1.Schmidt, C. E.; Leach, J. B., NEURAL TISSUE ENGINEERING: Strategies for Repair and Regeneration. Annual Review of Biomedical Engineering 2003, 5 (1), 293-347.
2.Chen, M. B.; Zhang, F.; Lineaweaver, W. C., Luminal Fillers in Nerve Conduits for Peripheral Nerve Repair. Annals of Plastic Surgery 2006, 57 (4), 462-471 10.1097/01.sap.0000237577.07219.b6.
3.Wood, M. D.; Moore, A. M.; Hunter, D. A.; Tuffaha, S.; Borschel, G. H.; Mackinnon, S. E.; Sakiyama-Elbert, S. E., Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration. Acta Biomaterialia 2009, 5 (4), 959-968.
4.Taghizadeh, S. M.; Davari, G., Preparation, characterization, and swelling behavior of N-acetylated and deacetylated chitosans. Carbohydrate Polymers 2006, 64 (1), 9-15.
5.Ravi Kumar, M. N. V., A review of chitin and chitosan applications. Reactive and Functional Polymers 2000, 46 (1), 1-27.
6.Nakamura, S.; Nambu, M.; Ishizuka, T.; Hattori, H.; Kanatani, Y.; Takase, B.; Kishimoto, S.; Amano, Y.; Aoki, H.; Kiyosawa, T.; Ishihara, M.; Maehara, T., Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularization. Journal of Biomedical Materials Research Part A 2008, 85A (3), 619-627.
7.Stoll, G.; Griffin, J. W.; Li, C. Y.; Trapp, B. D., Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. Journal of Neurocytology 1989, 18 (5), 671-683.
8.Griffin, J. W.; George, E. B.; Chaudhry, V., Wallerian degeneration in peripheral nerve disease. Bailliere Clin Neur 1996, 5 (1), 65-75.
9.Jacobson, S.; Guth, L., An electrophysiological study of the early stages of peripheral nerve regeneration. Experimental Neurology 1965, 11 (1), 48-60.
10.(a) Kim, D. H.; Han, K.; Tiel, R. L.; Murovic, J. A.; Kline, D. G., Surgical outcomes of 654 ulnar nerve lesions. Journal of Neurosurgery 2003, 98 (5), 993-1004; (b) de Medinaceli, L.; Prayon, M.; Merle, M., Percentage of nerve injuries in which primary repair can be achieved by end-to-end approximation: Review of 2,181 nerve lesions. Microsurgery 1993, 14 (4), 244-246.
11.Miyamoto, Y., Experimental Study of Results of Nerve Suture Under Tension Vs. Nerve Grafting. Plastic and Reconstructive Surgery 1979, 64 (4), 540-549.
12.(a) Haile, Y.; Haastert, K.; Cesnulevicius, K.; Stummeyer, K.; Timmer, M.; Berski, S.; Dräger, G.; Gerardy-Schahn, R.; Grothe, C., Culturing of glial and neuronal cells on polysialic acid. Biomaterials 2007, 28 (6), 1163-1173; (b) Keilhoff, G.; Goihl, A.; Stang, F.; Wolf, G.; Fansa, H., Peripheral Nerve Tissue Engineering: Autologous Schwann Cells vs. Transdifferentiated Mesenchymal Stem Cells. Tissue Engineering 2006, 12 (6), 1451-1465; (c) Sierpinski, P.; Garrett, J.; Ma, J.; Apel, P.; Klorig, D.; Smith, T.; Koman, L. A.; Atala, A.; Van Dyke, M., The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials 2008, 29 (1), 118-128.
13.(a) Cordeiro, P. G.; Seckel, B. R.; Lipton, S. A.; D'Amore, P. A.; Wagner, J.; Madison, R., Acidic Fibroblast Growth Factor Enhances Peripheral Nerve Regeneration in Vivo. Plastic and Reconstructive Surgery 1989, 83 (6), 1013-1019; (b) Otto, D.; Unsicker, K.; Grothe, C., Pharmacological effects of nerve growth factor and fibroblast growth factor applied to the transectioned sciatic nerve on neuron death in adult rat dorsal root ganglia. Neuroscience Letters 1987, 83 (1-2), 156-160.
