吳彰哲、黃瀚寧。2010。蝦蟹殼中的寶貝 ─ 幾丁質。科學發展。448,12-19。
張為憲、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、張基郁、顏國欽、林志城、林慶文。1998。褐變反應。食品化學。臺北,臺灣。
張順憲。2009。不同分子量幾丁聚醣之抗菌及抗氧化活性。國立台灣海洋大學食品科學系碩士班碩士論文。基隆,臺灣。郭建良。1995。低分子量幾丁聚醣對雙叉桿菌及其他細菌之影響。國立台灣大學食品科技研究所碩士論文。臺北,臺灣。陳澄河。2003。蝦蟹殼傳奇。科學發展。369,62-67。
Ajandouz, E. H., Tchiakpe, L. S., Dalle Ore, F., Benajiba, A., &; Puigserver, A. (2001). Effects of pH on caramelization and Maillard reaction kinetics in fructose–lysine model systems. Journal of Food Science, 66, 926-931.
Alaiz, M., Zamora, R., &; Hidalgo, F. J. (1996). Antioxidant activity of pyrrole, imidazole, dihydropyridine, and pyridium salt derivatives produced in oxidized lipid/ amino acid browning reactions. Journal of Agricultural and Food Chemistry, 44, 686-691.
Ames, J. M. (1990). Control of the Maillard reaction in food systems. Trends in Food Science &; Technology, 1, 150-154.
Amrein, T. M., Limacher, A., Conde-Petit, B., Amado, R. &; Escher, F. (2006). Influence of thermal processing conditions on acrylamide generation and browning in a potato model system. Journal of Agricultural and Food Chemistry, 54, 5910-5916.
Ashoor, S. H., &; Zent, J. B. (1984). Maillard browning of common amino acids and sugars. Journal of Food Science, 49, 1206-1210.
Austin, P.R., Brine, C.J., Castle, J.E., &; Zikakis, J.P. (1981). Chitin: New facets of research. Science, 212, 749-753.
Aye, K. N., Karuppuswamy, R., Ahamed, T., &; Stevens, W. F. (2006). Peripheral enzymatic deacetylation of chitin and reprecipitated chitin particles. Bioresource Technology, 97, 557-582.
Bahloul, N., Boudhrioua, N., Kouhila, M., &; Kechaou, N. (2009). Effect of convective solar drying on colour, total phenols and radical scavenging activity of olive leaves (Olea europaea L.). International Journal of Food Science and Technology, 44, 2561-2567.
Barber, D. S., Hunt, J. R., Ehrich, M. F., Lehning, E. J., &; LoPachin, R. M. (2001). Metabolism, toxicokinetics and hemoglobin adduct formation in rats following subacute and subchronic acrylamide dosing. Neurotoxicology, 22, 341-353.
Barikani, M., Oliaei, E., Seddiqi, H., &; Honarkar, H. (2014). Preparation and application of chitin and its derivatives: A review. Iranian Polymer Journal, 23, 307-326.
Becalski, A., Lau, B. P. Y., Lewis, D., &; Seaman, S. W. (2003). Acrylamide in foods: occurrence, sources, and modeling. Journal of Agricultural and Food Chemistry, 51, 802-808.
Bersuder, P., Hole, M., &; Smith, G. (2001). Antioxidants from a heated histidine-glucose model system. Investigation of the copper (II) binding ability. Journal of the American Oil Chemists Society, 78, 1079-1082.
Beveridge, T., &; Harrison, J. E. (1984). Nonenzymatic browning in pear juice concentrate at elevated temperatures. Journal of Food Science, 49, 1335-1336.
Bologna, L. S., Andrawes, F. F., Barvenik, F. W., Lentz, R. D., &; Sojka, R. E. (1999). Analysis of residual acrylamide in field crops. Journal of Chromatographic Science, 37, 240-244.
