|
黃健雄,2000,重組類胰島素成長因子之量產、純化及對笛鯛魚類成長之研究—重組類胰島素成長因子之生產與純化。行政院國家科學委員會專題研究計畫成果報告,台北市。 Åkesson, M., Hagander, P., & Axelsson J.P. (2000). Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding. Biotechnology and Bioengineering, 73(3), 223-230. Assenberg, R., Wan, P. T., Geisse, S., & Mayr, L. M. (2013). Advances in recombinant protein expression for use in pharmaceutical research. Current Opinion in Structural Biology, 23(3), 393-402. Babbal, Adivitiya, Mohanty S., Khasa, Y. P. (2019). Bioprocess optimization for the overproduction of catalytic domain of ubiquitin-like protease 1 (Ulp1) from S. cerevisiae in E. coli fed-batch culture. Enzyme and Microbial Technology, 120, 98-109. Bindal, S., Dagar, V. K., Saini, M., Khasa, T. P., & Gupta R. (2018). High level extracellular production of recombinant γ-glutamyl transpeptidase from Bacillus licheniformis in Escherichia coli fed-batch culture. Enzyme and Microbial Technology, 116, 23-32. Block, H., Maertens, B., Spriestersbach, A., Brinker, N., Kubicek, J., Fabis, R., Labahn, J., & Schäfer, F. (2009). Immobilized-metal affinity chromatography (IMAC): a review. Methods in Enzymology, 463, 439-73. Bren, A., Park, J. O., Towbin, B. D., Dekel, E., Rabinowitz, J. D., & Alon, U. (2016). Glucose becomes one of the worst carbon sources for E.coli on poor nitrogen sources due to suboptimal levels of cAMP. Scientific reports, 6, 24834. Cardoso, V. M., Campani, G., Santos, M. P., Silva, G. G., Pires, M. C., Gonçalves, V. M., Giordano, R. C., Sargo, C.R., Horta, A.C.L., & Zangirolami, T. C. (2020). Cost analysis based on bioreactor cultivation conditions: production of a soluble recombinant protein using Escherichia coli BL21(DE3). Biotechnology Reports, 26, 00441. Carranza-Saavedra, D., Henao, C. P. S., Montoya J. E. Z. (2021). Kinetic analysis and modeling of L-valine production in fermentation batch from E. coli using glucose, lactose and whey as carbon sources. Biotechnology Reports, 31, 642. Chang M., Hsu, H. Y., & Lee, H. J. (2005). Dye-free protein molecular weight markers. Electrophoresis, 25, 3062-3068. Chang, H. N., Jung, K., Choi, J., Lee, J. C., & Woo, H. C. (2014). Multi-stage continuous high cell density culture systems: A review. Biotechnology Advances, 32(2), 514-525 Chen, X., Zaro, J. L., & Shen, W. C. (2013). Fusion protein linkers: property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357-1369. Choi, J. H., Keum, K. C., & Lee, S. Y. (2006) Production of recombinant proteins by high cell density culture of Escherichia coli. Chemical Engineering Science. 61(3). 876-885. Compton, M. M., Lapp, S. A., & Pedemonte, R. (2002). Generation of multicolored, prestained molecular weight markers for gel electrophoresis. Electrophoresis, 23, 3262-3265. Deckers, M., Deforce, D., Fraiture, M. A., & Roosens, N. H. C. (2020) Genetically Modified Micro-Organisms for Industrial Food Enzyme Production: An Overview. Foods, 9(3), 326. Duong-Ly, K. C., & Gabelli, S. B. (2014). Chapter Seven - Salting out of Proteins Using Ammonium Sulfate Precipitation. Methods in Enzymology, 541, 85-94. Gay, G., Wagner, D. T., Keatinge-Clay, A. T., & Gay, D. C. (2014). Rapid modification of the pET-28 expression vector for ligation independent cloning using homologous recombination in Saccharomyces cerevisiae. Plasmid, 76, 66-71. Glazyrina, J., Krause, M., Junne, S., Glauche, F., Strom, D., & Neubauer, P. (2012). Glucose-limited high cell density cultivations from small to pilot plant scale using an enzyme-controlled glucose delivery system. New Biotechnology, 29(2), 235-242. Guckeisen, T., Hosseinpour, S., & Peukert, W. (2021). Effect of pH and urea on the proteins secondary structure at the water/air interface and in solution. Journal of Colloid and Interface Science, 590, 38-49. Han, J. C., & Han, G. Y. (1994). A Procedure for Quantitative