14.Keun-Hong, H., Kun, Neuronal Differentiation of PC12 Cells Cultured on Growth Factor-Loaded Nanoparticles Coated on PLGA Microspheres. J. Microbiol. Biotechnol. 2009, 490~1495
15.Baird, A.; Walicke, P. A., Fibroblast growth factors. British Medical Bulletin 1989, 45 (2), 438-452.
16.Rich, K. M.; Alexander, T. D.; Pryor, J. C.; Hollowell, J. P., Nerve growth factor enhances regeneration through silicone chambers. Experimental Neurology 1989, 105 (2), 162-170.
17.(a) Fu, X.; Shen, Z.; Chen, Y.; Xie, J.; Guo, Z.; Zhang, M.; Sheng, Z., Randomised placebo-controlled trial of use of topical recombinant bovine basic fibroblast growth factor for second-degree burns. The Lancet 1998, 352 (9141), 1661-1664; (b) Ishihara, M.; Obara, K.; Ishizuka, T.; Fujita, M.; Sato, M.; Masuoka, K.; Saito, Y.; Yura, H.; Matsui, T.; Hattori, H.; Kikuchi, M.; Kurita, A., Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization. Journal of Biomedical Materials Research Part A 2003, 64A (3), 551-559; (c) Tsuboi, R.; Rifkin, D. B., Recombinant basic fibroblast growth factor stimulates wound healing in healing-impaired db/db mice. The Journal of Experimental Medicine 1990, 172 (1), 245-251.
18.Sakiyama-Elbert, S. E.; Hubbell, J. A., Development of fibrin derivatives for controlled release of heparin-binding growth factors. Journal of Controlled Release 2000, 65 (3), 389-402.
19.Edelman, E. R.; Nugent, M. A.; Smith, L. T.; Karnovsky, M. J., Basic fibroblast growth factor enhances the coupling of intimal hyperplasia and proliferation of vasa vasorum in injured rat arteries. The Journal of clinical investigation 1992, 89 (2), 465-73.
20.(a) McFarlane, S.; McNeill, L.; Holt, C. E., FGF signaling and target recognition in the developing xenopus visual system. Neuron 1995, 15 (5), 1017-1028; (b) Walz, A.; McFarlane, S.; Brickman, Y. G.; Nurcombe, V.; Bartlett, P. F.; Holt, C. E., Essential role of heparan sulfates in axon navigation and targeting in the developing visual system. Development 1997, 124 (12), 2421-2430.
21.生醫奈米科技教學資源中心, 生醫奈米技術. 2007, , 341, 119-129.
22.Lin, Y.-H.; Chang, C.-H.; Wu, Y.-S.; Hsu, Y.-M.; Chiou, S.-F.; Chen, Y.-J., Development of pH-responsive chitosan/heparin nanoparticles for stomach-specific anti-Helicobacter pylori therapy. Biomaterials 2009, 30 (19), 3332-3342.
23.Sershen, S. R.; Westcott, S. L.; Halas, N. J.; West, J. L., Temperature-sensitive polymer–nanoshell composites for photothermally modulated drug delivery. Journal of Biomedical Materials Research 2000, 51 (3), 293-298.
24.Yolles, S.; Leafe, T.; Sartori, M.; Torkelson, M.; Ward, L.; Boettner, F., Controlled Release of Biologically Active Agents. In Controlled Release Polymeric Formulations, AMERICAN CHEMICAL SOCIETY: 1976; Vol. 33, pp 123-134.
25.李玉寶, 奈米生醫材料 Nano Biomedical Materials. 五南圖書出版股份有限公司 2006, 547, 6-11;188-192.
26.Bagheri-Khoulenjani, S.; Taghizadeh, S. M.; Mirzadeh, H., An investigation on the short-term biodegradability of chitosan with various molecular weights and degrees of deacetylation. Carbohydrate Polymers 2009, 78 (4), 773-778.
