|
6.參考文獻 邱思魁 (2018)。魚貝類的化學組成與其死後變化。海大漁推,48,01-48。 陳明君 (2018)。智慧包裝材料市場概況。工業材料雜誌,384,23-29。 衛生福利部 (2020) 。冷凍、冷藏水產品製造業者符合食品良好衛生規範準則之指引。109年7月1日FDA食字第1091301740號函。 衛生福利部 (2021) 。「食品中污染物質及毒素衛生標準」第五條附表三。110年2月4日衛授食字第1091304812號公告修正。 衛生福利部 (2021) 。水產品中揮發性鹽基態氮之檢驗方法。110年10月27日衛授食字第1101902415號公告。 Ahmad, M., Nirmal, N. P., & Chuprom, J. (2016a). Molecular characteristics of collagen extracted from the starry triggerfish skin and its potential in the development of biodegradable packaging film. RSC Advances, 6(40), 33868-33879. Ahmad, M., Nirmal, N. P., Danish, M., Chuprom, J., & Jafarzedeh, S. (2016b). Characterisation of composite films fabricated from collagen/chitosan and collagen/soy protein isolate for food packaging applications. Rsc Advances, 6(85), 82191-82204. Alizadeh-Sani, M., Mohammadian, E., Rhim, J. W., & Jafari, S. M. (2020). pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality. Trends in Food Science & Technology, 105, 93–144. Amin, K. A. M., & Panhuis, M. i. h. (2011). Polyelectrolyte complex materials from chitosan and gellan gum. Carbohydrate Polymers, 86(1), 352-358. Ashie, I. N. A., Smith, J. P., Simpson, B. K., & Haard, N. F. (1996). Spoilage and shelf‐life extension of fresh fish and shellfish. Critical Reviews in Food Science & Nutrition, 36(1-2), 87-121. Atefi, M., Ghavami, A., Hadi, A., & Askari, G. (2021). The effect of barberry (Berberis vulgaris L.) supplementation on blood pressure: A systematic review and meta-analysis of the randomized controlled trials. Complementary Therapies in Medicine, 56, 102608. Becerril, R., Nerín, C., & Silva, F. (2021). Bring some colour to your package: Freshness indicators based on anthocyanin extracts. Trends in Food Science & Technology, 111, 495-505. Boon, C. S., McClements, D. J., Weiss, J., & Decker, E. A. (2010). Factors influencing the chemical stability of carotenoids in foods. Critical Reviews in Food Science and Nutrition, 50(6), 515-532. Bourbon, A. I., Pereira, R. N., Pastrana, L. M., Vicente, A. A., & Cerqueira, M. A. (2019). Protein-based nanostructures for food applications. Gels, 5(1), 9. Cabrita, L., Fossen, T., & Andersen, O. M. (2000). Colour and stability of the six common anthocyanidin 3-glucosides in aqueous solutions. Food Chemistry, 68, 101–107. Castaneda-Ovando, A., de Lourdes Pacheco-Hernandez, M., Paez-Hernández, M. E., Rodríguez, J. A., & Galan-Vidal, C. A. (2009). Chemical studies of anthocyanins: a review. Food Chemistry, 113(4), 859-871. Chen, H. Z., Zhang, M., Bhandari, B., & Yang, C. H. (2020a). Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness. Food Hydrocolloids, 100, 105438. Chen, M., Yan, T., Huang, J., Zhou, Y., & Hu, Y. (2021). Fabrication of halochromic smart films by immobilizing red cabbage anthocyanins into chitosan/oxidized-chitin nanocrystals composites for real-time hairtail and shrimp freshness monitoring. International Journal of Biological Macromolecules, 179, 90-100. Chen, S., Brahma, S., Mackay, J., Cao, C., & Aliakbarian, B. (2020b). The role of smart packaging system in food supply chain. Journal of Food Science, 85(3), 517-525. Chinh, N. T., Manh, V. Q., Trung, V. Q., Lam, T. D., Huynh, M. D., Tung, N. Q., Trinh, N.D., & Hoang, T. (2019). Characterization of collagen derived from tropical freshwater carp fish scale wastes and its amino acid sequence. Natural Product Communications, 14(7), 1-12. Coppola, D., Oliviero, M., Vitale, G. A., Lauritano, C., D’Ambra, I., Iannace, S., & de Pascale, D. (2020). Marine collagen from alternative and sustainable sources: Extraction, processing and applications. Marine Drugs, 18(4), 214, 1-23. De Dicastillo, C. L., Rodríguez, F., Guarda, A., & Galotto, M. J. (2016). Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications. Carbohydrate Polymers, 136, 1052-1060. Delgado-Vargas, F., Jimenez, A. R., & Paredes-Lopez, O. (2000). Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition, 40(3), 173-289. de Moraes, J. O., Scheibe, A. S., Sereno, A., & Laurindo, J. B. (2013). Scale-up of the production of cassava starch based films using tape-casting. Journal of Food Engineering, 119(4), 800-808. De Moura, M. R., Aouada, F. A., Avena-Bustillos, R. J., McHugh, T. H., Krochta, J. M., & Mattoso, L. H. (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. Journal of Food Engineering, 92(4), 448-453. Din, M. I., Ghaffar, T., Najeeb, J., Hussain, Z., Khalid, R., & Zahid, H. (2020). Potential perspectives of biodegradable plastics for food packaging application-review of properties and recent developments. Food Additives & Contaminants: Part A, 37(4), 665-680. Echegaray, N., Guzel, N., Kumar, M., Guzel, M., Hassoun, A., & Lorenzo, J. M. (2023). Recent advancements in natural colorants and their application as coloring in food and in intelligent food packaging. Food Chemistry, 404, 134453,1-13. Eze, F. N., Jayeoye, T. J., & Singh, S. (2022). Fabrication of intelligent pH-sensing films with antioxidant potential for monitoring shrimp freshness via the fortification of chitosan matrix with broken riceberry phenolic extract. Food Chemistry, 366, 130574. Gasti, T., Dixit, S., D'souza, O. J., Hiremani, V. D., Vootla, S. K., Masti, S. P., Chougale, R. B., & Malabadi, R. B. (2021). Smart biodegradable films based on chitosan/methylcellulose containing Phyllanthus reticulatus anthocyanin for monitoring the freshness of fish fillet. International Journal of Biological Macromolecules, 187, 451-461. Ge, Y., Li, Y., Bai, Y., Yuan, C., Wu, C., & Hu, Y. (2020). Intelligent gelatin/oxidized chitin nanocrystals nanocomposite films containing black rice bran anthocyanins for fish freshness monitorings. International Journal of Biological Macromolecules, 155, 1296-1306. Gómez-Guillén, M. C., Pérez-Mateos, M., Gómez-Estaca, J., López-Caballero, E., Giménez, B., & Montero, P. (2009). Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science & Technology, 20(1), 3-16. Groh, K. J., Backhaus, T., Carney-Almroth, B., Geueke, B., Inostroza, P. A., Lennquist, A., Leslie, H.A., Maffini, M., Slunge, D., Trasande, L., Warhurst, A.M., & Muncke, J. (2019). Overview of known plastic packaging-associated chemicals and their hazards. Science of the Total Environment, 651, 3253-3268. Guo, M., Wang, H., Wang, Q., Chen, M., Li, L., Li, X., & Jiang, S. (2020). Intelligent double-layer fiber mats with high colorimetric response sensitivity for food freshness monitoring and preservation. Food Hydrocolloids, 101, 105468. Haghighi, H., Licciardello, F., Fava, P., Siesler, H. W., & Pulvirenti, A. (2020). Recent advances on chitosan-based films for sustainable food packaging applications. Food Packaging and Shelf Life, 26, 100551, 1-16. Hashim, S. B., Tahir, H. E., Liu, L., Zhang, J., Zhai, X., Mahdi, A. A., Awad, F. N., Hassan, M. M., Xiaobo, Z., & Jiyong, S. (2022). Intelligent colorimetric pH sensoring packaging films based on sugarcane wax/agar integrated with butterfly pea flower extract for optical tracking of shrimp freshness. Food Chemistry, 373, 131514. Hayashi, M., Takei, R., Umene, S., Narita, K., Kato, K., Kobayashi, Y., & Honma, Y. (2016). Tribological analysis of the surface of food gels. Food Hydrocolloids, 58, 343-346. Heger, M., van Golen, R. F., Broekgaarden, M., & Michel, M. C. (2014). The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacological Reviews, 66(1), 222-307. Henry