhad, A. (2016). Protein thermostability engineering. RSC Advances, 6(116), 115252-115270. (doi:10.1039/C6RA16992A). Mohammadi, M., As’habi, M. A., Salehi, P., Yousefi, M., Nazari, M., & Brask, J. (2018). Immobilization of laccase on epoxy-functionalized silica and its application in biodegradation of phenolic compounds. International Journal of Biological Macromolecules, 109, 443-447. (doi:https://doi.org/10.1016/j.ijbiomac.2017.12.102). Monstadt, G. M., & Holldorf, A. W. (1991). Arginine deiminase from Halobacterium salinarium. Purification and properties. The Biochemical journal, 273(3), 739-745. (doi:10.1042/bj2730739). Ni, Y., Li, Z., Sun, Z., Zheng, P., Liu, Y., Zhu, L., & Schwaneberg, U. (2009). Expression of arginine deiminase from Pseudomonas plecoglossicida CGMCC2039 in Escherichia coli and its anti-tumor activity. Current Microbiology, 58(6), 593-598. (doi:10.1007/s00284-009-9376-0). Niesen, F. H., Berglund, H., & Vedadi, M. (2007). The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nature Protocols, 2(9), 2212-2221. (doi:10.1038/nprot.2007.321). Noh, E. J., Kang, S. W., Shin, Y. J., Kim, D. C., Park, I. S., Kim, M. Y., Chun, B. G., & Min, B. H. (2002). Characterization of mycoplasma arginine deiminase expressed in E. coli and its inhibitory regulation of nitric oxide synthesis. Molecules and Cells, 13(1), 137-143. Novak, L., Zubacova, Z., Karnkowska, A., Kolisko, M., Hroudova, M., Stairs, C. W., Simpson, A. G., Keeling, P. J., Roger, A. J., Cepicka, I., & Hampl, V. (2016). Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes. BMC Evolutionary Biology, 16(1), 197. (doi:10.1186/s12862-016-0771-4). Ordu, E. B., Sessions, R. B., Clarke, A. R., & Karagüler, N. G. (2013). Effect of surface electrostatic interactions on the stability and folding of formate dehydrogenase from Candida methylica. Journal of Molecular Catalysis B: Enzymatic, 95, 23-28. (doi:https://doi.org/10.1016/j.molcatb.2013.05.020). Park, B. S., Hirotani, A., Nakano, Y., & Kitaoka, S. (1984). Purification and some properties of arginine deiminase in Euglena gracilis Z. Agricultural and Biological Chemistry, 48(2), 483-489. (doi:10.1080/00021369.1984.10866150). Perry, L. J., & Wetzel, R. (1984). Disulfide bond engineered into T4 lysozyme: stabilization of the protein toward thermal inactivation. Science, 226(4674), 555-557. (doi:10.1126/science.6387910). Planesse, C., Nativel, B., Iwema, T., Gasque, P., Robert-Da Silva, C., & Viranaïcken, W. (2015). Recombinant human HSP60 produced in ClearColi™ BL21(DE3) does not activate the NFκB pathway. Cytokine, 73(1), 190-195. (doi:https://doi.org/10.1016/j.cyto.2015.01.028). Plimmer, R. H. (1916). The analysis of proteins. I. The estimation of arginine by decomposition with alkali. Biochemical Journal, 10(1), 115-119. Prakash, O., & Jaiswal, N. (2010). Alpha-amylase: an ideal representative of thermostable enzymes. Applied Biochemistry and Biotechnology, 160(8), 2401-14. (doi: 10.1007/s12010-009-8735-4). Rahman, M. A., Culsum, U., Kumar, A., Gao, H., & Hu, N. (2016). Immobilization of a novel cold active esterase onto Fe3O4∼cellulose nano-composite enhances catalytic properties. International Journal of Biological Macromolecules, 87, 488-497. (doi:10.1016/j.ijbiomac.2016.03.016). Rajaei, S., Noghabi, K. A., Sadeghizadeh, M., & Zahiri, H. S. (2015). Characterization of a pH and detergent-tolerant, cold-adapted type I pullulanase from Exiguobacterium sp. SH3. Extremophiles, 19(6), 1145-1155. (doi:10.1007/s00792-015-0786-6). Rigoldi, F., Donini, S., Redaelli, A., Parisini, E., & Gautieri, A. (2018). Engineering of thermostable enzymes for industrial applications. APL bioengineering, 2(1), 011501. Rimando, A. M., & Perkins-Veazie, P. M. (2005). Determination of citrulline in watermelon rind. Journal of Chromatography A, 1078(1-2), 196-200. (doi:10.1016/j.chroma.2005.05.009). Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(1), 320-324. (doi:10.1093/nar/gku316). Schoene, C., Bennett, S. P., & Howarth, M. (2016). Spyrings declassified: a blueprint for using isopeptide-mediated cyclization to enhance enzyme thermal resilience. Methods in Enzymology, 580, 149-167. (doi:10.1016/bs.mie.2016.05.004). Scott, K. A., Alonso, D. O., Sato, S., Fersht, A. R., & Daggett, V. (2007). Conformational entropy of alanine versus glycine in protein denatured states. Proceedings of the National Academy of Sciences of the United States of America, 104(8), 2661-2666. (doi:10.1073/pnas.0611182104). Song, W., Sun, X., Chen, X., Liu, D., & Liu, L. (2015). Enzymatic production of L-citrulline by hydrolysis of the guanidinium group of L-arginine with recombinant arginine deiminase. Journal of Biotechnology, 208, 37-43. (doi:10.1016/j.jbiotec.2015.05.012). Sorensen, H. P., & Mortensen, K. K. (2005). Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial Cell Factories, 4(1), 1. (doi:10.1186/1475-2859-4-1). Stepankova, V., Bidmanova, S., Koudelakova, T., Prokop, Z., Chaloupkova, R., & Damborsky, J. (2013). Strategies for stabilization of enzymes in organic solvents. ACS Catalysis, 3(12), 2823-2836. (doi:10.1021/cs400684x). Su, L., Ma, Y., & Wu, J. (2015). Extracellular expression of natural cytosolic arginine deiminase from Pseudomonas putida and its application in the production of L-citrulline. Bioresource Technology, 196, 176-183. (doi:10.1016/j.biortech.2015.07.081). Trevino, S. R., Scholtz, J. M., & Pace, C. N. (2008). Measuring and increasing protein solubility. Journal of Pharmaceutical Sciences, 97(10), 4155-4166. (doi:10.1002/jps.21327). Tseng, W. C., Lin, J. W., Wei, T. Y., & Fang, T. Y. (2008). A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method. Analytical Biochemistry, 375(2), 376-378. (doi:10.1016/j.ab.2007.12.013). Vaghari, H., Jafarizadeh-Malmiri, H., Mohammadlou, M., Berenjian, A., Anarjan, N., Jafari, N., & Nasiri, S. (2016). Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnology letters, 38(2), 223-233. (doi:10.1007/s10529-015-1977-z). Villalonga, M. L., Reyes, G., & Villalonga, R. (2004). Metal-induced stabilization of trypsin modified with α-oxoglutaric Acid. Biotechnology letters, 26(3), 209-212. (doi:10.1023/B:BILE.0000013713.43536.85). Vinogradov, V. V., & Avnir, D. (2015). Exceptional thermal stability of industrially-important enzymes by entrapment within nano-boehmite derived alumina. RSC Advances, 5(15), 10862-10868. doi:10.1039/C4RA10944A Viranaicken, W., Nativel, B., Krejbich-Trotot, P., Harrabi, W., Bos, S., El Kalamouni, C., Roche, M., Gadea, G., Despres, P. (2017). ClearColi BL21(DE3)-based expression of Zika virus antigens illustrates a rapid method of antibody production against emerging pathogens. Biochimie, 142, 179-182. (doi:10.1016/j.biochi.2017.09.011). Vivoli, M., Novak, H. R., Littlechild, J. A., & Harmer, N. J. (2014). Determination of protein-ligand interactions using differential scanning fluorimetry. Journal of Visualized Experiments, 91, 51809. (doi:10.3791/51809). Ward, O. P., & Moo-Young, M. (1988). Thermostable enzymes. Biotechnology Advances, 6(1), 39-69. (doi:10.1016/0734-9750(88)90573-3). Watson, J. V., & Dive, C. (1994). Enzyme kinetics. Methods in Cell Biology, 41, 469-507. (https://www.ncbi.nlm.nih.gov/pubmed/7861977). Wijma, H. J., Floor, R. J., Jekel, P. A., Baker, D., Marrink, S. J., & Janssen, D. B. (2014). Computationally designed libraries for rapid enzyme stabilization. Protein engineering, Design & Selection, 27(2), 49-58. (doi:10.1093/protein/gzt061). Xu, Z., Cen, Y. K., Zou, S. P., Xue, Y. P., & Zheng, Y. G. (2020). Recent advances in the improvement of enzyme thermostability by structure modification. Critical Reviews in Biotechnology, 40(1), 83-98. (doi:10.1080/07388551.2019.1682963). Xu, Z., Colosimo, A., & Gruenert, D. C. (2003). Site-directed mutagenesis using the megaprimer method. In: Casali, N., & Preston, A. (eds.). E. coli Plasmid Vectors: Methods and Applications. Totowa: Humana Press; p. 203-207. Yang, W., & Jiang, L. H. (2013). Site-directed mutagenesis to study the structure-function relationships of ion channels. Methods in Molecular Biology, 998, 257-266. (doi:10.1007/978-1-62703-351-0_20). Yu, H., & Huang, H. (2014). Engineering proteins for thermostability through rigidifying flexible sites. Biotechnology advances, 32(2), 308-315. Yu, H., Yan, Y., Zhang, C., & Dalby, P. A. (2017). Two strategies to engineer flexible loops for improved enzyme thermostability. Scientific Reports, 7, 41212. (doi:10.1038/srep41212). Yuen, C. M., & Liu, D. R. (2007). Dissecting protein structure and function using directed evolution. Nature Methods, 4(12), 995-997. (doi:10.1038/nmeth1207-995). Zeng, F., Zhang, S., Hao, Z., Duan, S., Meng, Y., Li, P., Dong, J., & Lin, Y. (2018). Efficient strategy for introducing large and multiple changes in plasmid DNA. Scientific Reports, 8(1), 1714. (doi:10.1038/s41598-018-20169-8).
|