27.(a) Calvo, P.; Remuñán-López, C.; Vila-Jato, J. L.; Alonso, M. J., Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. Journal of Applied Polymer Science 1997, 63 (1), 125-132; (b) Xu, Y.; Du, Y., Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. International Journal of Pharmaceutics 2003, 250 (1), 215-226; (c) Zhang, H.; Oh, M.; Allen, C.; Kumacheva, E., Monodisperse Chitosan Nanoparticles for Mucosal Drug Delivery. Biomacromolecules 2004, 5 (6), 2461-2468.
28.Calvo, P.; Remuñan-López, C.; Vila-Jato, J. L.; Alonso, M. J., Chitosan and Chitosan/Ethylene Oxide-Propylene Oxide Block Copolymer Nanoparticles as Novel Carriers for Proteins and Vaccines. Pharmaceutical Research 1997, 14 (10), 1431-1436.
29.(a) Janes, K. A.; Fresneau, M. P.; Marazuela, A.; Fabra, A.; Alonso, M. J., Chitosan nanoparticles as delivery systems for doxorubicin. Journal of Controlled Release 2001, 73 (2-3), 255-267; (b) De Campos, A. M.; Sánchez, A.; Alonso, M. J., Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. International Journal of Pharmaceutics 2001, 224 (1-2), 159-168.
30.(a) Leong, K. W.; Mao, H. Q.; Truong-Le, V. L.; Roy, K.; Walsh, S. M.; August, J. T., DNA-polycation nanospheres as non-viral gene delivery vehicles. Journal of Controlled Release 1998, 53 (1-3), 183-193; (b) Lee, K. Y.; Kwon, I. C.; Kim, Y. H.; Jo, W. H.; Jeong, S. Y., Preparation of chitosan self-aggregates as a gene delivery system. Journal of Controlled Release 1998, 51 (2-3), 213-220; (c) Chae, S. Y.; Son, S.; Lee, M.; Jang, M.-K.; Nah, J.-W., Deoxycholic acid-conjugated chitosan oligosaccharide nanoparticles for efficient gene carrier. Journal of Controlled Release 2005, 109 (1-3), 330-344.
31.De la Riva, B.; Nowak, C.; Sánchez, E.; Hernández, A.; Schulz-Siegmund, M.; Pec, M. K.; Delgado, A.; Évora, C., VEGF-controlled release within a bone defect from alginate/chitosan/PLA-H scaffolds. European Journal of Pharmaceutics and Biopharmaceutics 2009, 73 (1), 50-58.
32.張簡政倫, 奈米碳管/幾丁聚醣複合材料於神經組織工程之應用. 國立臺灣大學工學院醫學工程學研究所碩士論文 June, 2009.33.陳孟澤, 利用幾丁聚醣支架與聚乳酸微球體進行軟骨素分解酵素之控制釋放. 國立臺灣大學工學院醫學工程學研究所碩士論文 June, 2007.34.(a) Konturek, S. J.; Brzozowski, T.; Majka, J.; Dembinski, A.; Slomiany, A.; Slomiany, B. L., Transforming Growth Factor Alpha and Epidermal Growth Factor in Protection and Healing of Gastric Mucosal Injury. Scandinavian Journal of Gastroenterology 1992, 27 (8), 649-655; (b) Hall, A. J.; Tripp, M.; Howell, T.; Darland, G.; Bland, J. S.; Babish, J. G., Gastric mucosal cell model for estimating relative gastrointestinal toxicity of non-steroidal anti-inflammatory drugs. Prostaglandins, Leukotrienes and Essential Fatty Acids 2006, 75 (1), 9-17.
35.Sezer, A. D.; Cevher, E.; Hatipoglu, F.; Ogurtan, Z.; Bas, A. L.; Akbuga, J., Preparation of Fucoidan-Chitosan Hydrogel and Its Application as Burn Healing Accelerator on Rabbits. Biol Pharm Bull 2008, 31 (12), 2326-2333.
