陳正平、陳鴻鳴、李澤民、何平合、何林泰。2005。台灣沿海, 綠島及蘭嶼海洋生物多樣性之調查研究。國立台灣中山大學海洋植物研究所博士位論文。
董祐伶。2010。小球藻萃取物對於第二型登革病毒感染之保護效果評估。國立台灣海洋大學食品科學系碩士學位論文。基隆。台灣。徐佳吟, 陳俊良, & 楊賢鴻。(2011) 。冬蟲夏草人工培養菌絲體對人體嗜中性血球及 T 淋巴球免疫反應之影響. 中醫藥雜誌, 22(3&4), 161-172.
邱雅凰。2012。探討藻類多醣抗病毒與其免疫調節之作用機制。國立台灣海洋大學食品科學系博士學位論文。基隆。台灣。許文邁。2013。牛樟芝減緩小鼠由順鉑誘導肝毒性及增加抗腫瘤反應。國立台灣海洋大學食品科學系碩士學位論文。基隆。臺灣。劉恩岐。2014。人類疾病動物模型。
古璦寧,吳白玟,陳瑋芸,沈盈如,黃子芸,蔡沁玹,陳惠芳。2015。以高效液相層析儀及高效陰離子交換儀同步分析食品中葡萄糖, 果糖, 蔗糖, 麥芽糖, 乳糖及半乳糖檢驗方法之探討. 食品藥物研究年報, 6, 22-35.
曾紫婷。2015。探討半葉馬尾藻萃取物對於A 型流感病毒感染之保護效果評估。國立台灣海洋大學食品科學系碩士學位論文。基隆。台灣。房彥君。2016。利用肺癌小鼠模式探討當歸補血湯藉由免疫調節及抗氧化機制達到抗癌之功效。國立台灣海洋大學食品科學系博士學位論文。基隆。台灣。卓筱錚。2017。探討半葉馬尾藻萃取物對第二型登革病毒感染之保護效果評估。國立台灣海洋大學食品科學系碩士學位論文。基隆。台灣。劉思敏,歐思遠,黃宏輝。2017。綠茶多酚通過誘導細胞週期停滯和線粒體介導的細胞凋亡誘導乳腺癌 MCF-7 細胞死亡。J Zhejiang Univ Sci B. 18(2):89-98。內政部:10.1631/jzus.B1600022。
江玲慧。2018。海木耳萃取物協同化學療法(5-fluorouracil) 抗直腸癌細胞轉移之效果。國立台灣海洋大學食品科學系碩士學位論文。基隆。台灣。童觀珍,付曉萍,楊艷,馮勵,向澤敏,普岳紅,范江平。2018。表兒茶素 (EGCG)的分布及藥理活性研究進展。雲南農業大學學報 (自然科學) ,2。
台灣發炎性腸道疾病學會。2018。潰瘍性結腸炎臨床治療指引。取自 http://www.tsibd.org.tw/editor_images/File/TSIBD-UC-2018.pdf
林恩如。2019。利用大腸癌小鼠探討半葉馬尾藻水萃物改善發炎微環境以達到保護功效。國立台灣海洋大學食品科學系碩士學位論文。基隆。台灣。李佳軒。2020。烏龍茶成分Theasinensin A可透過調降MMP-9與CCL2抑制12-OTetradecanoylphorbol-13-acetate所誘導HT-29腸白細胞株之轉移活性。國立台灣大學食品科學系碩士學位論文。台北。台灣。
周玉仙。2020。綜述中性粒細胞與淋巴細胞比值在肺部常見疾病中的研究進展。國際呼吸雜誌。取自https://kknews.cc/health/pblx2ge.html.
中國醫藥大學附設醫院。2020。大腸癌治療方法。取自https://www.cmuh.cmu.edu.tw/NewsInfo/NewsArticle?no=5760.
國家衛生研究院 。2020。 與我共存的腸道菌。 取自《國衛院電子報》醫藥研發。
黃玲玲。2021。利用肺癌小鼠模式探討冬蟲夏草菌絲體萃取物藉由免疫調節及抗氧化機制達到抗癌之功效。國立台灣海洋大學食品科學系博士學位論文。基隆。台灣。Abotaleb, M., Liskova, A., Kubatka, P., & Büsselberg, D. (2020). Therapeutic Potential of Plant Phenolic Acids in the Treatment of Cancer. Biomolecules, 10(2), 221.
