|
林佑穗 (2000). 新編蓋統醫用生理學, 合記圖書出版社. 洪詩涵 (2007). 多醣類基材之敷料研究, 國立陽明大學醫學工程研究所碩士論文. 石政坪 (2007). 以 UV 光聚合 Chitosan-PAA-pHEMA 水膠應用於創傷. 吳俊忠 (2009). 護理檢驗概論, 華杏出版社. 于博芮 (2012). 最新傷口護理學, 華杏出版社.
Albu, M. G., Ferdes, M., Kaya, D. A., Ghica, M. V., Titorencu, I., Popa, L. and Albu, L. (2012). Collagen Wound Dressings with Anti-Inflammatory Activity. Molecular Crystals and Liquid Crystals 555, 271-279. Ali, D., Erdal, C., Fatih, H., Zeki, O., Ahmet, L. and Jülide, A. (2008). Preparation of Fucoidan-Chitosan Hydrogel and Its Application as Burn Healing Accelerator on Rabbits. Biological and Pharmaceutical Bulletin 31, 2326-2333. Bolton, L. L., Johnson, C. L. and Van, R. L. (1991). Occlusive dressings: therapeutic agents and effects on drug delivery. Clinics in dermatology 9, 573-583. Bonilla, J., Atarés, L., Vargas, M. and Chiralt, A. (2013). Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. Journal of Food Engineering 114, 303-312. Boonkong, W., Petsom, A. and Thongchul, N. (2013). Rapidly stopping hemorrhage by enhancing blood clotting at an opened wound using chitosan/polylactic acid/polycaprolactone wound dressing device. J Mater Sci Mater Med 24, 1581-93. Choi, J. I. and Kim, H. J. (2013). Preparation of low molecular weight fucoidan by gamma-irradiation and its anticancer activity. Carbohydr Polym 97, 358-62. Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., D'Incecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich, G. E., et al. (2007). A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17, 541-52. Falanga, V., Isaacs, C., Paquette, D., Downing, G., Kouttab, N., Butmarc, J., Badiavas, E. and Jan, H. Y. (2002). Wounding of bioengineered skin cellular and molecular aspects after injury. Journal of investigative dermatology 119, 653-660. Hashemi Doulabi, A., Mirzadeh, H., Imani, M. and Samadi, N. (2013). Chitosan/polyethylene glycol fumarate blend film: physical and antibacterial properties. Carbohydr Polym 92, 48-56. Hwang, P. A., Chien, S. Y., Chan, Y. L., Lu, M. K., Wu, C. H., Kong, Z. L. and Wu, C. J. (2011). Inhibition of Lipopolysaccharide (LPS)-induced inflammatory responses by Sargassum hemiphyllum sulfated polysaccharide extract in RAW 264.7 macrophage cells. J Agric Food Chem 59, 2062-8. Kamoun, E. A., Kenawy, E.-R. S., Tamer, T. M., El-Meligy, M. A. and Mohy Eldin, M. S. (2015). Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: Characterization and bio-evaluation. Arabian Journal of Chemistry 8, 38-47. Kang, P.-L., Chang, S. J., Manousakas, I., Lee, C. W., Yao, C.-H., Lin, F.-H. and Kuo, S. M. (2011). Development and assessment of hemostasis chitosan dressings. Carbohydrate Polymers 85, 565-570. Kim, J. Y., Jun, J. H., Kim, S. J., Hwang, K. M., Choi, S. R., Han, S. D., Son, M. W. and Park, E. S. (2015). Wound healing efficacy of a chitosan-based film-forming gel containing tyrothricin in various rat wound models. Arch Pharm Res 38, 229-38. Kimura, R., Rokkaku, T., Takeda, S., Senba, M. and Mori, N. (2013). Cytotoxic effects of fucoidan nanoparticles against osteosarcoma. Mar Drugs 11, 4267-78. Lamia, M., Amel, M., Jacques, R. and Abderrahman, B. (2014). Antioxidant, Anti-inflammatory and Antiproliferative Effects of Aqueous Extracts of Three Mediterranean Brown Seaweeds of the Genus Cystoseira. Iranian Journal of Pharmaceutical Research 13, 207-220. Lee, S., Jung, I., Yu, S. and Hong, J. P. (2014a). Effect of recombinant human epidermal growth factor impregnated chitosan film on hemostasis and healing of blood vessels. Arch Plast Surg 41, 466-71. Lee, S. J., Heo, D. N., Moon, J. H., Ko, W. K., Lee, J. B., Bae, M. S., Park, S. W., Kim, J. E., et al. (2014b). Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydr Polym 111, 530-7. Lee, Y.-H., Chang, J.-J., Yang, M.-C., Chien, C.-T. and Lai, W.-F. (2012a). Acceleration of wound healing in diabetic rats by layered hydrogel dressing. Carbohydrate Polymers 88, 809-819. Lee, Y. H., Chang, J. J., Chien, C. T., Yang, M. C. and Chien, H. F. (2012b). Antioxidant sol-gel improves cutaneous wound healing in streptozotocin-induced diabetic rats. Exp Diabetes Res 2012, 504693. Li, B., Lu, F., Wei, X. and Zhao, R. (2008). Fucoidan: Structure and Bioactivity. Molecules 13, 1671-1695. Li, C., Gao, Y., Xing, Y., Zhu, H., Shen, J. and Tian, J. (2011). Fucoidan, a sulfated polysaccharide from brown algae, against myocardial ischemia-reperfusion injury in rats via regulating the inflammation response. Food Chem Toxicol 49, 2090-5. Lin, W. C., Lien, C. C., Yeh, H. J., Yu, C. M. and Hsu, S. H. (2013). Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 94, 603-11. Liu, R., Xu, X., Zhuang, X. and Cheng, B. (2014). Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohydr Polym 101, 1116-21. Ma, P., Liu, H.-T., Wei, P., Xu, Q.-S., Bai, X.-F., Du, Y.-G. and Yu, C. (2011). Chitosan oligosaccharides inhibit LPS-induced over-expression of IL-6 and TNF-α in RAW264.7 macrophage cells through blockade of mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways. Carbohydrate Polymers 84, 1391-1398. Meng, X., Tian, F., Yang, J., He, C. N., Xing, N. and Li, F. (2010). Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application. J Mater Sci Mater Med 21, 1751-9. Murakami, K., Aoki, H., Nakamura, S., Nakamura, S., Takikawa, M., Hanzawa, M., Kishimoto, S., Hattori, H., et al. (2010a). Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31, 83-90. Murakami, K., Ishihara, M., Aoki, H., Nakamura, S., Nakamura, S., Yanagibayashi, S., Takikawa, M., Kishimoto, S., et al. (2010b). Enhanced healing of mitomycin C-treated healing-impaired wounds in rats with hydrosheets composed of chitin/chitosan, fucoidan, and alginate as wound dressings. Wound Repair Regen 18, 478-85. Naseri, N., Algan, C., Jacobs, V., John, M., Oksman, K. and Mathew, A. P. (2014). Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Carbohydr Polym 109, 7-15. Regiel, A., Irusta, S., Kyziol, A., Arruebo, M. and Santamaria, J. (2013). Preparation and characterization of chitosan-silver nanocomposite films and their antibacterial activity against Staphylococcus aureus. Nanotechnology 24, 015101. Ribeiro, M. P., Espiga, A., Silva, D., Baptista, P., Henriques, J., Ferreira, C., Silva, J. C., Borges, J. P., et al. (2009). Development of a new chitosan hydrogel for wound dressing. Wound Repair Regen 17, 817-24. Rodrigues, A. P., Genari, S. C., Paulo, N. M., da Conceição, M., de Brito e Silva, M. S. and Moraes, Â. M. (2010). Evaluation of Cell Growth Characteristics on Chitosan-Alginate Membranes to Assess Their Potential Application on Highly Exuding Skin Lesions and In Vivo Evaluation in Wounded Cat. 789-794. Sikareepaisan, P., Ruktanonchai, U. and Supaphol, P. (2011). Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings. Carbohydrate Polymers 83, 1457-1469. Stojkovska, J., Kostic, D., Jovanovic, Z., Vukasinovic-Sekulic, M., Miskovic-Stankovic, V. and Obradovic, B. (2014). A comprehensive approach to in vitro functional evaluation of Ag/alginate nanocomposite hydrogels. Carbohydr Polym 111, 305-14. Straccia, M. C., Romano, I., Oliva, A., Santagata, G. and Laurienzo, P. (2014). Crosslinker effects on functional properties of alginate/N-succinylchitosan based hydrogels. Carbohydr Polym 108, 321-30. Suresh, V., Anbazhagan, C., Thangam, R., Senthilkumar, D., Senthilkumar, N., Kannan, S., Rengasamy, R. and Palani, P. (2013). Stabilization of mitochondrial and microsomal function of fucoidan from Sargassum plagiophyllum in diethylnitrosamine induced hepatocarcinogenesis. Carbohydr Polym 92, 1377-85. Sweeney, I. R., Miraftab, M. and Collyer, G. (2014). Absorbent alginate fibres modified with hydrolysed chitosan for wound care dressings--II. Pilot scale development. Carbohydr Polym 102, 920-7. Tsao, C. T., Chang, C. H., Lin, Y. Y., Wu, M. F., Wang, J. L., Young, T. H., Han, J. L. and Hsieh, K. H. (2011). Evaluation of chitosan/γ-poly(glutamic acid) polyelectrolyte complex for wound dressing materials. Carbohydrate Polymers 84, 812-819. Vatankhah, E., Prabhakaran, M. P., Jin, G., Mobarakeh, L. G. and Ramakrishna, S. (2014). Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. J Biomater Appl 28, 909-21. Wheeland, R. G. (1987). The newer surgical dressings and wound healing. Dermatologic clinics 5, 393-407. Winter, G. D. (1962). Formation of the scab and the rate of epithelisation of superficial wounds in the skin of the young domestic pig. Journal of wound care 4, 366. Winter, G. D. (1963). Effect of air drying and dressings on the surface of a wound. Nature 197, 91. Xing, N., Tian, F., Yang, J. and Li, Y. K. (2012a). II. Characterizations of Alginate-Chitosan Hydrogel for Wound Dressing Application. Advanced Materials Research 490-495, 3124-3128. Xing, N., Tian, F., Yang, J. and Li, Y. K. (2012b). Preparation and Basic Characterizations of Alginate-Chitosan Hydrogel. Advanced Materials Research 490-495, 3396-3400. Yu, A., Niiyama, H., Kondo, S., Yamamoto, A., Suzuki, R. and Kuroyanagi, Y. (2013). Wound dressing composed of hyaluronic acid and collagen containing EGF or bFGF: comparative culture study. J Biomater Sci Polym Ed 24, 1015-26. Zeng, Z. and Zhu, B. H. (2014). Arnebin-1 promotes the angiogenesis of human umbilical vein endothelial cells and accelerates the wound healing process in diabetic rats. J Ethnopharmacol 154, 653-62.
|