Buera, M., Chirife, J., Resnik, S. L., &; Lozano, R. D. (1987). Nonenzymatic browning in liquid model systems of high water activity: Kinetics of color changes due to reaction between glucose and glycine peptides. Journal of Food Science, 52, 1068-1070.
Bull, R. J., Robinson, M., Laurie, R. D., Stoner, G. D., Greisiger, E., Meier, J. R., &; Stober, J. (1984). Carcinogenic effects of acrylamide in Sencar and A/J mice. Cancer Research, 44, 107-111.
Calleman, C.J., Bergmark, E., &; Costa, L.G. (1990). Acrylamide is metabolized to glycidamide in the rat: evidence from hemoglobin adduct formation. Chemical Research in Toxicology, 3, 406-412.
Chapin, R. E., Fail, P. A., George, J. D., Grizzle, T. B., Heindel, J. J., Harry, G. J., Collins, B. J., &; Teague, J. (1995). The reproductive and neural toxicities of acrylamide and three analogues in Swiss mice, evaluated using the continuous breeding protocol. Fundamental and Applied Toxicology, 27, 9-24.
Chen, J. L., &; Zhao, Y. (2012). Effect of molecular weight, acid, and plasticizer on the physicochemical and antibacterial properties of β‐chitosan based films. Journal of Food Science, 77, E127-E136.
Chen, R. H., &; Hwa, H. D. (1996). Effect of molecular weight of chitosan with the same degree of deacetylation on the thermal, mechanical, and permeability properties of the prepared membrane. Carbohydrate Polymers, 29, 353-358.
Chen, Y. M., Chung, Y. C., Wang, L. W., Chen, K. T., &; Li, S. Y. (2002). Antibacterial properties of chitosan in waterborne pathogen. Journal of Enviromental Science and Health, 37, 1379-1390.
Chevalier, F., Chobert, J. M., Genot, C., &; Haertlé, T. (2001). Scavenging of free radicals, antimicrobial, and cytotoxic activities of the Maillard reaction products of β-lactoglobulin glycated with several sugars. Journal of Agricultural and Food Chemistry, 49, 5031-5038.
Chevalier, F., Chobert, J. M., Popineau, Y., Nicolas, M. G., &; Haertlé, T. (2001). Improvement of functional properties of β-lactoglobulin glycated through the Maillard reaction is related to the nature of the sugar. International Dairy Journal, 11, 145-152.
Chien, P. J., Sheu, F., Huang, W. T., &; Su, M. S. (2007). Effect of molecular weight of chitosans on their antioxidative activities in apple juice. Food Chemistry, 102, 1192-1198.
Chung, Y. C., Kuo, C. L., &; Chen, C. C. (2005). Preparation and important functional properties of water-soluble chitosan produced through Maillard reaction. Bioresource Technology, 96, 1473-1482.
Cruz-Romero, M. C., Murphy, T., Morris, M., Cummins, E., &; Kerry, J. P. (2013). Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control, 34, 393-397.
Del Pilar Buera, M., Chirife, J., Resnik, S. L., &; Lozano, R. D. (1987). Nonenzymatic browning in liquid model system of high water activity. Kinetics of color changes due to reaction between glucose and glycine peptides. Journal of Food Science, 52, 1068-1070.
DeMan, J. M. (1999). Proteins. In: Principles of Food Chemistry. 3rd Edn. An AVI Book, New York.
Deshpande, M. V. (1986). Enzymatic degradation of chitin and its biological applications. Journal of Scientific and Industrial Research, 45, 273-281.
Dinis, T. C., Madeira, V. M., &; Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315, 161-169.
Dittrich, R., El-Massry, F., Rinaldi, F., Peich, C. C., Beckmann, M. W., &; Pischetsrieder, M. (2003). Maillard reaction products inhibit oxidation of human low-density lipoproteins in vitro. Journal of Agricultural and Food Chemistry, 51, 3900-3904.
Dogan, I. S., Steenken, D., &; Icli. S. (1990). Electron spin resonance and pulse radiolysis studies on the reaction of OH and SO4- with five-membered heterocyclic compounds in aqueous solution. Journal of Physical Chemistry, 94, 1887-1894.