Aisa, Y., Miyakawa, Y., Nakazato, T., Shibata, H., Saito, K., Ikeda, Y., & Kizaki, M. (2005). Fucoidan induces apoptosis of human HS‐sultan cells accompanied by activation of caspase‐3 and down‐regulation of ERK pathways. American Journal of Hematology, 78(1), 7-14.
Amsler, C. D., & Fairhead, V. A. (2005). Defensive and sensory chemical ecology of brown algae. Advances in Botanical Research, 43, 1-91.
Andresen, L., Jørgensen, V., Perner, A., Hansen, A., Eugen-Olsen, J., & Rask-Madsen, J. (2005). Activation of nuclear factor NF-κB in colonic mucosa from patients with collagenous and ulcerative colitis. Gut, 54(4), 503-509.
Anwar, S., Shamsi, A., Shahbaaz, M., Queen, A., Khan, P., Hasan, G. M., Islam, A., Alajmi, M. F., Hussain, A., Ahmad, F., & Hassan, M. I. (2020). Rosmarinic acid exhibits anticancer effects via MARK4 inhibition. Scientific Reports, 10(1), 1-13.
Arita, M., Yoshida, M., Hong, S., Tjonahen, E., Glickman, J. N., Petasis, N. A., Blumberg, R. S., & Serhan, C. N. (2005). Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2, 4, 6-trinitrobenzene sulfonic acid-induced colitis. Proceedings of the National Academy of Sciences, 102(21), 7671-7676.
Aviello, G., Singh, A. K., O'Neill, S., Conroy, E., Gallagher, W., D'Agostino, G., Walker, A. W., Bourke, B., Scholz, D., & Knaus, U. G. (2019). Colitis susceptibility in mice with reactive oxygen species deficiency is mediated by mucus barrier and immune defense defects. Mucosal Immunol.
Aviello, G., Corr, S. C., Johnston, D. G., O'Neill, L. A., & Fallon, P. G. (2014). MyD88 adaptor-like (Mal) regulates intestinal homeostasis and colitis-associated colorectal cancer in mice. American journal of physiology. Gastrointestinal and liver physiology, 306(9), G769–G778.
Aviello, G., Amu, S., Saunders, S. P., & Fallon, P. G. (2014). A Mineral Extract from red Algae Ameliorates Chronic Spontaneous Colitis in IL‐10 Deficient Mice in a Mouse Strain Dependent Manner. Phytotherapy Research, 28(2), 300-304.
Balboa, E. M., Millán, R., Domínguez, H., & Taboada, C. (2019). Sargassum muticum Hydrothermal Extract: Effects on Serum Parameters and Antioxidant Activity in Rats. Applied Sciences, 9(12), 2570.
Berteau, O., & Mulloy, B. (2003). Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology, 13(6), 29R-40R.
Bharti, R., & Singh, B. (2020). Green tea (Camellia assamica) extract as an antioxidant additive to enhance the oxidation stability of biodiesel synthesized from waste cooking oil. Fuel, 262, 116658.
Bimonte, S., Cascella, M., Barbieri, A., Arra, C., & Cuomo, A. (2019). Shining a Light on the Effects of the Combination of (-)-Epigallocatechin-3-gallate and Tapentadol on the Growth of Human Triple-negative Breast Cancer Cells. In vivo (Athens, Greece), 33(5), 1463–1468.
Bitencourt, M. A., Silva, H., Abílio, G. M., Miranda, G. E., Moura, A., Araújo-Júnior, J. X. d., . . . Souto, J. T. (2015). Anti-inflammatory effects of methanolic extract of green algae Caulerpa mexicana in a murine model of ulcerative colitis. Revista Brasileira de Farmacognosia, 25(6), 677-682.
Brito, T. V., Neto, J. P., Prudêncio, R. S., Batista, J. A., Júnior, J. S., Silva, R. O., . . . Souza, M. H. (2014). Sulfated‐polysaccharide fraction extracted from red algae G racilaria birdiae ameliorates trinitrobenzenesulfonic acid‐induced colitis in rats. Journal of Pharmacy and Pharmacology, 66(8), 1161-1170.
