行政院水產試驗所電子報第 24 期。跟健康說 "藻" 褐藻醣膠之抗癌作用。
何泳翰. (2015). 比較不同的介面活性劑對重柴油乳化行為研究. 嘉南藥理大學環境資源管理系碩士論文。周書平. (2013). 以幾丁聚醣或幾丁聚醣和卵磷脂為乳化劑製備次亞麻油酸/亞
麻油酸奈米乳滴乳化液及其性質之研究. 東海大學食品科學系碩士論
文。
陳書竣. (2015). 以幾丁聚醣/褐藻醣膠奈米粒攜帶 5-氟尿嘧啶結合免疫和化學療法治療癌症. 國立台灣海洋大學食品科學系碩士論文。張為憲、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、張基郁、顏國欽、
林志城、林慶文編著 (1995)。食品化學。華香園出版社。
趙承琛 編著 (1991)。界面基礎科學 (原名:界面化學)。復文書局出版。
鄭芳宜 (2009)。微乳化技術與其應用。41:38-46。
衛生福利部食品藥物管理署 (2016)。食品添加物範圍及用量法規。
闕建全、駱錫能、盧義發、邱思魁、陳振芳、吳柏青編著 (2007)。食品化學。
新文京開發出版股份有限公司。第二版。
Abbas, S., Hayat, K., Karangwa, E., Bashari, M., & Zhang, X. (2013). An Overview of Ultrasound-Assisted Food-Grade Nanoemulsions. Food Engineering Reviews, 5, 139-157.
Acosta, E. (2009). Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Current Opinion in Colloid & Interface Science, 14, 3-15.
A.O.A.C. (1998). Official methods of analysis, 16th Ed. Association of Official Analytical Chemists. Washington DC, USA.
Branen, A. (1975). Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. Journal of the American Oil Chemists’ Society, 52, 59-63.
Bose, S., & Saha, S. K. (2003). Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique. Chemistry of Materials, 15, 4464-4469.
Chang, Y., & McClements, D. J. (2015). Interfacial deposition of an anionic polysaccharide (fucoidan) on protein-coated lipid droplets: Impact on the stability of fish oil-in-water emulsions. Food Hydrocolloids, 51, 252-260.
Chen, X., Li, W., Zhao, Q., Selomulya, C., Zhu, X., & Xiong, H. (2016). Physical and Oxidative Stabilities of O/W Emulsions Formed with Rice Dreg Protein Hydrolysate: Effect of Xanthan Gum Rheology. Food and Bioprocess Technology, 20, 1-11.
Chen, L., Remondetto, G. E., & Subirade, M. (2006). Food protein-based materials as nutraceutical delivery systems. Trends in Food Science & Technology, 17, 272-283.
Cho, Y. H., & McClements, D. J. (2009). Theoretical stability maps for guiding preparation of emulsions stabilized by protein− polysaccharide interfacial complexes. Langmuir, 25, 6649-6657.
Cucheval, A., & Chow, R. C. Y. (2008). A study on the emulsification of oil by power ultrasound. Ultrasonics Sonochemistry, 15, 916-920.
Cunnane, S. C., Ganguli, S., Menard, C., Liede, A. C., Hamadeh, M. J., Chen, Z. Y., Wolever, T. M., & Jenkins, D. J. (1993). High α-linolenic acid flaxseed (Linum usitatissimum): some nutritional properties in humans. British Journal of Nutrition, 69, 443-453.
Das, K., & Kinsella, J. (1990). Stability of food emulsions: physicochemical role of protein and nonprotein emulsifiers. Advances in Food and Nutrition Research, 34, 126-135.
Das, U. N. (2006). Essential fatty acids-a review. Current Pharmaceutical Biotechnology, 7, 467-482.
De Souza, M. C. R., Marques, C. T., Dore, C. M. G., da Silva, F. R. F., Rocha, H. A. O., & Leite, E. L. (2007). Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. Journal of Applied Phycology, 19, 153-160.
Daun, J. K., Barthet, V. J., Chornick, T., Duguid, S., Thompson, L., & Cunnane, S. (2003). Structure, composition, and variety development of flaxseed. Flaxseed in Human Nutrition(Ed. 2).