Ehling, S., &; Shibamoto, T. (2005). Correlation of acrylamide generation in thermally processed model systems of asparagine and glucose with color formation, amounts of pyrazines formed, and antioxidative properties of extracts. Journal of Agricultural and Food Chemistry, 53, 4813-4819.
Eichner, K., &; Karel, M. (1972). Influence of water content and water activity on the sugar-amino browning reaction in model systems under various conditions. Journal of Agricultural and Food Chemistry, 20, 218-223.
Einarsson, H. (1987a). The effect of pH and temperature on the antibacterial effect of Maillard reaction products. Lebensmittel Wissenschaftund und Technologie, 20, 51-55.
Einarsson, H. (1987b). The effect of time, temperature, pH and reactants on the formation of antibacterial compounds in the Maillard reaction. Lebensmittel Wissenschaft und Technologie, 20, 56-58.
El-Ghorab, A. H., Fujioka, K., &; Shibamoto, T. (2006). Determination of acrylamide formed in asparagine/D-glucose Maillard model systems by using gas chromatography with headspace solid-phase microextraction. Journal of AOAC International, 89, 149-153.
Endo, H., Kittur, S., &; Sabri, M. I. (1994). Acrylamide alters neurofilament protein gene expression in rat brain. Neurochemical Research, 19, 815-820.
Food Drink Europe. (2011). Acrylamide Toolbox 2011. Brussels, Belgium.
Franke, K., Sell, M., &; Reimerdes, E. H. (2005). Quality related minimization of acrylamide formation-an integrated approach. In Chemistry and safety of acrylamide in food (pp. 357-369). Springer US.
Friedman, M. (2003). Chemistry, biochemistry, and safety of acrylamide. A review. Journal of Agricultural and Food Chemistry, 51, 4504-4526.
García, M. A., de la Paz, N., Castro, C., Rodríguez, J. L., Rapado, M., Zuluaga, R., Gañán, P., &; Casariego, A. (2015). Effect of molecular weight reduction by gamma irradiation on the antioxidant capacity of chitosan from lobster shells. Journal of Radiation Research and Applied Sciences, 8, 190-200.
Ghanayem, B. I., McDaniel, L. P., Churchwell, M. I., Twaddle, N. C., Snyder, R., Fennell, T. R., &; Doerge, D. R. (2005). Role of CYP2E1 in the epoxidation of acrylamide to glycidamide and formation of DNA and hemoglobin adducts. Toxicological Sciences, 88, 311-318.
Gökmen, V., &; Şenyuva, H. Z. (2006). Study of colour and acrylamide formation in coffee, wheat flour and potato chips during heating. Food Chemistry, 99, 238-243.
Gökmen, V., &; Şenyuva, H. Z. (2007). Effects of some cations on the formation of acrylamide and furfurals in glucose–asparagine model system. European Food Research and Technology, 225, 815-820.
Gu, F. L., Kim, J. M., Abbas, S., Zhang, X. M., Xia, S. Q., &; Chen, Z. X. (2010). Structure and antioxidant activity of high molecular weight Maillard reaction products from casein–glucose. Food Chemistry, 120, 505-511.
Hammouda, Y., &; Salakawy, S. A. (1971). Nonenzymatic browing in solid-dosage forms: Lactose-induced discoloration of neomycin tablets. Pharmazie, 26, 636-640.
Hashimoto, K., &; Tanii, H. (1985). Mutagenicity of acrylamide and its analogues in Salmonella typhimurium. Mutation Research, 158, 129-133.
He, H., Chen, X., Sun, C., Zhang, Y., &; Gao, P. (2006). Preparation and functional evaluation of oligopeptide-enriched hydrolysate from shrimp (Acetes chinensis) treated with crude protease from Bacillus sp. SM98011. Bioresource Technology, 97, 385-390.