Cario, E., & Podolsky, D. K. (2000). Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infection and immunity, 68(12), 7010–7017.
Carmeliet, P. (2005). VEGF as a key mediator of angiogenesis in cancer. Oncology, 69 Suppl 3, 4–10.
Cederholm, T., Jensen, G. L., Correia, M. I. T. D., Gonzalez, M. C., Fukushima, R., Higashiguchi, T., Baptista, G., Barazzoni, R., Blaauw, R., Coats, A., Crivelli, A., Evans, D. C., Gramlich, L., Fuchs-Tarlovsky, V., Keller, H., Llido, L., Malone, A., Mogensen, K. M., Morley, J. E., Muscaritoli, M., … GLIM Working Group (2019). GLIM criteria for the diagnosis of malnutrition - A consensus report from the global clinical nutrition community. Clinical nutrition (Edinburgh, Scotland), 38(1), 1–9.
Chaftari, A. M., Hachem, R., Reitzel, R., Jordan, M., Jiang, Y., Yousif, A., Garoge, K., Deshmukh, P., Al Hamal, Z., Jabbour, J., Hanania, A., Raad, S., Jamal, M., & Raad, I. (2015). Role of Procalcitonin and Interleukin-6 in Predicting Cancer, and Its Progression Independent of Infection. PloS one, 10(7), e0130999.
Chen, C. Y., Lee, K. T., Charles Tzu-Chi, L., Lai, W. T., & Huang, Y. B. (2013). Epidemiology and Disease Burden of Ulcerative Colitis in Taiwan: A Nationwide Population-Based Study. Value in health regional issues, 2(1), 127–134.
Chizhov, A. O., Dell, A., Morris, H. R., Haslam, S. M., McDowell, R. A., Shashkov, A. S., . . . Usov, A. I. (1999). A study of fucoidan from the brown seaweed Chorda filum. Carbohydrate Research, 320(1-2), 108-119.
Choi, J. I., Raghavendran, H. R., Sung, N. Y., Kim, J. H., Chun, B. S., Ahn, D. H., Choi, H. S., Kang, K. W., & Lee, J. W. (2010). Effect of fucoidan on aspirin-induced stomach ulceration in rats. Chemico-biological interactions, 183(1), 249–254.
Cock, J. M., Sterck, L., Rouzé, P., Scornet, D., Allen, A. E., Amoutzias, G., . . . Badger, J. H. (2010). The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 465(7298), 617.
Chulpanova, D. S., Kitaeva, K. V., Rutland, C. S., Rizvanov, A. A., & Solovyeva, V. V. (2020). Mouse Tumor Models for Advanced Cancer Immunotherapy. International journal of molecular sciences, 21(11), 4118.
Carretta, M. D., Quiroga, J., López, R., Hidalgo, M. A., & Burgos, R. A. (2021). Participation of Short-Chain Fatty Acids and Their Receptors in Gut Inflammation and Colon Cancer. Frontiers in physiology, 12, 662739.
Dudley, A. C., & Griffioen, A. W. (2023). Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis, 26(3), 313–347.
Da Rocha, I. M. G., Marcadenti, A., De Medeiros, G. O. C., Bezerra, R. A., Rego, J. F. M., Gonzalez, M. C., & Fayh, A. P. T. (2019). Is cachexia associated with chemotherapy toxicities in gastrointestinal cancer patients? A prospective study. Journal of cachexia, sarcopenia and muscle, 10(2), 445–454.
Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & redox signaling, 18(14), 1818–1892.
Den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J., & Bakker, B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of lipid research, 54(9), 2325–2340.
Ding, S., Jiang, H., & Fang, J. (2018). Regulation of Immune Function by Polyphenols. Journal of immunology research, 1264074.
Dubois, R. N. (2014). Role of inflammation and inflammatory mediators in colorectal cancer. Transactions of the American Clinical and Climatological Association, 125, 358–373.
Elamin, E.E., Masclee, A.A., Dekker, J., Pieters, H.J., Jonkers, D.M. (2013). Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers. J. Nutr. 143, 1872–1881.
Fang, C. Y., Wu, C. C., Hsu, H. Y., Chuang, H. Y., Huang, S. Y., Tsai, C. H., Chang, Y., Tsao, G. S., Chen, C. L., & Chen, J. Y. (2015). EGCG inhibits proliferation, invasiveness and tumor growth by up-regulation of adhesion molecules, suppression of gelatinases activity, and induction of apoptosis in nasopharyngeal carcinoma cells. International journal of molecular sciences, 16(2), 2530–2558.
