|
Agyei, D., &; Danquah, M. (2012). Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends in Food Science &; Technology , 23, 62-69. Ahmad, I., Ijaz, F., Fatima, I., Ahmad, N., Chen, S., Afza, N., et al. (2010). Xanthine oxidase/tyrosinase inhibiting, antioxidant, and antifungal oxindole alkaloids from Isatis costata. Pharmaceutical Biology , 48, 716–721. Ajibola, C., Fashakin, J., Fagbemi, T., &; Aluko, R. (2011). Effect of peptide size on antioxidant properties of african yam bean seed (Sphenostylis stenocarpa) protein hydrolysate fractions. International Journal of Molecular Sciences , 12, 6685-6702. Akerström, B., Maghzal, G., Winterbourn, C., &; Kettle, A. (2007). The lipocalin alpha1-microglobulin has radical scavenging activity. The Journal of Biological Chemistry , 282, 31493-314503. Alam, M., Bristi, N., &; Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal , 21, 143-152. Alam, N., Yoon, K., Lee, J., Cho, H., &; Lee, T. (2012). Consequence of the antioxidant activities and tyrosinase inhibitory effects of various extracts from the fruiting bodies of Pleurotus ferulae. Saudi Journal of Biological Sciences , 19, 111–118. Alfadda, A. A., &; Sallam, R. M. (2012). Reactive oxygen species in health and disease. Journal of Biomedicine and Biotechnology , 2012, 1-14. Aluko, R. (2015). Amino acids, peptides, and proteins as antioxidants for food preservation. In F. Shahidi (Ed.), Handbook of Antioxidants for Food Preservation (1st Edition ed.). Cambridge, UK: Woodhead Publishing. Aneiros, A., &; Garateix, A. (2004). Bioactive peptides from marine sources: pharmacological properties and isolation procedures. Journal of Chromatography B , 803, 41–53. Asimi, O., Sahu, N., &; Pal, A. (2013). Antioxidant capacity of crude water and ethyl acetate extracts of some Indian spices and their antimicrobial activity against Vibrio vulnificus and Micrococcus luteus. Journal of Medicinal Plants Research , 7, 1907-1915. Badarinath, A., Mallikarjuna RAo, K., Chetty, C., Ramkanth, S., Rajan, T., &; Gnanaprakash, K. (2010). A review on in-vitro antioxidant methods: Comparisions, correlations and considerations. International Journal of PharmTech Research , 2, 1276-1285. Battelli, M., Polito, L., &; Bolognesi, A. (2014). Xanthine oxidoreductase in atherosclerosis pathogenesis: Not only oxidative stress. Atherosclerosis , 237, 562–567. Bergendi, L., Benes, L., Ďuračková, Z., &; Ferenčík, M. (1999). Chemistry, physiology and pathology of free radicals. Life Sciences , 65, 1865-1874. Bisswanger, H. (2008). Enzyme Kinetics: Principles and Methods (2nd Edition ed.). Weinheim: WILEY-VCH Verlag GmbH &; Co. KGaA. Bolisetty, S., &; Jaimes, E. A. (2013). Mitochondria and reactive oxygen species: physiology and pathophysiology. International Journal of Molecular Sciences , 14, 6306-6344. Boonstra, J., &; Post, J. A. (2004). Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene , 337, 1-13. Bouayed, J., &; Bohn, T. (2010). Exogenous antioxidants—Double-edged swords in cellular redox state. Oxidative Medicine and Cellular Longevity , 3, 228-237. Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., et al. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry , 118, 559–565. Chakrabarti, S., Jahandideh, F., &; Wu, J. (2014). Food-derived bioactive peptides on inflammation and oxidative stress. BioMed Research International , 2014. Chang, T. (2009). An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences , 10, 2440-2475. Chen, H.-M., Muramoto, K., &; Yamauchi, F. (1995). Structural analysis of antioxidative peptides from soybean β-conglycinin. Journal of Agricultural and Food Chemistry , 43, 574–578. Cheng, Z., &; Li, Y. (2004). Reducing power: the measure of antioxidant activities of reductant compounds? Redox Report , 9, 213-217. Chou, J. (2008). Assessment of Anti-Inflammation Function of Val-Trp-Trp-Trp from Mackerel Hydrolysates using Cultured Cell Model. Master's thesis. National Taiwan Ocean University. Cian, R. E., Martínez-Augustin, O., &; Drago, S. R. (2012). Bioactive properties of peptides obtained by enzymatic hydrolysis from protein byproducts of Porphyra columbina. Food Research International , 49, 364–372. Copeland, R. (2000). Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis. Canada: Wiley-VCH, Inc. Dalle-Donne, I., Rossi, R., Colombo, R., Giustarini, D., &; Milzani, A. (2006). Biomarkers of oxidative damage in human disease. Clinical Chemistry , 52, 601– 623. Davies, M., &; Dean, R. (1997). Radical-Mediated Protein Oxidation: From Chemistry to Medicine. New York: Oxford University Press. de Castro, R., &; Sato, H. (2015). Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International , 74, 185–198. Demirkiran, O., Sabudak, T., Ozturk, M., &; Topcu, G. (2013). Antioxidant and tyrosinase inhibitory activities of flavonoids from Trifolium nigrescens Subsp. petrisavi. Journal of Agriculutral and Food Chemistry , 61, 12598-12603. Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews , 1, 47-95. Ďuračková, Z. (2010). Some current insights into oxidative stress . Physiological Research , 59, 459-469. Durán, N., Rosa, M., D’Annibale, A., &; Gianfreda, L. (2002). Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme and Microbial Technology , 31, 907–931. Elias, R. J., Kellerby, S. S., &; Decker, E. A. (2008). Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition , 48, 430-441. Gawlik-Dziki, U. (2012). Dietary spices as a natural effectors of lipoxygenase, xanthine oxidase, peroxidase and antioxidant agents. LWT - Food Science and Technology , 47, 138–146. Genestra, M. (2007). Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal , 19, 1807-1819. Glantzounis, G., Tsimoyiannis, E., Kappas, A., &; Galaris, D. (2005). Uric acid and oxidative stress. Current Pharmaceutical Design , 11, 4145-4151. Gomberg, M. (1900). An instance of trivalent carbon: triphenylmethyl. Journal of the American Chemical Society , 757–771, 22. Halliwell, B. (2007). Biochemistry of oxidative stress. Biochemical Society Transactions , 35, 1147-1150. Hernández-Ledesma, B., Quirós, A., Amigo, L., &; Recio, I. (2007). Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. International Dairy Journal , 17, 42–49. Hsu, K. (2010). Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chemistry , 122, 42–48. Ihde, A. (1967). The history of free radicals and Moses Gomberg's contributions. Pure and Applied Chemistry , 15, 1-14. Ikram, M., Rehman, S., Khan, A., Baker, R., Hofer, T., Subhan, F., et al. (2015). Synthesis, characterization, antioxidant and selective xanthine oxidase inhibitory studies of transition metal complexes of novel amino acid bearing Schiff base ligand. Inorganica Chimica Acta , 428, 117–126. Jayanthi, P., &; Lalitha, P. (2011). Reducing power of the solvent extracts of Eichornia crasspies (mart.) solms. International Journal of Pharmacy and Pharmaceutical Sciences , 3, 126-128. Je, J., Park, P., &; Kim, S. (2005). Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Research International , 38, 45–50. Je, J., Qian, Z., Byun, H., &; Kim, S. (2007). Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry , 42, 840–846. Khanna, D., Fitzgerald, J., Khanna, P., Bae, S., Singh, M., Neogi, T., et al. (2012). 2012 american college of rheumatology guidelines for management of gout. Part 1: Systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care &; Research , 64, 1431–1446. Ko, H., Chang, W., &; Lu, T. (2008). Antityrosinase and antioxidant effects of ent-kaurane diterpenes from leaves of Broussonetia papyrifera. Journal of Natural Products , 71, 1930–1933. Ko, S.-C., Kim, D., &; Jeon, Y.-J. (2012). Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food and Chemical Toxicology , 50, 2294–2302. Korhonen, H., &; Pihlanto, A. (2006). Bioactive peptides: production and functionality. International Dairy Journal , 16, 945–960. Korhonen, H., Pihlanto-Leppälä, A., Rantamäki, P., &; Tupasela, T. (1998). Impact of processing on bioactive proteins and peptides. Trends in Food Science &; Technology , 9, 307-319. Kumar, N., Nazeer, R., &; Jaiganesh, R. (2012). Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber). Amino Acids , 42, 1641–1649. Li, S., Tang, Y., Liu, C., Li, J., Guo, L., &; Zhang, Y. (2015). Development of a method to screen and isolate potential xanthine oxidase inhibitors from Panax japlcus var via ultrafiltration liquid chromatography combined with counter-current chromatography. Talanta , 134, 665–673. Li, Y., Shi, D., Zhu, H., Yan, H., &; Ng, S. (2007). Transition metal complexes (M = Cu, Ni and Mn) of Schiff-base ligands: Syntheses, crystal structures, and inhibitory bioactivities against urease and xanthine oxidase. Inorganica Chimica Acta , 360, 2881–2889. Li, Y.-W., &; Li, B. (2013). Characterization of structure–antioxidant activity relationship of peptides in free radical systems using QSAR models: Key sequence positions and their amino acid properties. Journal of Theoretical Biology , 318, 29–43. Li-Chan, E. (2015). Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science , 1, 28–37. Li-Chan, E. (2015). Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science , 1, 28–37. Lobo, V., Patil, A., Phatak, A., &; Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Review , 4, 118–126. Lushchak, V. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions , 224, 164–175. Masuda, T., Shingai, Y., Takahashi, C., Inai, M., Miura, Y., Honda, S., et al. (2014). Identification of a potent xanthine oxidase inhibitor from oxidation of caffeic acid. Free Radical Biology and Medicine , 69, 300–307. Mazlan, N., Mediani, A., Abas, F., Ahmad, S., Shaari, K., Khamis, S., et al. (2013). Antioxidant, antityrosinase, anticholinesterase, and nitric oxide inhibition activities of three malaysian macaranga species. The Scientific World Journal , 2013, 1-8. Mello, L., &; Kubota, L. (2007). Biosensors as a tool for the antioxidant status evaluation. Talanta , 72, 335–348. Miller, D., Buettner, G., &; Aust, S. (1990). Transition metals as catalysts of "autoxidation" reactions. Free Radical Biology &; Medicine , 8, 95-108. Miller, N., Sampson, J., Candeias, L., Bramley, P., &; RiceEvans, C. (1996). Antioxidant activities of carotenes and xanthophylls. FEBS Letter , 384, 240–242. Mine, Y., Li-Chan, E., &; Jiang, B. (Eds.). (2010). Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals (1st Edition ed.). Iowa: Blackwell Publishing Ltd. Nelson, D., &; Cox, M. (2005). Lehninger Principles of Biochemistry (4th Edition ed.). New York: W.H. Freeman. Nongonierma, A.B., &; FitzGerald, R.J. (2012). Tryptophan-containing milk protein-derived dipeptides inhibit xanthine oxidase. Peptides. 37. 263-272. Nonhebel, D., &; Walton, J. (1974). Free-Radical Chemistry. London: Cambridge University Press. Noro, T., Oda, Y., Miyase, T., Ueno, A., &; Fukushima, S. (1983). Inhibitors of xanthine oxidase from the flowers and buds of Daphne genkwa. Chemical and Pharmaceutical Bulletin , 31, 3984–3987. Opitz, S., Smrke, S., Goodman, B., &; C, Y. (2014). Methodology for the measurement of antioxidant capacity of coffee: A validated platform composed of three complementary antioxidant assays. In V. Preedy (Ed.), Processing and Impact on Antioxidants in Beverages (17th Edition ed.). Oxford: Academic Press. Oroian, M., &; Escriche, I. (2015). Antioxidants: characterization, natural sources, extraction and analysis. Food Research International , 74, 10–36. Oyaizu, M. (1986). Studies on product of browning reaction prepared from glucose amine. The Japanese Journal of Nutrition and Dietetics , 44, 307-315. Pacher, P., Beckman, J., &; Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiological Reviews , 87, 315-424. Pala, F., &; Gürkan, H. (2008). The role of free radicals in ethiopathogenesis of diseases. Advances in Molecular Biology , 1, 1-9. Pham-Huy, L., He, H., &; Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical science , 4, 89-96. Pinto, M., &; Moraes, C. (2015). Mechanisms linking mtDNA damage and aging. Free Radical Biology and Medicine , 85, 250–258. Power, O., Jakeman, P., &; FitzGerald, R. (2013). Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids , 44, 797–820. Pownall, T., Udenigwe, C., &; Aluko, R. (2010). Amino acid composition and pantioxidant roperties of pea seed (Pisum sativum L.) enzymatic protein hydrolysate fractions. Journal of Agricultural and Food Chemistry , 58, 4712–4718. Purich, D. (2010). Enzyme Kinetics: Catalysis &; Control A Reference of Theory and Best-Practice Methods. London, UK: Academic Press. Qian, Z., Jung, W., &; Kim, S. (2008). Free radical scavenging activity of novel antioxidative peptide purified from hydrolysate of bullfrog skin (Rana catesbeiana shaw). Bioresource Technology , 99, 1690–1698. Ranathunga, S., Rajapakse, N., &; Kim, S.