Hidalgo, F. J., &; Zamora, R. (2000). The role of lipids in nonenzymatic browning. Grasas Y Aceites, 51, 35-49.
Hodge, J. E. (1953). Dehydrated foods, chemistry of browning reactions in model systems. Journal of Agricultural and Food Chemistry, 1, 928-943.
Hofmann, T. (1998). Studies on melanoidin-type colorants generated from the Maillard reaction of protein-bound lysine and furan-2-carboxaldehyde – Chemical characterisation of a red coloured domaine. Zeitschrift fuer Lebensmittel-Untersuchung und -Forschung, 206, 251-258.
Huang, J. R., Huang, C. Y., Huang, Y. W., &; Chen, R. H. (2007). Shelf-life of fresh noodles as affected by chitosan and its Maillard reaction products. LWT-Food Science and Technology, 40, 1287-1291.
Hwang, J. Y., Shue, Y. S., &; Chang, H. M. (2001). Antioxidative activity of roasted and defatted peanut kernels. Food Research International, 34, 639-647.
Jang, M. K., Kong, B. G., Jeong, Y., Lee, C. H., &; Nah, J. W. (2004). Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. Journal of Polymer Science Part A: Polymer Chemistry, 42, 3423-3432.
Jeddawi, W. A., Dawson, P., &; Han, I. (2014). Effect of addition of low and high molecular weight water soluble chitosan on whole milk powder oxidation. Research &; Reviews: Journal of Dairy Science &; Technology, 3, 9-21.
Jemmali, M. (1969). Influence of the Maillard reaction products on some bacteria of the intestinal flora. Journal of Applied Bacteriology, 32, 151-155.
Jiang, T. J., Feng, L. F., &; Li, J. R. (2012). Changes in microbial and postharvest quality of shiitake mushroom (Lentinus edodes) treated with chitosan-glucose complex coating under cold storage. Food Chemistry, 131, 780-786.
Jung, J., &; Zhao, Y. (2012). Comparison in antioxidant action between α-chitosan and β-chitosan at a wide range of molecular weight and chitosan concentration. Bioorganic &; Medicinal Chemistry, 20, 2905-2911.
Jung, M. Y., Choi, D. S., &; Ju, J. W. (2003). A novel technique for limitation of acrylamide formation in fried and baked corn chips and in french fries. Journal of Food Science, 68, 1287-1290.
Kanatt, S. R., Chander, R., &; Sharma, A. (2008). Chitosan glucose complex – A novel food preservative. Food Chemistry, 106, 521-528.
Kasaai, M. R., Arul, J., &; Charlet, G. (2000). Intrinsic viscosity–molecular weight relationship for chitosan. Journal of Polymer Science Part B: Polymer Physics, 38, 2591-2598.
Kemplay, S., &; Cavanagh, J. B. (1984). Effects of acrylamide and other sulfhydryl compounds in vivo and in vitro on staining of motor nerve terminals by the zinc iodide‐osmium technique. Muscle &; Nerve, 7, 94-100.
Kim, K. W., &; Thomas, R. L. (2007). Antioxidative activity of chitosans with varying molecular weights. Food Chemistry, 101, 308-313.
Knorr, D. (1984). Use of chitinous polymers in food-A challenge for food research and development. Food Technology, 38, 85-97.
Ko, M. H., Chen, W. P., &; Hsieh, S. T. (2002). Neuropathology of skin denervation in acrylamide-induced neuropathy. Neurobiology of Disease, 11, 155-165.
Kurita, K. (1998). Chemistry and application of chitin and chitosan. Polymer Degradation and Stability, 59, 117-120.
Ravi Kumar, M. N. V. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46, 1-27.
Rinaudo, M. (2006). Chitin and chitosan applications. Progress in Polymer Science, 31, 603-632.
Labuza, T. P., &; Baisier, W. M. (1992). The kinetics of nonenzymatic browning. In: H. G. Schwartzberg, &; R. W. Hartel (Eds.), Physical Chemistry of Foods (pp. 595-649). New York: Marcel Dekker Inc.