Elder, R. (1985). Final report on the safety assessment of sorbitan stearate, sorbitan laurate, sorbitan sesquioleate, sorbitan oleate, sorbitan tristearate, sorbitan palmitate, and sorbitan trioleate. Journal of the American College of Toxicology, 4, 65-121.
Faraji, H., Decker, E. A., & Aaron, D. K. (1991). Suppression of lipid oxidation in phosphatidylcholine liposomes and ground pork by spray-dried porcine plasma. Journal of Agricultural and Food Chemistry, 39, 1288-1290.
Farvin, K. S., Andersen, L. L., Nielsen, H. H., Jacobsen, C., Jakobsen, G., Johansson, I., & Jessen, F. (2014). Antioxidant activity of Cod (Gadus morhua) protein hydrolysates: In vitro assays and evaluation in 5% fish oil-in-water emulsion. Food Chemistry, 149, 326-334.
Farvin, K. S., & Jacobsen, C. (2013). Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chemistry, 138, 1670-1681.
Fitton, H., & Dragar, C. (2006). Method and composition for the treatment of a viral
infection. In U.S. Patent (Ed.), Marinova Party Limited (AU) A61K 4502 ed., Vol.
7056520: Marinova Party Limited (AU).
Garcıa-Ochoa, F., Santos, V., Casas, J., & Gomez, E. (2000). Xanthan gum: production, recovery, and properties. Biotechnology Advances, 18, 549-579.
Gutteridge, J. M. (1984). Ferrous ion-EDTA-stimulated phospholipid peroxidation. A
reaction changing from alkoxyl-radical-to hydroxyl-radical-dependent
initiation. Biochemical Journal, 224, 697-701.
Hamilton, M. A. H., Dawkins, G. S., & Mellowes, W. A. (2013). Xanthan gum production from sugarcane fluids. Google Patents.
Hanke, D., Zahradka, P., Mohankumar, S. K., Clark, J. L., & Taylor, C. G. (2013). A diet high in alpha-linolenic acid and monounsaturated fatty acids attenuates hepatic steatosis and alters hepatic phospholipid fatty acid profile in diet-induced obese rats. Prostaglandins, Leukotrienes and Essential Fatty Acids, 89, 391-401.
Harris, W. S., Miller, M., Tighe, A. P., Davidson, M. H., & Schaefer, E. J. (2008). Omega-3 fatty acids and coronary heart disease risk: Clinical and mechanistic perspectives. Atherosclerosis, 197, 12-24.
Hatanaka, J., Kimura, Y., Lai-Fu, Z., Onoue, S., & Yamada, S. (2008). Physicochemical and pharmacokinetic characterization of water-soluble Coenzyme Q10 formulations. The International Journal of Pharmaceutics, 363, 112-117.
Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology, 23, 543-597.
Holzwarth, G., & Ogletree, J. (1979). Pyruvate-free xanthan. Carbohydrate Research, 76, 277-280.
Holtkamp, A. D., Kelly, S., Ulber, R., & Lang, S. (2009). Fucoidans and fucoidanases—focus on techniques for molecular structure elucidation and modification of marine polysaccharides. Applied Microbiology and Biotechnology, 82, 1-11.
Hou, Y., Wang, J., Jin, W., Zhang, H., & Zhang, Q. (2012). Degradation of Laminaria japonica fucoidan by hydrogen peroxide and antioxidant activities of the degradation products of different molecular weights. Carbohydrate Polymers, 87, 153-159.
Hsieh, W. C., Chang, C. P., & Gao, Y. L. (2006). Controlled release properties of Chitosan encapsulated volatile Citronella Oil microcapsules by thermal treatments. Colloids and Surfaces B:Biointerfaces, 53, 209-214.
Jansson, P., Kenne, L., & Lindberg, B. (1975). Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydrate Research, 45, 275-282
Jin, J. O., & Yu, Q. (2015). Fucoidan delays apoptosis and induces pro-inflammatory cytokine production in human neutrophils. International Journal of Biological Macromolecules, 73, 65-71.
Jo, B. W., & Choi, S. K. (2014). Degradation of fucoidans from Sargassum fulvellum and their biological activities. Carbohydrate Polymers, 111, 822-829.