Fouad, T.M., Kogawa, T., Reuben, J.M. and Ueno, N.T. (2014). The Role of Inflam-mation in Inflammatory Breast Cancer. Advances in Experimental Medicine and Biology, 816, 53-73.
Fu, Q. Y., Li, Q. S., Lin, X. M., Qiao, R. Y., Yang, R., Li, X. M., Dong, Z. B., Xiang, L. P., Zheng, X. Q., Lu, J. L., Yuan, C. B., Ye, J. H., & Liang, Y. R. (2017). Antidiabetic Effects of Tea. Molecules (Basel, Switzerland), 22(5), 849.
Fukata, M., Chen, A., Vamadevan, A. S., Cohen, J., Breglio, K., Krishnareddy, S., Hsu, D., Xu, R., Harpaz, N., Dannenberg, A. J., Subbaramaiah, K., Cooper, H. S., Itzkowitz, S. H., & Abreu, M. T. (2007). Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology, 133(6), 1869–1881.
Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature reviews. Gastroenterology & hepatology, 14(8), 491–502.
Gong, W., Han, R., Li, H., Song, J., Yan, H., Li, G., Liu, A., Cao, X., Guo, J., Zhai, S., Cheng, D., Zhao, Z., Liu, C., & Liu, J. (2017). Agronomic Traits and Molecular Marker Identification of Wheat-Aegilops caudata Addition Lines. Frontiers in plant science, 8, 1743.
Greten, F. R., & Grivennikov, S. I. (2019). Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity, 51(1), 27–41.
Hinojosa Nogueira, D., Pérez Burillo, S., De La Cueva, S.P., Rufián-Henares, J. Ángel. (2021). Green and white teas as health-promoting foods. Food Funct. 12, 3799–3819.
Huang, S. C., Kao, Y. H., Shih, S. F., Tsai, M. C., Lin, C. S., Chen, L. W., Chuang, Y. P., Tsui, P. F., Ho, L. J., Lai, J. H., & Chen, S. J. (2021). Epigallocatechin-3-gallate exhibits immunomodulatory effects in human primary T cells. Biochemical and biophysical research communications, 550, 70–76.
Huang, Y., & Chen, Z. (2016). Inflammatory bowel disease related innate immunity and adaptive immunity. American journal of translational research, 8(6), 2490–2497.
Imai, K., Suga, K., & Nakachi, K. (1997). Cancer-preventive effects of drinking green tea among a Japanese population. Preventive medicine, 26(6), 769–775.
Jaja Chimedza, A., Graf, B. L., Simmler, C., Kim, Y., Kuhn, P., Pauli, G. F., & Raskin, I. (2017). Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract. PloS one, 12(8), e0182658.
Jedinak, A., Dudhgaonkar, S., & Sliva, D. (2010). Activated macrophages induce metastatic behavior of colon cancer cells. Immunobiology, 215(3), 242–249.
Jung, Y. D., & Ellis, L. M. (2001). Inhibition of tumour invasion and angiogenesis by epigallocatechin gallate (EGCG), a major component of green tea. International journal of experimental pathology, 82(6), 309–316.
Kasprzak A. (2021). The Role of Tumor Microenvironment Cells in Colorectal Cancer (CRC) Cachexia. International journal of molecular sciences, 22(4), 1565.
Kunac, N., Filipović, N., Kostić, S., & Vukojević, K. (2022). The Expression Pattern of Bcl-2 and Bax in the Tumor and Stromal Cells in Colorectal Carcinoma. Medicina (Kaunas, Lithuania), 58(8), 1135.
Luo, K. W., Xia, J., Cheng, B. H., Gao, H. C., Fu, L. W., & Luo, X. L. (2020). Tea polyphenol EGCG inhibited colorectal-cancer-cell proliferation and migration via downregulation of STAT3. Gastroenterology report, 9(1), 59–70.
Larabi, A., Barnich, N., & Nguyen, H. T. T. (2020). New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy, 16(1), 38–51.
