于博芮 (2012). 最新傷口護理學, 華杏出版社
林佑穗 (2000). 新編蓋統醫用生理學, 合記圖書出版社
洪詩涵 (2007) 多醣類基材之敷料研究, 國立陽明大學醫學工程研究所碩士論文林映汝 (2015) 評估褐藻硫酸多醣/幾丁聚醣複合薄膜為傷口敷料之潛力。國立臺灣海洋大學食品科學研究所碩士學位論文。Albu, M. G., Ferdes, M., Kaya, D. A., Ghica, M. V., Titorencu, I., Popa, L., & Albu, L. (2012). Collagen Wound Dressings with Anti-Inflammatory Activity. Molecular Crystals and Liquid Crystals, 555, 271-279.
Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2013). Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. Journal of Food Engineering, 114, 303-312.
Boonkong, W., Petsom, A. & Thongchul, N. (2013). Rapidly stopping hemorrhage by enhancing blood clotting at an opened wound using chitosan/polylactic acid/polycaprolactone wound dressing device. Journal of Materials Science: Materials in Medicine 24, 1581-1593.
Chen, S. C., Wu, Y. C., Mi, F. L., Lin, Y. H., Yu, L. C., & Sung, H. W. (2004). A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. Journal of Controlled Release, 96, 285-300.
Choi, J. I., & Kim, H. J. (2013). Preparation of low molecular weight fucoidan by gamma-irradiation and its anticancer activity. Carbohydrate Polymer, 97, 358-362.
Dodgson, K. S., & Price, R. G. (1962). A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochemical Journal, 84, 106-110.
Falanga, V. (2005). Wound healing and its impairment in the diabetic foot. The Lancet, 366(9498), 1736-1743.
Falanga, V., Isaacs, C., Paquette, D., Downing, G., Kouttab, N., Butmarc, J., & HardinYoung, J. (2002). Wounding of bioengineered skin: cellular and molecular aspects after injury. Journal of Investigative Dermatology, 119, 653-660.
Hashemi Doulabi, A., Mirzadeh, H., Imani, M., & Samadi, N. (2013). Chitosan/polyethylene glycol fumarate blend film: Physical and antibacterial properties. Carbohydrate Polymer, 92, 48-56.
Hou, Y., Wang, J., Jin, W., Zhang, H., & Zhang, Q. (2012). Degradation of Laminaria japonica fucoidan by hydrogen peroxide and antioxidant activities of the degradation products of different molecular weights. Carbohydrate Polymer, 87, 153-159.
Jayakumar, R., Prabaharan, M., Nair, S. V., Tokura, S., Tamura, H., & Selvamurugan, N. (2010). Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Progress in Materials Science, 55, 675-709.
Ji, J., Hao, S., Wu, D., Huang, R., & Xu, Y. (2011). Preparation, characterization and in vitro release of chitosan nanoparticles loaded with gentamicin and salicylic acid. Carbohydrate Polymers, 85, 803-808.
Jin, J., Song, M., & Hourston, D. J. (2004). Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules, 5, 162–168.
Jo, B. W., & Choi, S. K. (2014). Degradation of fucoidans from Sargassum fulvellum and their biological activities. Carbohydrate Polymer, 111, 822-829.
Kim, J. Y., Jun, J. H., Kim, S. J., Hwang, K. M., Choi, S. R., Han, S. D., & Park, E. S. (2015). Wound healing efficacy of a chitosan-based film-forming gel containing tyrothricin in various rat wound models. Archives of Pharmacal Research, 38, 229-238.
Kimura, R., Rokkaku, T., Takeda, S., Senba, M., & Mori, N. (2013). Cytotoxic Effects of Fucoidan Nanoparticles against Osteosarcoma. Marine Drugs, 11, 4267.
Lamke, L. O., Nilsson, G. E., & Reithner, H. L. (1977). The evaporative water loss from burns and the water-vapour permeability of grafts and artificial membranes used in the treatment of burns. Burns, 3, 159-165
Lee, Y.H., Chang, J.J., Chien, C.T., Yang, M.C., & Chien, H.F. (2012a). Antioxidant Sol-Gel Improves Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats. Experimental Diabetes Research, 2012, 11.
Lee, Y.H., Chang, J.J., Yang, M.C., Chien, C.T., & Lai, W.F. (2012b). Acceleration of wound healing in diabetic rats by layered hydrogel dressing. Carbohydrate Polymer, 88, 809-819.
Lee, S.H., Ko, C.I., Ahn, G., You, S., Kim, J.S., Heu, M. S., Kim, J., Jee, Y., & Jeon, Y.J. (2012c). Molecular characteristics and anti-inflammatory activity of the fucoidan extracted from Ecklonia cava. Carbohydrate Polymers, 89, 599-606.