García, Y., Troncoso‐Rojas, R., Tiznado‐Hernández, M. E., Báez‐Flores, M. E., Carvajal‐Millan, E., Rascón‐Chu, A., LizardiMendoza, & Martínez‐Robinson, K. G. (2019). Enzymatic treatments as alternative to produce chitin fragments of low molecular weight from Alternaria alternata. Journal of Applied Polymer Science, 136(15), 47339, 1-8. Huang, H. L., Tsai, I. L., Lin, C., Hang, Y. H., Ho, Y. C., Tsai, M. L., & Mi, F. L. (2023). Intelligent films of marine polysaccharides and purple cauliflower extract for food packaging and spoilage monitoring. Carbohydrate Polymers, 299, 120133. Huang, J., Liu, J., Chen, M., Yao, Q., & Hu, Y. (2021). Immobilization of roselle anthocyanins into polyvinyl alcohol/hydroxypropyl methylcellulose film matrix: Study on the interaction behavior and mechanism for better shrimp freshness monitoring. International Journal of Biological Macromolecules, 184, 666-677. Huang, S., Xiong, Y., Zou, Y., Dong, Q., Ding, F., Liu, X., & Li, H. (2019). A novel colorimetric indicator based on agar incorporated with Arnebia euchroma root extracts for monitoring fish freshness. Food Hydrocolloids, 90, 198-205. Kaewprachu, P., Osako, K., Benjakul, S., & Rawdkuen, S. (2016). Effect of protein concentrations on the properties of fish myofibrillar protein based film compared with PVC film. Journal of Food Science and Technology, 53, 2083-2091. Kang, S., Wang, H., Xia, L., Chen, M., Li, L., Cheng, J., Lib, X., & Jiang, S. (2020). Colorimetric film based on polyvinyl alcohol/okra mucilage polysaccharide incorporated with rose anthocyanins for shrimp freshness monitoring. Carbohydrate Polymers, 229, 115402. Kharat, M., Du, Z., Zhang, G., & McClements, D. J. (2017). Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment. Journal of Agricultural and Food Chemistry, 65(8), 1525-1532. Kharat, M., Skrzynski, M., Decker, E. A., & McClements, D. J. (2020). Enhancement of chemical stability of curcumin-enriched oil-in-water emulsions: Impact of antioxidant type and concentration. Food Chemistry, 320, 126653. Koca, N., Karadeniz, F., & Burdurlu, H. S. (2007). Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chemistry, 100(2), 609-615. Kurek, M., Garofulic, I. E., Bakic, M. T., Scetar, M., Uzelac, V. D., & Galic, K. (2018). Development and evaluation of a novel antioxidant and pH indicator film based on chitosan and food waste sources of antioxidants. Food Hydrocolloids, 84, 238-246. Kuswandi, B., Oktaviana, R., Abdullah, A., & Heng, L. Y. (2014). A novel on‐package sticker sensor based on methyl red for real‐time monitoring of broiler chicken cut freshness. Packaging Technology and Science, 27(1), 69-81. Kuswandi, B., Wicaksono, Y., Abdullah, A., Heng, L. Y., & Ahmad, M. (2011). Smart packaging: sensors for monitoring of food quality and safety. Sensing and Instrumentation for Food Quality and Safety, 5(3), 137-146. Latos-Brozio, M., & Masek, A. (2020). The application of natural food colorants as indicator substances in intelligent biodegradable packaging materials. Food and Chemical Toxicology, 135, 110975 , 1-10. Lei, Y., Yao, Q., Jin, Z., & Wang, Y. C. (2023). Intelligent films based on pectin, sodium alginate, cellulose nanocrystals, and anthocyanins for monitoring food freshness. Food Chemistry, 404, 134528. Lewis, C. E., Walker, J. R., & Lancaster, J. E. (1995). Effect of polysaccharides on the colour of anthocyanins. Food Chemistry, 54(3), 315-319. Liang, T., Sun, G., Cao, L., Li, J., & Wang, L. (2019). A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocolloids, 87, 858-868. Li, L., Wang, W., Zheng, M., Sun, J., Chen, Z., Wang, J., & Ma, Q. (2023). Nanocellulose-enhanced smart film for the accurate monitoring of