Lee, Y., Sugihara, K., Gillilland, M. G., 3rd, Jon, S., Kamada, N., & Moon, J. J. (2020). Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nature materials, 19(1), 118–126.
Li, Q. S., Wang, Y. Q., Liang, Y. R., Lu, J. L. (2021). The anti-allergic potential of tea: A review of its components, mechanisms and risks. Food Funct.12:57–69.
Li, W., Swiderski, K., Murphy, K. T., & Lynch, G. S. (2022). Role for plant-derived antioxidants in attenuating cancer cachexia. Antioxidants, 11(2), 183.
Litvak, Y., Byndloss, M. X., & Bäumler, A. J. (2018). Colonocyte metabolism shapes the gut microbiota. Science (New York, N.Y.), 362(6418), eaat9076.
Ma, F., Lin, Y., Ni, Z., Chen, T., & Wang, X. (2023). Therapeutic effects of natural polyphenols on colorectal adenomas: Focus on preclinical studies (Review). Oncology reports, 49(6), 112.
Martin, L., Birdsell, L., MacDonald, N., Reiman, T., Clandinin, M. T., McCargar, L. J., ... & Baracos, V. E. (2013). Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol, 31(12), 1539-1547.
McQuade, R. M., Stojanovska, V., Bornstein, J. C., & Nurgali, K. (2017). Colorectal Cancer Chemotherapy: The Evolution of Treatment and New Approaches. Current medicinal chemistry, 24(15), 1537–1557.
Melling, N., Kowitz, C. M., Simon, R., Bokemeyer, C., Terracciano, L., Sauter, G., Izbicki, J. R., & Marx, A. H. (2016). High Ki67 expression is an independent good prognostic marker in colorectal cancer. Journal of clinical pathology, 69(3), 209–214.
Min, K. J., Kwon, T. K. (2014). Anticancer effects and molecular mechanisms of epigalloCatechins-3-gallate. Integrative medicine research, 3(1), 16–24.
Min, K. J., & Kwon, T. K. (2014). Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate. Integrative medicine research, 3(1), 16–24.
Moussa, M., Badawy, A., Helal, N., Hegab, F., Youssef, M., Aboushousha, T., Al Faruok, L., & Elwy, D. (2020). Differential Expression of HER2 and SKP2 in Benign and Malignant Colorectal Lesions. Asian Pacific journal of cancer prevention : APJCP, 21(8), 2357–2366.
Maiorino, L., Daßler-Plenker, J., Sun, L., & Egeblad, M. (2022). Innate Immunity and Cancer Pathophysiology. Annual review of pathology, 17, 425–457.
Montané, X., Kowalczyk, O., Reig-Vano, B., Bajek, A., Roszkowski, K., Tomczyk, R., Pawliszak, W., Giamberini, M., Mocek-Płóciniak, A., & Tylkowski, B. (2020). Current Perspectives of the Applications of Polyphenols and Flavonoids in Cancer Therapy. Molecules (Basel, Switzerland), 25(15), 3342.
Negi, R. R., Rana, S. V., Gupta, V., Gupta, R., Chadha, V. D., Prasad, K. K., & Dhawan, D. K. (2019). Over-Expression of Cyclooxygenase-2 in Colorectal Cancer Patients. Asian Pacific journal of cancer prevention : APJCP, 20(6), 1675–1681.
Ni, J., & Zhang, L. (2020). Cancer Cachexia: Definition, Staging, and Emerging Treatments. Cancer management and research, 12, 5597–5605.
Nagaraju, G. P., & El-Rayes, B. F. (2019). Cyclooxygenase-2 in gastrointestinal malignancies. Cancer, 125(8), 1221–1227.
Neagu, M., Constantin, C., Popescu, I. D., Zipeto, D., Tzanakakis, G., Nikitovic, D., Fenga, C., Stratakis, C. A., Spandidos, D. A., & Tsatsakis, A. M. (2019). Inflammation and Metabolism in Cancer Cell-Mitochondria Key Player. Frontiers in oncology, 9, 348.
Patel, M., Horgan, P. G., McMillan, D. C., & Edwards, J. (2018). NF-κB pathways in the development and progression of colorectal cancer. Translational research : the journal of laboratory and clinical medicine, 197, 43–56.