Li, B., Lu, F., Wei, X. & Zhao, R. (2008). Fucoidan: Structure and bioactivity. Molecules, 13, 1671-1695.
Li, Q., Wang, X., Lou, X., Yuan, H., Tu, H., Li, B., & Zhang, Y. (2015a). Genipin-crosslinked electrospun chitosan nanofibers: Determination of crosslinking conditions and evaluation of cytocompatibility. Carbohydrate Polymer, 130, 166-74.
Li, Y. H., Cheng, C. Y., Wang, N. K., Tan, H. Y., Tsai, Y. J., Hsiao, C. H., Ma, D. H., & Yeh, L. K. (2015b). Characterization of the modified chitosan membrane cross-linked with genipin for the cultured corneal epithelial cells. Colloids Surf B Biointerfaces, 126, 237-44.
Lin, W. C., Lien, C. C., Yeh, H. J., Yu, C. M., & Hsu, S. H. (2013). Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydrate Polymer, 94, 603-611.
Liu, R., Xu, X., Zhuang, X., & Cheng, B. (2014). Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohydrate Polymer, 101, 1116-1121.
Ma, P., Liu, H.T., Wei, P., Xu, Q.S., Bai, X.F., Du, Y.G., & Yu, C. (2011). Chitosan oligosaccharides inhibit LPS-induced over-expression of IL-6 and TNF-α in RAW264.7 macrophage cells through blockade of mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways. Carbohydrate Polymer, 84, 1391-1398.
Malihan, L. B., Nisola, G. M., & Chung, W.J. (2012). Brown algae hydrolysis in 1-n-butyl-3-methylimidazolium chloride with mineral acid catalyst system. Bioresource Technology, 118, 545-552.
Martin, P. (1997). Wound healing--aiming for perfect skin regeneration. Science, 276, 75-81.
Meng, X., Tian, F., Yang, J., He, C.-N., Xing, N., & Li, F. (2010). Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application. Journal of Materials Science: Materials in Medicine, 21, 1751-1759.
Mhadhebi, L., Mhadhebi, A., Robert, J., & Bouraoui, A. (2014). Antioxidant, Anti-inflammatory and Antiproliferative Effects of Aqueous Extracts of Three Mediterranean Brown Seaweeds of the Genus Cystoseira. Iranian Journal of Pharmaceutical Research, 13, 207-220.
Mi, F. L., Tan, Y. C., Liang, H. C., Huang, R. N., & Sung, H. W. (2001). In vitro evaluation of a chitosan membrane cross-linked with genipin. Journal of Biomaterials Science-Polymer Edition, 12, 835–850.
Mi, F. L., Tan, Y. C., Liang, H. F., and Sung, H. W. (2002). In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials, 23, 181-91.
Mi, F. L., Shyu, S. S., & Peng, C. K. (2005). Characterization of ring-opening polymerization of genipin and pH-dependent crosslinking reactions between chitosan and genipin. Journal of Polymer Science. Part A: Polymer Chemistry, 43, 1985–2000.
Muzzarelli, R. A. A. (2009). Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymer, 77, 1-9.
Murakami, K., Aoki, H., Nakamura, S., Nakamura, S., Takikawa, M., Hanzawa, M., Kishimoto, S., & Hattori, H (2010). Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials, 31, 83-90.
Nishi, C., Nakajima, N., & Ikada, Y. (1995). In vivo evaluation of cytotoxicity of diepoxy compounds used for biomaterial modification. Journal of Biomedical Material Research, 29, 829–834.
Park, J. E., & Barbul, A. (2004). Understanding the role of immune regulation in wound healing. The American Journal of Surgery, 187, 11-16.
Queen, D., Gaylor, J. D., Evans, J. H., Courtney, J. M., & Reid, W. H. (1987). The preclinical evaluation of the water vapour transmission rate through burn wound dressings. Biomaterials, 8, 367-371.
Regiel, A., Irusta, S., Kyziol, A., Arruebo, M., & Santamaria, J. (2013). Preparation and characterization of chitosan-silver nanocomposite films and their antibacterial activity against Staphylococcus aureus. Nanotechnology, 24, 015101.
Ribeiro, M. P., Espiga, A., Silva, D., Baptista, P., Henriques, J., Ferreira, C., & Correia, I. J. (2009). Development of a new chitosan hydrogel for wound dressing. Wound Repair and Regeneration, 17, 817-824.
Schuchmann, M. N., & Von Sonntag, C. (1978). The effect of oxygen on the OH-radical-induced scission of the glycosidic linkage of cellobiose. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 34, 397-400.