Lanciotti, R., Anese, M., Sinigaglia, M., Severini, C., &; Massini, R. (1999). Effects of heated glucose-fructose-glutamic acid solutions on the growth of Bacillus stearothermophilus. Lebensmittel-Wissenschaft und-Technologie, 32, 223-230.
Li, S.-L., Lin, J., &; Chen, X.-M. (2014). Effect of chitosan molecular weight on the functional properties of chitosan-maltose Maillard reaction products and their application to fresh-cut Typha latifolia L. Carbohydrate Polymers, 102, 682-690.
Li, X. X., Shi, X. W., Jin, Y., Ding, F. Y., &; Du, Y. M. (2013). Controllable antioxidative xylan-chitosan Maillard reaction products used for lipid food storage. Carbohydrate Polymers, 91, 428-433.
Lievonen, S. M., Lanksonen, T. J., &; Roos, Y. A. (2002). Nonenzymatic browning in food models in the vicinity of the glass transition: Effects of fructose, glucose, and xylose as reducing sugar. Journal of Agricultural and Food Chemistry, 50, 7034-7041.
Lingnert, H., Eriksson, C. E., &; Waller, G. R. (1983). Characterization of antioxidative Maillard reaction products from histidine and glucose. ACS Symposium series-American Chemical Society, 215, 335-345.
LoPachin, R. M., Ross, J. F., &; Lehning, E. J. (2002). Nerve terminals as the primary site of acrylamide action: A hypothesis. Neurotoxicology, 23, 43-59.
Low, M. Y., Koutsidis, G., Parker, J. K., Elmore, J. S., Dodson, A. T., &; Mottram, D. S. (2006). Effect of citric acid and glycine addition on acrylamide and flavor in a potato model system. Journal of Agricultural and Food Chemistry, 54, 5976-5983.
Luo, Y., Ling, Y., Wang, X., Han, Y., Zeng, X., &; Sun, R. (2013). Maillard reaction products from chitosan-xylan ionic liquid solution. Carbohydrate Polymers, 98, 835-841.
MacDougall, D. B., &; Granov, M. (1998). Relationship between ultraviolet and visible spectra in Maillard reactions and CIELAB colour space and visual appearance (pp. 160-165). The Royal Society of Chemistry: Cambridge, UK.
Maghami, G. G., &; Roberts, G. A. F. (1988). Evaluation of viscometric constants for chitosan. Die Makromolekulare Chemie, 189, 195-200.
Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M. C., &; Lerici, C. R. (2000). Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science &; Technology, 11, 340-346.
Martenson, C. H., Sheetz, M. P., &; Graham, D. G. (1995). In vitro acrylamide exposure alters growth cone morphology. Toxicology and Applied Pharmacology, 131, 119-129.
Martins, S. I., &; Van Boekel, M. A. (2005). A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chemistry, 90, 257-269.
Mattila, T., &; Sandholm, M. (1989). Antibacterial effect of the glucose oxidase–glucose system on food-poisoning organisms. International Journal of Food Microbiology, 8, 165-174.
Mestdagh, F., De Meulenaer, B., Cucu, T., &; Van Peteghem, C. (2006). Role of water upon the formation of acrylamide in a potato model system. Journal of Agricultural and Food Chemistry, 54, 9092-9098.
Mestdagh, F., De Wilde, T., Castelein, P., Németh, O., Van Peteghem, C., &; De Meulenaer, B. (2008). Impact of the reducing sugars on the relationship between acrylamide and Maillard browning in French fries. European Food Research and Technology, 227, 69-76.
Morales, F. J., &; Jiménez-Pérez, S. (2001). Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chemistry, 72, 119-125.
Mottram, D. S., Wedzicha, B. L., &; Dodson, A. T. (2002). Food chemistry: Acrylamide is formed in the Maillard reaction. Nature, 419, 448-449.