-K. (2006). Purification and characterization of antioxidative peptide derived from muscle of conger eel (Conger myriaster). European Food Research and Technology , 222, 310–315. Ray, P. D., Huang, B.-W., &; Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling , 24, 981-990. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., &; Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolourization assay. Free Radical Biology and Medicine , 26, 1231–1237. Ren, J., Zhao, M., Shi, J., Wang, J., Jiang, Y., Cui, C., et al. (2008). Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chemistry , 108, 727–736. Ren, J., Zheng, X.-Q., Liu, X.-L., &; Liu, H. (2010). Purification and characterization of antioxidant peptide from sunflower protein hydrolysate. Food Technology and Biotechnology , 48, 519–523. Riegersperger, M., Covic, A., &; Goldsmith, D. (2011). Allopurinol, uric acid, and oxidative stress in cardiorenal disease. International Urology and Nephrology , 43, 441–449. Samaranayaka, A. G., &; Li-Chan, E. C. (2011). Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. Journal of Functional Foods , 3, 229–254. Sautin, Y., Imaram, W., Kim, K., Angerhofer, A., Henderson, G., &; Johnson, R. (2011). Uric acid and oxidative stress. In T. Miyata, K. Eckardt, &; M. Nangaku (Eds.), Studies on Renal Disorders: Oxidative Stress in Applied Basic Research and Clinical Practice. New York: Humana Press. Schaich, K., Tian, X., &; Xie, J. (2015). Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. Journal of Functional Foods , 14, 111–125. Schurink, M., van Berkel, W.J.H., Wichers, H.J., &; Boeriu, C.G. (2007). Novel peptides with tyrosinase inhibitory activity. Peptides, 28, 485-495. Sharma, O., &; Bhat, T. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113, 1202–1205. Sheih, I.-C., Wu, T.-K., &; Fang, T. J. (2009). Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresource Technology , 100, 3419–3425. Takagi, K., &; Mitsunaga, T. (2003). Tyrosinase inhibitory activity of proanthocyanidins from woody plants. Journal of Wood Science , 49, 461–465. Udenigwe, C. (2014). Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends in Food Science &; Technology , 36, 137-143. Udenigwe, C., &; Aluko, R. (2011). Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates. International Journal of Molecular Sciences , 12, 3148–3161. van den Berg, R., Haenen, G., van den Berg, H., &; Bast, A. (1999). Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chemistry , 66, 511-517. Verbon, E. H., Post, J. A., &; Boonstra, J. (2012). The influence of reactive oxygen species on cell cycle progression in mammalian cells. Gene , 511, 1-6. Wang, H., Gao, X., Zhou, G., Cai, L., &; Yao, W. (2008). In vitro and in vivo antioxidant activity of aqueous extract from Choerospondias axillaries fruit. Food Chemistry , 106, 888–895. Watanabe, S., Kang, D., Feng, L., Nakagawa, T., Kanellis, J., Lan, H., et al. (2002). Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension , 40, 355-360. Willcox, J., Ash, S., &; Catignani, G. (2004). Antioxidants and prevention of chronic disease. Critical Reviews in Food Science and Nutrition , 44, 275-295. You, L., Zhao, M., Cui, C., Zhao, H., &; Yang, B. (2009). Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative Food Science and Emerging Technologies , 10, 235–240. You, L., Zhao, M., Regenstein, J., &; Ren, J. (2010). Purification and identification of antioxidative peptides from loach (Misgurnus anguillicaudatus) protein hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Research International , 43, 1167–1173. Young, I., &; Woodside, J. (2001). Antioxidants in health and disease. Journal of Clinical Pathology , 54, 176-186. Zhang, M., Mu, T., &; Sun, M. (2014). Purification and identification of antioxidant peptides from sweet potato protein hydrolysates by Alcalase. Journal of Functional Foods , 7, 191–200.
|