Kim, D. Y., & Shin, W.-S. (2009). Roles of fucoidan, an anionic sulfated polysaccharide on BSA-stabilized oil-in-water emulsion. Macromolecular Research, 17, 128-132.
Kim, D. Y., & Shin, W. S. (2016). Functional improvements in bovine serum albumin-fucoidan conjugate through the Maillard reaction. Food Chemistry, 190, 974-981.
Kim, K. B., Nam, Y. A., Kim, H. S., Hayes, A. W., & Lee, B. M. (2014). alpha-Linolenic acid: nutraceutical, pharmacological and toxicological evaluation. Food and Chemical Toxicology, 70, 163-178.
Komaiko, J., & McClements, D. J. (2015). Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. Journal of Food Engineering, 146, 122-128.
Lawrence, M. J., & Rees, G. D. (2012). Microemulsion-based media as novel drug
delivery systems. Advanced Drug Delivery Reviews, 64, 175-193.
Lei, B., Li-Chan, E. C., Oomah, B. D., & Mazza, G. (2003). Distribution of cadmium-binding components in flax (Linum usitatissimum L.) seed. Journal of Agricultural and Food Chemistry, 51, 814-821.
Leong, T. S. H., Wooster, T. J., Kentish, S. E., & Ashokkumar, M. (2009). Minimising oil droplet size using ultrasonic emulsification. Ultrasonics Sonochemistry, 16, 721-727.
Li, B., Liu, S., Xing, R., Li, K., Li, R., Qin, Y., Wang, X., Wei, Z., & Li, P. (2013).
Degradation of sulfated polysaccharides from Enteromorpha prolifera and
their antioxidant activities. Carbohydrate Polymers, 92, 1991-1996.
Li, P., Wang, Y., Peng, Z., She, F., & Kong, L. (2011). Development of chitosan nanoparticles as drug delivery systems for 5-fluorouracil and leucovorin blends. Carbohydrate Polymers, 85, 698-704.
Lou,C., & Tang, S.Q. (2012). Purification,separation and structural properties
analyses of laminaria japonica fucoidan.Science and Technology and Food
Industry, 33, 135-141.
Malihan, L. B., Nisola, G. M., & Chung, W. J. (2012). Brown algae hydrolysis in 1-n-butyl-3-methylimidazolium chloride with mineral acid catalyst system. Bioresource Technology, 118, 545-552.
Mak, W., Hamid, N., Liu, T., Lu, J., & White, W. L. (2013). Fucoidan from New Zealand Undaria pinnatifida: monthly variations and determination of antioxidant activities. Carbohydrate Polymers, 95, 606-614.
Mantzioris, E., & Cleland, M. J. J. R. A. G. L. G. (1994). Dietary substitution with an a-linolenic acid-rich vegetable oil increases eicosapentaenoic acid concentrations in tissues. The American Journal of Clinical Nutrition, 59, 1304-1309.
Mason, T. G., Wilking, J., Meleson, K., Chang, C., & Graves, S. (2006). Nanoemulsions: formation, structure, and physical properties. Journal of Physics: Condensed Matter, 18, 635-666.
Matsumoto, S., Hatakawa, Y., & Nakajima, A. (1991). Hydrophilic-lipophilic balance. In): Google Patents.
McClements, D. J., & Decker, E. A. (2000). Lipid Oxidation in Oil-in-Water Emulsions: Impact of Molecular Environment on Chemical Reactions in Heterogeneous Food Systems. Journal of Food Science, 65, 1270-1282.
McClements, D. J., & Li, Y. (2010). Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components. Advances in colloid and interface science, 159, 213-228.
Mei, L., McClements, D. J., & Decker, E. A. (1999). Lipid oxidation in emulsions as affected by charge status of antioxidants and emulsion droplets. Journal of Agricultural and Food Chemistry, 47, 2267-2273.
Moon, H. S., Batirel, S., & Mantzoros, C. S. (2014). Alpha linolenic acid and oleic acid additively down-regulate malignant potential and positively cross-regulate AMPK/S6 axis in OE19 and OE33 esophageal cancer cells. Metabolism, 63, 1447-1454.