Sezer, A. D., Cevher, E., Hatipoglu, F., Ogurtan, Z., Bas, A. L., & Akbuga, J. (2008). Preparation of fucoidan-chitosan hydrogel and its application as burn healing accelerator on rabbits. Biological and Pharmaceutical Bulletin, 31, 2326-2333.
Sikareepaisan, P., Ruktanonchai, U., & Supaphol, P. (2011). Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings. Carbohydrate Polymer, 83, 1457-1469.
Singer, A. J., & Clark, R. A. (1999). Cutaneous wound healing. The New England Journal of Medicine, 341(10), 738-746.
Stojkovska, J., Kostic, D., Jovanovic, Z., Vukasinovic-Sekulic, M., Miskovic-Stankovic, V., & Obradovic, B. (2014). A comprehensive approach to in vitro functional evaluation of Ag/alginate nanocomposite hydrogels. Carbohydrate Polymer, 111, 305-314.
Straccia, M. C., Romano, I., Oliva, A., Santagata, G., & Laurienzo, P. (2014). Crosslinker effects on functional properties of alginate/N-succinylchitosan based hydrogels. Carbohydrate Polymer, 108, 321-330.
Suresh, V., Anbazhagan, C., Thangam, R., Senthilkumar, D., Senthilkumar, N., Kannan, S., & Palani, P. (2013). Stabilization of mitochondrial and microsomal function of fucoidan from Sargassum plagiophyllum in diethylnitrosamine induced hepatocarcinogenesis. Carbohydrate Polymer, 92, 1377-1385.
Tsao, C. T., Chang, C. H., Lin, Y. Y., Wu, M. F., Wang, J. L., Young, T. H., & Hsieh, K. H. (2011). Evaluation of chitosan/γ-poly(glutamic acid) polyelectrolyte complex for wound dressing materials. Carbohydrate Polymer, 84, 812-819.
Vatankhah, E., Prabhakaran, M. P., Jin, G., Mobarakeh, L. G., & Ramakrishna, S. (2014). Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. Biomaterials Applications, 28, 909-921.
Von Sonntag, C., Dizdaroglu, M., & Schulte-Frohlinde, D. (1976). Radiation Chemistry of Carbohydrates, Vlll. γ-Radiolysis of Cellobiose in N2O-saturated Aqueous Solution. Part II. Quantitative Measurements. Mechanisms of the Radical-induced Scission of the Glycosidic Linkage. Zeitschrift für Naturforschung B, 31, 857-864.
Wang, J., Zhang, Q., Zhang, Z., Zhang, H., & Niu, X. (2010). Structural studies on a novel fucogalactan sulfate extracted from the brown seaweed Laminaria japonica. Journal of Biological Macromolecules, 47, 126-131.
Wittaya-areekul, S., & Prahsarn, C. (2006). Development and in vitro evaluation of chitosan–polysaccharides composite wound dressings. International Journal of Pharmaceutics, 313, 123-128.
Wu, G.J., Shiu, S.M., Hsieh, M.C., & Tsai, G.J. (2016). Anti-inflammatory activity of a sulfated polysaccharide from the brown alga Sargassum cristaefolium. Food Hydrocolloids, 53, 16-23.
Wu, S., Cai, R., & Sun, Y. (2012). Degradation of curdlan using hydrogen peroxide. Food Chemistry, 135, 2436-2438.
Yang, C., Chung, D., Shin, I.S., Lee, H., Kim, J., Lee, Y., & You, S. (2008). Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida. International Journal of Biological Macromolecules, 43, 433-437.
Yang, Z., Li, J. P., & Guan, H. (2004). Preparation and characterization of oligomannuronates from alginate degraded by hydrogen peroxide. Carbohydrate Polymer, 58, 115-121.
Yu, A., Niiyama, H., Kondo, S., Yamamoto, A., Suzuki, R., & Kuroyanagi, Y. (2013). Wound dressing composed of hyaluronic acid and collagen containing EGF or bFGF: comparative culture study. Journal of Biomaterials Science, Polymer Edition, 24, 1015-1026.
Zha, X.Q., Lu, C.Q., Cui, S.H., Pan, L.H., Zhang, H.L., Wang, J.H., & Luo, J.P. (2015). Structural identification and immunostimulating activity of a Laminaria japonica polysaccharide. International Journal of Biological Macromolecules, 78, 429-438.
Zhang, J., Zhang, Q., Wang, J., Shi, X., & Zhang, Z. (2009). Analysis of the monosaccharide composition of fucoidan by precolumn derivation HPLC. Chinese Journal of Oceanology and Limnology, 27, 578-582.
Zhao, X., Dong, S., Wang, J., Li, F., Chen, A., & Li, B. (2012). A comparative study of antithrombotic and antiplatelet activities of different fucoidans from Laminaria japonica. Thrombosis Research, 129, 771-778.