36.Li, B.; Lu, F.; Wei, X. J.; Zhao, R. X., Fucoidan: Structure and bioactivity. Molecules 2008, 13 (8), 1671-1695.
37.Freeman, I.; Kedem, A.; Cohen, S., The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials 2008, 29 (22), 3260-3268.
38.Luyt, C. E.; Meddahi-Pelle, A.; Ho-Tin-Noe, B.; Colliec-Jouault, S.; Guezennec, J.; Louedec, L.; Prats, H. E.; Jacob, M. P.; Osborne-Pellegrin, M.; Letourneur, D.; Michel, J. B., Low-molecular-weight fucoidan promotes therapeutic revascularization in a rat model of critical hindlimb ischemia. Journal of Pharmacology and Experimental Therapeutics 2003, 305 (1), 24-30.
39.Nishino, T.; Nagumo, T.; Kiyohara, H.; Yamada, H., Structural characterization of a new anticoagulant fucan sulfate from the brown seaweed Ecklonia kurome. Carbohydrate Research 1991, 211 (1), 77-90.
40.Nishino, T.; Nagumo, T., Anticoagulant and antithrombin activities of oversulfated fucans. Carbohydrate Research 1992, 229 (2), 355-362.
41.Ponce, N. M. A.; Pujol, C. A.; Damonte, E. B.; Flores, M. L.; Stortz, C. A., Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydrate Research 2003, 338 (2), 153-165.
42.Doh-ura, K.; Kuge, T.; Uomoto, M.; Nishizawa, K.; Kawasaki, Y.; Iha, M., Prophylactic Effect of Dietary Seaweed Fucoidan against Enteral Prion Infection. Antimicrob. Agents Chemother. 2007, 51 (6), 2274-2277.
43.Maruyama, H.; Tamauchi, H.; Iizuka, M.; Nakano, T., The role of NK cells in antitumor activity of dietary fucoidan from Undaria pinnatifida Sporophylls (Mekabu). Planta Medica 2006, 72 (EFirst), 1415,1417.
44.Murakami, K.; Aoki, H.; Nakamura, S.; Nakamura, S.-i.; Takikawa, M.; Hanzawa, M.; Kishimoto, S.; Hattori, H.; Tanaka, Y.; Kiyosawa, T.; Sato, Y.; Ishihara, M., Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 2010, 31 (1), 83-90.
45.Greene, L. A.; Tischler, A. S., Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America 1976, 73 (7), 2424-2428.
46.Heneka, M. T.; Löschmann, P. A.; Gleichmann, M.; Weller, M.; Schulz, J. B.; Wüllner, U.; Klockgether, T., Induction of Nitric Oxide Synthase and Nitric Oxide-Mediated Apoptosis in Neuronal PC12 cells after stimulation with tumor necrosis factor-α/lipopolysaccharide. Journal of Neurochemistry 1998, 71 (1), 88-94.
47.Blum, D.; Torch, S.; Nissou, M.-F.; Benabid, A.-L.; Verna, J.-M., Extracellular toxicity of 6-hydroxydopamine on PC12 cells. Neuroscience Letters 2000, 283 (3), 193-196.
48.Terho, T. T.; Hartiala, K., Method for determination of the sulfate content of glycosaminoglycans. Analytical Biochemistry 1971, 41 (2), 471-476.
49.林哲寬, 口服幾丁聚醣奈米微粒載體包覆超短效與短效胰島素之藥物動力學研究. 國立清華大學化學工程系碩士論文 2009.50.Tachibana, Y.; Kurisawa, M.; Uyama, H.; Kobayashi, S., Thermo- and pH-Responsive Biodegradable Poly(α-N-substituted γ-glutamine)s. Biomacromolecules 2003, 4 (5), 1132-1134.