Determination of Tris(2-Carboxyethyl)phosphine, an Odorless Reducing Agent More Stable and Effective Than Dithiothreitol. Analytical Biochemistry, 220(1), 5-10. Han, X., Ning, W., Ma, X., Wang, X., & Zhou, K. (2020). Improving protein solubility and activity by introducing small peptide tags designed with machine learning models. Metabolic Engineering Communications, 11, 00138. Hanafi, M. F., & Sapawe, N. (2020). A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Materials Today: Proceedings, 31(1), A141-A150. Hartman, B. K., & Udenfriend, S. (1969). A method for immediate visualization of proteins in acrylamide gels and its use for preparation of antibodies to enzymes. Analytical Biochemistry, 30(3), 391-394. Hoang, V. Q. C., Nguyen, T. H., & Tran L. T. (2008). Studying on high density cell cultivation of E. coli BL21(DE3)/pET43Ins by fed-batch. Journal of Biotechnology, 136, 516-517. Hong, Y., & Brown, D. G. (2006). Cell surface acid–base properties of Escherichia coli and Bacillus brevis and variation as a function of growth phase, nitrogen source and C:N ratio. Colloids and Surfaces B: Biointerfaces, 50(2), 112-119. Hori, C., Yamazaki, T., Ribordy, G., Takisawa, K., Matsumoto, K., Ooi, T., Zinn, M., & Taguchi, S. (2019). High-cell density culture of poly(lactate-co-3-hydroxybutyrate)-producing Escherichia coli by using glucose/xylose-switching fed-batch jar fermentation. Journal of Bioscience and Bioengineering, 127(6), 721-725. Hunt, J. P., Zhao, E. L., Soltani, M., Frei M., J., Nelson, A. D., & Bundy, B. C. (2019). STreamlining the preparation of “endotoxin-free” ClearColi cell extract with autoinduction media for cell-free protein synthesis of the therapeutic protein crisantaspase. Synthetic and Systems Biotechnology, 4(4), 220-224. Hunt, J. P., Zhao, E. L., Soltani, M., Frei, M., Nelson, J. A. D., & Bundy B. C. (2019). STreamlining the preparation of “endotoxin-free” ClearColi cell extract with autoinduction media for cell-free protein synthesis of the therapeutic protein crisantaspase. Synthetic and Systems Biotechnology, 4(4), 220-224. Jackowski,G., & Liew, C. C. (1980). Fluorescamine staining of nonhistone chromatin proteins as revealed by two-dimensional polyacrylamide gel electrophoresis. Analytical Biochemistry, 102(2), 321-325. Jaume, P., Carles, M. & Josep, L. (2008). Induction strategies in fed-batch cultures for recombinant protein production in Escherichia coli: Application to rhamnulose 1-phosphate aldolase. Biochemical Engineering Journal. 41(2). 181-187. Jin, L. T., Li, X. K., Cong, W. T., Hwang, S. Y., & Choi, J. K. (2008). Previsible silver staining of protein in electrophoresis gels with mass spectrometry compatibility. Analytical Biochemistry, 383(2), 137-143. Johnston, W., Cord-Ruwisch, R., CooneyM. J. (2002). Industrial control of recombinant E. coli fed-batch culture: new perspectives on traditional controlled variables. Bioprocess and Biosystems Engineering, 25, 111-120. Joshi, P. R. H., Cervera, L., Ahmed, I., Kondratov, O., Zolotukhin, S., Schrag, J., Chahal, P. S., & Kamen, A. A. (2019). Achieving high-yield production of functional aav5 gene delivery vectors via fedbatch in an insect cell-one baculovirus system. Molecular Therapy—Methods & Clinical Development, 13, 279-289. Kaur, J., Kumar, A., & Kaur, J. (2018). Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. International Journal of Biological Macromolecules, 106, 803-822. Khan, F., He, M., & Taussig, M. J. (2006). Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on Ni-nitrilotriacetic acid surfaces. Analytical Chemistry, 78, 3072-3079 Kido, M., Yamanaka, K., Mitani, T., Niki, H., Ogura, T., & Hiraga, S. (1996). RNase E polypeptides lacking a carboxyl-terminal half suppress a mukB mutation in Escherichia coli. Journal of Bacteriology, 178(13), 3917-3925. Kumar, G. (2018). Multicolored prestained standard protein marker generation using a variety of remazol dyes for easy visualization of protein bands during SDS-PAGE. Methods in Molecular Biology, 1853, 19-25. Kumar, S., Birah, A., Chaudhary, B., Burma, P. K., Gupta, G. P., & Pental, D. (2005). Plant codon optimized cry genes of Bacillus thuringiensis can be expressed as soluble proteins in Escherichia coli BL21 Codon Plus strain as NusA-Cry protein fusions. Journal of Invertebrate Pathology, 88(1), 83-86. Kumar, S., Jain, K. K., Singh, A., Panda, A. K., & Kuhad, R. C. (2015). Characterization of recombinant pectate lyase refolded from inclusion bodies generated in E. coli BL21(DE3). Protein Expression and Purification, 110, 43-51. Kumari, M., & Anji, A. (2019). Urea can inhibit efficient reduction and alkylation of protein dimers in solution demonstrated by the beta subunit of alpha glucosidase II. Analytical Biochemistry, 566, 20-22. Lee, S. H., & Altenberg, G. A. (2003). Expression of functional multidrug-resistance protein 1 in Saccharomyces cerevisiae: effects of N- and C-terminal affinity tags. Biochemical and Biophysical Research Communications. 306(3). 644-649. Levison P. R. (2003). Large-scale ion-exchange column chromatography of proteins: Comparison of different formats. Journal of Chromatography B. 790(1-2), 17-33. Li, C., Yue, Z., Feng, F., Xi, C., Zang, H., An, X., Liu, K. (2016). A novel strategy for acetonitrile wastewater Treatment by using a recombinant bacterium with biofilm-forming and nitrile-degrading capability. Chemosphere, 161, 224-232. Liu, B. L., Ooi, C. W., Ng, I. S., Show, P. L., Lin, K. J., & Chang, Y. K. (2020). Effective purification of lysozyme from chicken egg white by tris (hydroxymethyl) aminomethane affinity nanofiber membrane. Food Chemistry, 327, 127038. Lubomirsky, E., Khodabandeh, A., Preis, J., Susewind, M., Hofe, T., Hilder, E. F., & Arrua, R. D. (2021). Polymeric stationary phases for size exclusion chromatography: A review. Analytica Chimica Acta, 1151, 338244. Malash, M. N., Hussein, N. A., Muawia, S., Nasr, M. I., & Siam, R. (2020). An optimized protocol for high yield expression and purification of an exTremophilic protein. Protein Expression and Purification. 169. 105585. Masoodi, K. Z., Lone,S. M., & Rasool,R. S.(2021). Chapter 11 - Transformation of E. coli by electroporation,Editor(s): Khalid Z. Masoodi, Sameena Maqbool Lone, Rovidha Saba Rasool. Advanced Methods in Molecular Biology and Biotechnology, 63-67. Matthey, B., Engert, A., Klimka, A., Diehl, V., & Barth, S. (1999). A new series of pET-derived vectors for high efficiency expression of Pseudomonas exotoxin-based fusion proteins. Gene, 229(1), 145-153. Morales-Sanfrutos, J., Lopez-Jaramillo, J., Ortega-Munoz, M., Megia-Fernandez, A., Perez-Balderas, F., Hernandez-Mateo, F., & Santoyo-Gonzalez, F. (2010). Vinyl sulfone: a versatile function for simple bioconjugation and immobilization. Organic and Biomolecular Chemistry, 8(3), 667-675. Neris, R. L. S., Kaur, A., & Gomes, A. V. (2020). Incorrect molecular weights due to inaccurate prestained protein molecular weight markers that are used for gel electrophoresis and western blotting. bioRxiv. Papić, L., Rivas, J., Toledo, S., & Romero, J. (2018). Double-stranded RNA production and the kinetics of recombinant Escherichia coli HT115 in fed-batch culture. Biotechnology Reports, 20, 00292. Planesse, C., Nativel, B., Iwema, T., Gasque, P., Silva, C. R., & Viranaïcken, W. (2015). Recombinant human HSP60 produced in ClearColi™ BL21(DE3) does not activate the NFκB pathway. Cytokine, 73(1), 190-195. Retamal, C., Dewasme, L., -L. Hantson, A., & Wouwer A. V. (2018). Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures. Biochemical Engineering Journal, 135, 22-35. Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology, 5, 172. Ruan, A., Ren, C., & Quan, S. (2020). Conversion of the molecular chaperone Spy into a novel fusion tag to enhance recombinant protein expression. Journal of Biotechnology, 307, 131-138. Segovia-Trinidad, C. L., Quaas, B., Li, Z., Lavrentieva, A., Roger, Y., Scheper, T., Hoffmann, A., & Rinas, U. (2021). Refolding, purification, and characterization of constitutive-active human-Smad8 produced as inclusion bodies in ClearColi® BL21 (DE3). Protein Expression and Purification, 184, 105878 Shilling, P. J., Mirzadeh, K., Cumming, A. J., Widesheim, M., Kock, Z., & Daley, D. O. (2020). Improved designs for pET expression plasmids increase protein production yield in Escherichia coli. Communications Biology, 3(1), 214. Shin, C. S., Hong, M. S., Bae, C. S., Lee, J. (1997). Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21 (DE3) [pET-3aT2M2]. Biotechnology Progress. 13(3), 249-257. Smirnova, G. V., Tyulenev, A. V.,Muzyka, N. G., & Oktyabrsky, O. N. (2020). Study of the relationship between extracellular superoxide and glutathione production in batch cultures of Escherichia coli. Research in Microbiology, 171(8), 301-310. Stanbury, P. F., Whitaker, A., & Hall, S. J. (2017). Chapter 2 - Microbial growth kinetics. Principles of Fermentation Technology (Third Edition), 21-74. Thelu J. (1988). Trans-elution: A method for the purification of components of complex biological extracts. Analytical Biochemistry, 172(1), 124-129. Wang, H., Wang, F., Wang, W., Yao, X., Wei, D., Cheng H., & Deng, Z. (2014). Improving the expression of recombinant proteins in E. coli BL21 (DE3) under acetate sTress: an alkaline pH shift approach. PLoS ONE. 9(11), 112777. Wang, S. S., Liu, K. N., & Lu, Y. C. (2009). Amyloid fibrillation of hen egg-white lysozyme is inhibited by TCEP. Biochemical and Biophysical Research Communications. 381(4), 639-642. Wang, X., Fu, M., Ren, J., & Qu, X. (2007). Evaluation of different culture conditions for high-level soluble expression of human cyclin A2 with pET vector in BL21 (DE3) and spectroscopic characterization of its inclusion body structure. Protein Expression and Purification, 56(1), 27-34. Watson, J. F., & García-Nafría, J. (2019). In vivo DNA assembly using common laboratory bacteria: A re-emerging tool to simplify molecular cloning. Journal of Biological Chemistry, 294(42), 15271-15281. Weidekamm, E., Wallach, D. F. H., & Flückiger, R. (1973). A new sensitive, rapid fluorescence technique for the determination of proteins in gel electrophoresis and in solution. Analytical Biochemistry, 54(1), 102-114. Wein, T., Wang, Y., Hülter, N. F., Hammerschmidt, K., & Dagan, T. (2020). Antibiotics interfere with the evolution of plasmid stability. Current Biology. 21, 61-72. Yang, Y., Mitri, K., Zhang, C., Boysen, R. I., & Hearn, M. T. W. (2019). Promiscuity of host cell proteins in the purification of histidine tagged recombinant xylanase A by IMAC procedures: A case study with a Ni2+-tacn-based IMAC system. Protein Expression and Purification, 162, 51-61. Yuan, S., Hu, J., Liu, Z., Hong Y., & Wang, X. (2020). Modeling microalgae growth in continuous culture: Parameters analysis and temperature dependence. Energy, 195, 116961. Zhang, J., Yun, J., Shang, Z., Zhang, X., & Pan, B. (2009). Design and optimization of a linker for fusion protein construction. Progress in Natural Science, 19(10), 1197-1200. Zhao, H. L., Yao, X. Q., Xue, C., Wang,Y., Xiong X. H., & Liu, Z. M. (2008). Increasing the homogeneity, stability and activity of human serum albumin and interferon-α2b fusion protein by linker engineering. Protein Expression and Purification, 16(1), 73-77. Zhao, W., Liu, L., Du, G., & Liu, S. (2018). A multifunctional tag with the ability to benefit the expression, purification, thermostability and activity of recombinant proteins. Journal of Biotechnology, 283, 1-10.
|