Murakami, K., Aoki, H., Nakamura, S., Nakamura, S., Takikawa, M., Hanzawa, M., Kishimoto, S., Hattori, H., Tanaka, Y., & Kiyosawa, T. (2010). Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials, 31, 83-90.
Muskat, M. (1981). Physical principles of oil production.
Nakamura, S., Nambu, M., Ishizuka, T., Hattori, H., Kanatani, Y., Takase, B., Kishimoto, S., Amano, Y., Aoki, H., Kiyosawa, T., Ishihara, M., & Maehara, T. (2008). Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularization. Journal of Biomedical Materials Research Part A, 85, 619-627.
Neethirajan, S., & Jayas, D. S. (2010). Nanotechnology for the Food and Bioprocessing Industries. Food and Bioprocess Technology, 4, 39-47.
Pal, M., & Ghosh, M. (2012). Studies on comparative efficacy of alpha-linolenic acid and alpha-eleostearic acid on prevention of organic mercury-induced oxidative stress in kidney and liver of rat. Food and Chemical Toxicology, 50, 1066-1072.
Park, H. Y., Choi, I. W., Kim, G. Y., Kim, B. W., Kim, W. J., & Choi, Y. H. (2015). Fucoidan induces G1 arrest of the cell cycle in EJ human bladder cancer cells through down-regulation of pRB phosphorylation. Revista Brasileira de Farmacognosia, 25, 246-251.
Patankar, M. S., Oehninger, S., Barnett, T., Williams, R., & Clark, G. (1993). A revised structure for fucoidan may explain some of its biological activities. Journal of Biological Chemistry, 268, 21770-21776.
Petit, A.C., Noiret, N., Sinquin, C., Ratiskol, J., Guezennec, J., & Colliec-Jouault, S. (2006). Free-radical depolymerization with metallic catalysts of an exopolysaccharide produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid. Carbohydrate Polymers, 64, 597-602.
Qi, H., Zhao, T., Zhang, Q., Li, Z., Zhao, Z., & Xing, R. (2006). Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). Journal of Applied Phycology, 17, 527-534.
Rebiha, M., Moulai-Mostefa, N., & HadjSadok, A. (2012). Investigations of the effects of xanthan and sodium caseinate on the formation and stability of an oil-in-water emulsion stabilized by a nonionic surfactant using a response surface method. Journal of Dispersion Science and Technology, 33, 429-436.
Salvia-Trujillo, L., Decker, E. A., & McClements, D. J. (2016). Influence of an anionic polysaccharide on the physical and oxidative stability of omega-3 nanoemulsions: Antioxidant effects of alginate. Food Hydrocolloids, 52, 690-698.
Salvia-Trujillo, L., Qian, C., Martín-Belloso, O., & McClements, D. J. (2013). Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Food Chemistry, 141, 1472-1480.
Schuchmann, M. N., & von Sonntag, C. (1978). The effect of oxygen on the OH-radical-induced scission of the glycosidic linkage of cellobiose. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 34, 397-400.
Sen Gupta, S., Ghosh, S., Maiti, P., & Ghosh, M. (2012). Microencapsulation of conjugated linolenic acid-rich pomegranate seed oil by an emulsion method. Food Science and Technology International, 18, 549-558.
Shantha., N. C., & Decker., E. A. (1994). Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. . AOAC International, 77, 421-424.
Sims, R., Fioriti, J., & Trumbetas, J. (1979). Effect of sugars and sugar alcohols on autoxidation of safflower oil in emulsions. Journal of the American Oil Chemists Society, 56, 742-745.
Sivakumar, M., Senthilkumar, P., Majumdar, S., & Pandit, A. B. (2002). Ultrasound mediated alkaline hydrolysis of methyl benzoate–reinvestigation with crucial parameters. Ultrasonics Sonochemistry, 9, 25-30.
Suresh, V., Anbazhagan, C., Thangam, R., Senthilkumar, D., Senthilkumar, N., Kannan, S., Rengasamy, R. and Palani, P. (2013). Stabilization of mitochondrial and microsomal function of fucoidan from Sargassum plagiophyllum in diethylnitrosamine induced hepatocarcinogenesis. Carbohydrate Polymers, 92, 1377-1385.