Muzzarelli, R. A. A., &; Rocchetti, R. (1985). Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydrate Polymers, 5, 461-472.
No, H. K., Park, N. Y., Lee, S. H., &; Meyers, S. P. (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Food Microbiology, 74, 65-72.
Ogawa, Y., Hori, R., Kim, U. J., &; Wada, M. (2011). Elastic modulus in the crystalline region and the thermal expansion coefficients of α-chitin determined using synchrotron radiated X-ray diffraction. Carbohydrate Polymers, 83, 1213-1217.
Pedreschi, F., Kaack, K., &; Granby, K. (2004). Reduction of acrylamide formation in potato slices during frying. LWT - Food Science and Technology, 37, 679-685.
Pedreschi, F., Moyano, P., Kaack, K., &; Granby, K. (2005). Color changes and acrylamide formation in fried potato slices. Food Research International, 38, 1-9.
Petriella, C., Resnik, S. C., Lozano, R. D., &; Chirife, J. (1985). Kinetics of deteriorative reactions in model food systems of high water activity: Color changes due to nonenzymatic browning. Journal of Food Science, 50, 622-626.
Pogorelova, S. P., Bourenko, T., Kharitonov, A. B., &; Willner, I. (2002). Selective sensing of triazine herbicides in imprinted membranes using ion-sensitive field-effect transistors and microgravimetric quartz crystal microbalance measurements. Analyst, 127, 1484-1491.
Rathke, T. D., &; Hudson, S. M. (1994). Review of chitin and chitosan as fiber and film formers. Journal of Macromolecular Science, Part C: Polymer Reviews, 34, 375-437.
Rao, M. S., Chawla, S. P., Chander, R., &; Sharma, A. (2011). Antioxidant potential of Maillard reaction products formed by irradiation of chitosan-glucose solution. Carbohydrate Polymers, 83, 714-719.
Robert, F., Vuataz, G., Pollien, P., Saucy, F., Alonso, M. I., Bauwens, I., &; Blank, I. (2005). Acrylamide formation from asparagine under low moisture Maillard reaction conditions. 2. Crystalline vs amorphous model systems. Journal of Agricultural and Food Chemistry, 53, 4628-4632.
Roberts, G. A. F. (1992). Chitin Chemistry. London: The MacMillan Press Ltd.
Rufián-Henares, J. A., &; Morales, F. J. (2007). Functional properties of melanoidins: In vitro antioxidant, antimicrobial and antihypertensive activities. Food Research International, 40, 995-1002.
Rurián-Henares, J. A., &; Morales, F. J. (2008). Antimicrobial activity of melanoidins against Escherichia coli is mediated by a membrane-damage mechanism. Journal of Agricultural and Food Chemistry, 56, 2357-2362.
Rydberg, P., Eriksson, S., Tareke, E., Karlsson, P., Ehrenberg, L., &; Törnqvist, M. (2003). Investigations of Factors That Influence the Acrylamide Content of Heated Foodstuffs. Journal of Agricultural and Food Chemistry, 51, 7012-7018.
Sadd, P., &; Hamlet, C. (2005). The formation of acrylamide in UK cereal products. In M. Friedman, &; D. S. Mottram (Eds), Chemistry and Safety of Acrylamide in Foods (pp. 415-429). New York: Spring.
Sakamoto, J., &; Hashimoto, K. (1986). Reproductive toxicity of acrylamide and related compounds in mice—effects on fertility and sperm morphology. Archives of Toxicology, 59, 201-205.
Salakawy, S. A., &; Hammouda, Y. (1972). Nonenzymic browning in solid-dosage forms. Factors involved in the browing of antacid tablets containing glycine. Pharmazie, 27, 595-599.
Salmon, S., &; Hudson, S. M. (1997). Crystal morphology, biosynthesis, and physical assembly of cellulose, chitin, and chitosan. Journal of Macromolecular Science, Reviews in Macromolecular Chemistry and Physics, C37, 199-276.