51.Masuoka, K.; Ishihara, M.; Asazuma, T.; Hattori, H.; Matsui, T.; Takase, B.; Kanatani, Y.; Fujita, M.; Saito, Y.; Yura, H.; Fujikawa, K.; Nemoto, K., The interaction of chitosan with fibroblast growth factor-2 and its protection from inactivation. Biomaterials 2005, 26 (16), 3277-3284.
52.Han, Y. S.; Lee, C. S., Antidepressants reveal differential effect against 1-methyl-4-phenylpyridinium toxicity in differentiated PC12 cells. European Journal of Pharmacology 2009, 604 (1-3), 36-44.
53.Ito, Y.; Kimura, T.; Nam, K.; Katoh, A.; Masuzawa, T.; Kishida, A., Effects of vibration on differentiation of cultured PC12 cells. Biotechnology and Bioengineering 2011, 108 (3), 592-599.
54.Ho, Y.-C.; Mi, F.-L.; Sung, H.-W.; Kuo, P.-L., Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor. International Journal of Pharmaceutics 2009, 376 (1-2), 69-75.
55.Tang, D.-W.; Yu, S.-H.; Ho, Y.-C.; Mi, F.-L.; Kuo, P.-L.; Sung, H.-W., Heparinized chitosan/poly([gamma]-glutamic acid) nanoparticles for multi-functional delivery of fibroblast growth factor and heparin. Biomaterials 2010, 31 (35), 9320-9332.
56.(a) Wu, Z. L.; Zhang, L.; Yabe, T.; Kuberan, B.; Beeler, D. L.; Love, A.; Rosenberg, R. D., The involvement of heparan sulfate (HS) in FGF1/HS/FGFR1 signaling complex. Journal of Biological Chemistry 2003, 278 (19), 17121-17129; (b) Wenk, E.; Murphy, A. R.; Kaplan, D. L.; Meinel, L.; Merkle, H. P.; Uebersax, L., The use of sulfonated silk fibroin derivatives to control binding, delivery and potency of FGF-2 in tissue regeneration. Biomaterials 2010, 31 (6), 1403-1413; (c) Berteau, O.; Mulloy, B., Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 2003, 13 (6), 29R-40.
57. Belford, D. A.; Hendry, I. A.; Parish, C. R., Investigation of the ability of several naturally occurring and synthetic polyanions to bind to and potentiate the biological activity of acidic fibroblast growth factor. Journal of Cellular Physiology 1993, 157 (1), 184-189.
58.Murphy, A. R.; John, P. S.; Kaplan, D. L., Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials 2008, 29 (19), 2829-2838.
59.Koyanagi, S.; Tanigawa, N.; Nakagawa, H.; Soeda, S.; Shimeno, H., Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochemical Pharmacology 2003, 65 (2), 173-179.
60.(a) Claude, P.; Parada, I. M.; Gordon, K. A.; D'Amore, P. A.; Wagner, J. A., Acidic fibroblast growth factor atimulates adrenal chromaffin cells to proliferate and to extend neurites, but is not a long term survival factor. Neuron 1988, 1 (9), 783-790; (b) Morrison, R. S.; Sharma, A.; de Vellis, J.; Bradshaw, R. A., Basic fibroblast growth factor supports the survival of cerebral cortical neurons in primary culture. Proceedings of the National Academy of Sciences 1986, 83 (19), 7537-7541; (c) Hall, F. L.; Fernyhough, P.; Ishii, D. N.; Vulliet, P. R., Suppression of nerve growth factor-directed neurite outgrowth in PC12 cells by sphingosine, an inhibitor of protein kinase C. Journal of Biological Chemistry 1988, 263 (9), 4460-4466.
61.Walicke, P.; Cowan, W. M.; Ueno, N.; Baird, A.; Guillemin, R., Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension. Proc Natl Acad Sci U S A 1986, 83 (9), 3012-6.
62.Lipton, S. A.; Wagner, J. A.; Madison, R. D.; D'Amore, P. A., Acidic fibroblast growth factor enhances regeneration of processes by postnatal mammalian retinal ganglion cells in culture. Proceedings of the National Academy of Sciences 1988, 85 (7), 2388-2392.