Pasinetti, G. M., Singh, R., Westfall, S., Herman, F., Faith, J., & Ho, L. (2018). The Role of the Gut Microbiota in the Metabolism of Polyphenols as Characterized by Gnotobiotic Mice. Journal of Alzheimer's disease : JAD, 63(2), 409–421.
Qin, X. Y., Wang, Y. N., Liu, H. F., Luo, Z. H., Zhang, P. L., Li-Fang, H., & Liu, M. R. (2020). Anti-cancer activities of metal-based complexes by regulating the VEGF/VEGFR2 signaling pathway and apoptosis-related factors Bcl-2, Bax, and caspase-9 to inhibit angiogenesis and induce apoptosis. Metallomics : integrated biometal science, 12(1), 92–103.
Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., Tuohy, K. (2018). Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 57, 1–24.
Routy, B., Gopalakrishnan, V., Daillère, R., Zitvogel, L., Wargo, J. A., & Kroemer, G. (2018). The gut microbiota influences anticancer immunosurveillance and general health. Nature reviews. Clinical oncology, 15(6), 382–396.
Serafini, M., Villano, D., Spera, G., & Pellegrini, N. (2006). Redox molecules and cancer prevention: the importance of understanding the role of the antioxidant network. Nutrition and cancer, 56(2), 232–240.
Shayeghan, M., Ansari, A., Forouzesh, F., Javidi, M. (2022). Reactive oxygen species, the trident of Neptune in the hands of hecate; role in different diseases, signaling pathways, and detection methods. Arch Biochem Biophys. 728:109357.
Sipos, F., Fűri, I., Constantinovits, M., Tulassay, Z., & Műzes, G. (2014). Contribution of TLR signaling to the pathogenesis of colitis-associated cancer in inflammatory bowel disease. World journal of gastroenterology, 20(36), 12713–12721.
Sridhar, M., Ileng, K. R., Kokelavani N. B., . . . Ilangovan R. (2021). Role of Inflammation in the Development of Colorectal Cancer. Endocr Metab Immune Disord Drug Targets, 21(1):77-90.
Sun, H., Chen, Y., Cheng, M., Zhang, X., Zheng, X., & Zhang, Z. (2018). The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro. Journal of food science and technology, 55(1), 399–407.
Sawicki, T., Ruszkowska, M., Danielewicz, A., Niedźwiedzka, E., Arłukowicz, T., & Przybyłowicz, K. E. (2021). A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. Cancers, 13(9), 2025.
Sharifi Rad, M., Pezzani, R., Redaelli, M., Zorzan, M., Imran, M., Ahmed Khalil, A., Salehi, B., Sharopov, F., Cho, W. C., & Sharifi-Rad, J. (2020). Preclinical Pharmacological Activities of Epigallocatechin-3-gallate in Signaling Pathways: An Update on Cancer. Molecules (Basel, Switzerland), 25(3), 467.
Sheng, J., Sun, H., Yu, F. B., Li, B., Zhang, Y., & Zhu, Y. T. (2020). The Role of Cyclooxygenase-2 in Colorectal Cancer. International journal of medical sciences, 17(8), 1095–1101.
Torii, T., Kanemitsu, K., Wada, T., Itoh, S., Kinugawa, K., & Hagiwara, A. (2010). Measurement of short-chain fatty acids in human faeces using high-performance liquid chromatography: specimen stability. Annals of clinical biochemistry, 47(Pt 5), 447–452.
Tong, Yunguang., Yang, Wancai., H. Phillip Koeffler. (2011). Mouse models of colorectal cancer. Chin J Cancer. 30(7): 450–462.
Thaker, A. I., Shaker, A., Rao, M. S., & Ciorba, M. A. (2012). Modeling colitis-associated cancer with azoxymethane (AOM) and dextran sulfate sodium (DSS). Journal of visualized experiments : JoVE, (67), 4100.
Väyrynen, J. P., Tuomisto, A., Väyrynen, S.A., Klintrup, K., Karhu, T., Mäkelä, J. (2018). Preoperative anemia in colorectal cancer: Relationships with tumor characteristics, systemic inflammation, and survival. Sci Rep. 8(1):1–11.
Wang, G., Yu, Y., Wang, Y.Z., Wang, J.J., Guan, R., Sun, Y., Shi, F., Gao, J., Fu, X.L. (2019) Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. J. Cell. Physiol. 234, 17023–17049.