Serpen, A., &; Gökmen, V. (2009). Evaluation of the Maillard reaction in potato crisps by acrylamide, antioxidant capacity and color. Journal of Food Composition and Analysis, 22, 589-595.
Silva, E. M., &; Simon, P. W. (2005). Genetic, physiological, and environmental factors affecting acrylamide concentration in fried potato products. Advances in Experimental Medicine and Biology, 561, 371-386.
Silvan, J. M., van de Lagemaat, J., Olano, A., &; del Castillo, M. D. (2006). Analysis and biological properties of amino acid derivates formed by Maillard reaction in foods. Journal of Pharmaceutical and Biomedical Analysis, 41, 1543-1551.
Singh, N., &; Rajini, P. S. (2004). Free radical scavenging activity of an aqueous extract of potato peel. Food Chemistry, 85, 611-616.
Smith, E. A., Prues, S. L., &; Oehme, F. W. (1997). Environmental degradation of polyacrylamides. Ecotoxicology and Environmental Safety, 37, 76-91.
Stanic-Vucinic, D., Prodic, I., Apostolovic, D., Nikolic, M., &; Velickovic, T. C. (2013). Structure and antioxidant activity of β-lactoglobulin-glycoconjugates obtained by high-intensity-ultrasound-induced Maillard reaction in aqueous model systems under neutral conditions. Food Chemistry, 138, 590-599.
Stecchini, M. L., Giavedoni, P., Sarais, I., &; Lerici, C. R. (1993). Antimicrobial activity of Maillard reaction products against Aeromonas hydrophila. Italian Journal of Food Science, 5, 147-150.
Summa, C., McCourt, J., Cämmerer, B., Fiala, A., Probst, M., Kun, S., Anklam, E., &; Wagner, K. H. (2008). Radical scavenging activity, anti‐bacterial and mutagenic effects of Cocoa bean Maillard Reaction products with degree of roasting. Molecular Nutrition &; Food Research, 52, 342-351.
Surdyk, N., Rosén, J., Andersson, R., &; Åman, P. (2004). Effects of asparagine, fructose, and baking conditions on acrylamide content in yeast-leavened wheat bread. Journal of Agricultural and Food Chemistry, 52, 2047-2051.
Synowiecki, J., &; Al-Khateeb, N. A. (2003). Production, properties, and some new applications of chitin and its derivatives. Critical Reviews in Food Science and Nutrition, 43, 145-171.
Tanaka, M., Kuei, W. C., Nagashima, Y., &; Tagushi, T. (1988). Application of antioxidative Maillard reaction products from histidine and glucose to sardins products. Nippon Suisan Gakkaishi, 54, 1409-1414.
Thorpe, S. R., &; Baynes, J. W. (2003). Maillard reaction products in tissue proteins: New products and new perspectives. Amino Acids, 25, 275-281.
Tsai, P. J., Yu, T. Y., Chen, S. H., Liu, C. C., &; Sun, Y. F. (2009). Interactive role of color and antioxidant capacity in caramels. Food Research International, 42, 380-386.
Tuohy, K. M., Hinton, D. J., Davies, S. J., Crabbe, M. J. C., Gibson, G. R., &; Ames, J. M. (2006). Metabolism of Maillard reaction products by the human gut microbiota–implications for health. Molecular Nutrition &; Food Research, 50, 847-857.
Usui, M., Tamura, H., Nakamura, K., Ogawa, T., Muroshita, M., Azakami, H., et al. (2004). Enhanced bactericidal action and masking of allergen stucture of soy protein by attachment of chitosan through Maillard-type protein-polysaccharide conjugation. Nahrung, 48, 69-72.
Vadivambal, R., &; Jayas, D. S. (2007). Changes in quality of microwave-treated agricultural products—a review. Biosystems Engineering, 98, 1-16.
Vattem, D. A., &; Shetty, K. (2003). Acrylamide in food: a model for mechanism of formation and its reduction. Innovative Food Science &; Emerging Technologies, 4, 331-338.