Tang, S. Y., Shridharan, P., & Sivakumar, M. (2013). Impact of process parameters in the generation of novel aspirin nanoemulsions--comparative studies between ultrasound cavitation and microfluidizer. Ultrasonic Sonochemistry, 20, 485-497.
Tvrzicka, E., Kremmyda, L. S., Stankova, B., & Zak, A. (2011). Fatty acids as biocompounds: their role in human metabolism, health and disease–a review. Part 1: classification, dietary sources and biological functions. Biomedical Papers, 155, 117-130.
Thuy, T. T., Ly, B. M., Van, T. T., Quang, N. V., Tu, H. C., Zheng, Y., Seguin-Devaux, C., Mi, B., & Ai, U. (2015). Anti-HIV activity of fucoidans from three brown seaweed species. Carbohydrate Polymers, 115, 122-128.
Von Sonntag, C., Dizdaroglu, M., & Schulte-Frohlinde, D. (1976). Radiation Chemistry of Carbohydrates, Vlll. γ-Radiolysis of Cellobiose in N2O-saturated Aqueous Solution. Part II. Quantitative Measurements. Mechanisms of the Radical-induced Scission of the Glycosidic Linkage. Zeitschrift Für Naturforschung B, 31, 857-864.
Wang, J., Zhang, Q., Zhang, Z., Zhang, H., & Niu, X. (2010a). Structural studies on a novel fucogalactan sulfate extracted from the brown seaweed Laminaria japonica. Journal of Biological Macromolecules, 47, 126-131.
Wang, J., Zhang, Q., Zhang, Z., Song, H., & Li, P. (2010b). Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules 46, 6-12.
Wang, X., Zhang, Z., Yao, Q., Zhao, M., & Qi, H. (2013). Phosphorylation of low-molecular-weight polysaccharide from Enteromorpha linza with antioxidant activity. Carbohydrate Polymers, 96, 371-375.
Wiggins, A. K., Mason, J. K., & Thompson, L. U. (2015). Growth and gene expression differ over time in alpha-linolenic acid treated breast cancer cells. Experimental Cell Research, 333, 147-154.
Wu, S., Cai, R., & Sun, Y. (2012). Degradation of curdlan using hydrogen peroxide. Food Chemistry, 135, 2436-2438.
Xiong, X., Li, M., Xie, J., Xue, B., & Sun, T. (2014). Preparation and antioxidant activity of xanthan oligosaccharides derivatives with similar substituting degrees. Food Chemistry, 164, 7-11.
Yang, Z., Li, J.-P., & Guan, H. (2004). Preparation and characterization of oligomannuronates from alginate degraded by hydrogen peroxide. Carbohydrate Polymers, 58, 115-121.
Yee, J., & Shipe, W. (1982). Effects of sulfhydryl compounds on lipid oxidations catalyzed by copper and heme. Journal of Dairy Science, 65, 1414-1420.
Yin, B., Deng, W., Xu, K., Huang, L., & Yao, P. (2012). Stable nano-sized emulsions produced from soy protein and soy polysaccharide complexes. Journal of Colloid and Interface Science, 380, 51-59.
Zha, X. Q., Lu, C. Q., Cui, S. H., Pan, L. H., Zhang, H. L., Wang, J. H., & Luo, J. P. (2015). Structural identification and immunostimulating activity of a Laminaria japonica polysaccharide.International Journal of Biological Macromolecules 78, 429-438.
Zha, X. Q., Xiao, J. J., Zhang, H. N., Wang, J. H., Pan, L. H., Yang, X. F., & Luo, J. P. (2012). Polysaccharides in Laminaria japonica (LP): Extraction, physicochemical properties and their hypolipidemic activities in diet-induced mouse model of atherosclerosis. Food Chemistry, 134, 244-252.
Zhang, J. J., Zhang, Q. B., Wang, J., Shi, X. L. and Zhang, Z. S. (2009). Analysis of the monosaccharide composition of fucoidan by precolumn derivation HPLC. Chinese Journal of Oceanology and Limnology 27, 578-582.
Zhang, Q., Yu, P., Li, Z., Zhang, H., Xu, Z., & Li, P. (2003). Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanesis. Journal of Applied Phycology, 15, 305-310.