Wang, H., Lai, Y. J., Chan, Y. L., Li, T. L., & Wu, C. J. (2011). EpigalloCatechins-3-gallate effectively attenuates skeletal muscle atrophy caused by cancer cachexia. Cancer Letters, 305(1), 40-49.
Wang, J., Tang, L., Zhou, H., Zhou, J., Glenn, T. C., Shen, C. L., & Wang, J. S. (2018). Long-term treatment with green tea polyphenols modifies the gut microbiome of female sprague-dawley rats. The Journal of nutritional biochemistry, 56, 55–64.
Wang, M., Zhong, H., Zhang, X. et al. (2021). EGCG promotes PRKCA expression to alleviate LPS-induced acute lung injury and inflammatory response. Nature Sci Rep 11, 11014.
Wang, S. T., Cui, W. Q., Pan, D., Jiang, M., Chang, B., & Sang, L. X. (2020). Tea polyphenols and their chemopreventive and therapeutic effects on colorectal cancer. World journal of gastroenterology, 26(6), 562–597.
Wang, Y., Kan, Z., Thompson, H.J., Ling, T.-J., Ho, C.-T., Li, D., Wan, X. (2018). Impact of Six Typical Processing Methods on the Chemical Composition of Tea Leaves Using a Single Camellia sinensis Cultivar, Longjing 43. J. Agric. Food Chem. 67, 5423–5436.
Wilson, M. J., Dekker, J. W. T., Harlaar, J. J., Jeekel, J., Schipperus, M., & Zwaginga, J. J. (2017). The role of preoperative iron deficiency in colorectal cancer patients: prevalence and treatment. International journal of colorectal disease, 32(11), 1617–1624.
Wong, C. P., Nguyen, L. P., Noh, S. K., Bray, T. M., Bruno, R. S., & Ho, E. (2011). Induction of regulatory T cells by green tea polyphenol EGCG. Immunology letters, 139(1-2), 7–13.
Wang, Y. Q., Li, Q. S., Zheng, X. Q., Lu, J. L., & Liang, Y. R. (2021). Antiviral Effects of Green Tea EGCG and Its Potential Application against COVID-19. Molecules (Basel, Switzerland), 26(13), 3962.
Wu, Y. R., Choi, H. J., Kang, Y. G., Kim, J. K., & Shin, J. W. (2017). In vitro study on anti-inflammatory effects of epigallocatechin-3-gallate-loaded nano- and microscale particles. International journal of nanomedicine, 12, 7007–7013.
Xing, L., Zhang, H., Qi, R., Tsao, R., Mine, Y. (2019). Recent Advances in the Understanding of the Health Benefits and Molecular Mechanisms Associated with Green Tea Polyphenols. J. Agric. Food Chem. 67, 1029–1043.
Youn, H. S., Lee, J. Y., Saitoh, S. I., Miyake, K., Kang, K. W., Choi, Y. J., & Hwang, D. H. (2006). Suppression of MyD88- and TRIF-dependent signaling pathways of Toll-like receptor by (-)-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochemical pharmacology, 72(7), 850–859.
Yuan, X., Long, Y., Ji, Z., Gao, J., Fu, T., Yan, M., Zhang, L., Su, H., Zhang, W., Wen, X., Pu, Z., Chen, H., Wang, Y., Gu, X., Yan, B., Kaliannan, K., & Shao, Z. (2018). Green Tea Liquid Consumption Alters the Human Intestinal and Oral Microbiome. Molecular nutrition & food research, 62(12), e1800178.
Yuan, L., Zhang, F., Shen, M., Jia, S., & Xie, J. (2019). Phytosterols Suppress Phagocytosis and Inhibit Inflammatory Mediators via ERK Pathway on LPS-Triggered Inflammatory Responses in RAW264.7 Macrophages and the Correlation with Their Structure. Foods (Basel, Switzerland), 8(11), 582.
Zhang, Y., & Yang, J. M. (2013). Altered energy metabolism in cancer: a unique opportunity for therapeutic intervention. Cancer biology & therapy, 14(2), 81–89.
Zhou, Y., Zheng, J., Li, Y., Xu, D. P., Li, S., Chen, Y. M., & Li, H. B. (2016). Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients, 8(8), 515.