Wagner, K. H., Derkits, S., Herr, M., Schuh, W., &; Elmadfa, I. (2002). Antioxidative potential of melanoidins isolated from aroasted glucose–glycine model. Food Chemistry, 78, 375-382.
Weisshaar, R., &; Gutsche, B. (2002). Formation of acrylamide in heated potato products-model experiments pointing to asparagine as precursor. Deutsche Lebensmittel-Rundschau, 98, 397-400.
Whistler, R. L., &; Daniel, J. R. (1985). Carbohydrates. In O. R.Fennema (ed), Food Chemistry, 2nd ed. (pp. 69-137). New York: Marcel Dekker.
Wijewickreme, A. N., Kitts, D. D., &; Durance, T. D. (1997). Reaction conditions influence the elementary composition and metal chelating affinity of nondialyzable model Maillard reaction products. Journal of Agricultural and Food Chemistry, 45, 4577-4583.
Wise, L. D., Gordon, L. R., Soper, K. A., Duchai, D. M., &; Morrissey, R. E. (1995). Developmental neurotoxicity evaluation of acrylamide in Sprague-Dawley rats. Neurotoxicology and Teratology, 17, 189-198.
Wu, S., Hu, J., Wei, L., Du, Y., Shi, X., &; Zhang, L. (2014). Antioxidant and antimicrobial activity of Maillard reaction products from xylan with chitosan/chitooligomer/glucosamine hydrochloride/taurine model systems. Food Chemistry, 148, 196-203.
Xie, W. M., Xu, P. X., &; Liu, Q. (2001). Antioxidant activity of water-soluble chitosan derivatives. Bioorganic and Medicinal Chemistry Letters, 11, 1699-1701.
Xing, R., Liu, S., Yu, H., Zhang, Q., Li, Z., &; Li, P. (2004). Preparation of low-molecular-weight and high-sulfate-content chitosans under microwave radiation and their potential antioxidant activity in vitro. Carbohydrate Research, 339, 2515-2519.
Yamaguchi, N., Koyama, Y., &; Fujimaki, M. (1981). Fractionation and antioxidative activity of browning reaction products between D-xylose and glycine. Progress in Food and Nutrition Science.
Ying, G. Q., Xiong, W. Y., Wang, H., Sun, Y., &; Liu, H. Z. (2011). Preparation, water solubility and antioxidant activity of branched-chain chitosan derivatives. Carbohydrate Polymers, 83, 1787-1796.
Younes, I., Sellimi, S., Rinaudo, M., Jellouli, K., &; Nasri, M. (2014). Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. International Journal of Food Microbiology, 185, 57-63.
Zenick, H., Hope, E., &; Smith, M. K. (1986). Reproductive toxicity associated with acrylamide treatment in male and female rats. Journal of Toxicology and Environmental Health, Part A Current Issues, 17, 457-472.
Zhang, H., Yang, J., &; Zhao Y. (2015). High intensity ultrasound assisted heating to improve solubility, antioxidant and antibacterial properties of chitosan-fructose Maillard reaction products, LWT - Food Science and Technology, 60, 253-262.
Zheng, L. Y., &; Zhu, J. F. (2003). Study on antimicrobial activity of chitosan with different molecular weights. Carbohydrate Polymers, 54, 527-530.
Zhu, K. X., Li, J., Li, M., Guo, X. N., Peng, W., &; Zhou, H. M. (2013). Functional properties of chitosan-xylose Maillard reaction products and their application to semi-dried noodle. Carbohydrate Polymers, 92, 1972-1977.
Zyzak, D. V., Sanders, R. A., Stojanovic, M., Tallmadge, D. H., Eberhart, B. L., Ewald, D. K., Gruber D. C., Morsch, T. R., Strothers, M. A., Rizzi, G. P. &; Villagran, M. D. (2003). Acrylamide formation mechanism in heated foods. Journal of Agricultural and Food Chemistry, 51, 4782-4787.