shrimp freshness via anthocyanin-induced color changes. Carbohydrate Polymers, 301, 120352. Lionetto, F., & Esposito Corcione, C. (2021). Recent applications of biopolymers derived from fish industry waste in food packaging. Polymers, 13(14), 2337. Liu, D., Cui, Z., Shang, M., & Zhong, Y. (2021). A colorimetric film based on polyvinyl alcohol/sodium carboxymethyl cellulose incorporated with red cabbage anthocyanin for monitoring pork freshness. Food Packaging and Shelf Life, 28, 100641. Liu, J., Wang, H., Guo, M., Li, L., Chen, M., Jiang, S., Li, X., & Jiang, S. (2019). Extract from Lycium ruthenicum Murr. Incorporating κ-carrageenan colorimetric film with a wide pH–sensing range for food freshness monitoring. Food Hydrocolloids, 94, 1-10. Liu, J., Wang, H., Wang, P., Guo, M., Jiang, S., Li, X., & Jiang, S. (2018). Films based on κ-carrageenan incorporated with curcumin for freshness monitoring. Food Hydrocolloids, 83, 134-142. Liu, X., Xiao, G., Chen, W., Xu, Y., & Wu, J. (2004). Quantification and purification of mulberry anthocyanins with macroporous resins. Journal of Biomedicine and Biotechnology, 2004(5), 326-331. Li, Y., Hu, Z., Huo, R., & Cui, Z. (2023). Preparation of an indicator film based on pectin, sodium alginate, and xanthan gum containing blueberry anthocyanin extract and its application in blueberry freshness monitoring. Heliyon, 9, e14421. Luchese, C. L., Abdalla, V. F., Spada, J. C., & Tessaro, I. C. (2018). Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocolloids, 82, 209-218. Lu, M., Zhou, Q., Yu, H., Chen, X., & Yuan, G. (2022). Colorimetric indicator based on chitosan/gelatin with nano-ZnO and black peanut seed coat anthocyanins for application in intelligent packaging. Food Research International, 160, 111664. Maciel, V. B. V., Yoshida, C. M., & Franco, T. T. (2015). Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohydrate Polymers, 132, 537-545. Mahdavi, S. A., Jafari, S. M., Assadpour, E., & Ghorbani, M. (2016). Storage stability of encapsulated barberry's anthocyanin and its application in jelly formulation. Journal of Food Engineering, 181, 59-66. Ma, Q., Liang, T., Cao, L., & Wang, L. (2018). Intelligent poly (vinyl alcohol)-chitosan nanoparticles-mulberry extracts films capable of monitoring pH variations. International Journal of Biological Macromolecules, 108, 576-584. McSharry, S., Koolman, L., Whyte, P., & Bolton, D. (2020). The microbiology of beef steaks stored aerobically or anaerobically in vacuum pack films with different oxygen barrier properties. Food Packaging and Shelf Life, 26, 100597. Merz, B., Capello, C., Leandro, G. C., Moritz, D. E., Monteiro, A. R., & Valencia, G. A. (2020). A novel colorimetric indicator film based on chitosan, polyvinyl alcohol and anthocyanins from jambolan (Syzygium cumini) fruit for monitoring shrimp freshness. International Journal of Biological Macromolecules, 153, 625-632. Mishra, A., Clark, J. H., & Pal, S. (2008). Modification of Okra mucilage with acrylamide: synthesis, characterization and swelling behavior. Carbohydrate Polymers, 72(4), 608-615. Moradi, M., Tajik, H., Almasi, H., Forough, M., & Ezati, P. (2019). A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydrate Polymers, 222, 115030. Ortac, D., Cemek, M., Karaca, T., Büyükokuroğlu, M. E., Özdemir, Z. Ö., Kocaman, A. T., & Göneş, S. (2018). In vivo anti-ulcerogenic effect of okra (Abelmoschus esculentus) on ethanol-induced acute gastric mucosal lesions. Pharmaceutical Biology, 56(1), 165-175. Patocka, J., & Navratilova, Z. (2019). Bioactivity of Echium amoenum: A mini review. Pharmacology, 20(2), 14915-14917. Pineros-Hernandez, D., Medina-Jaramillo, C., Lopez-Córdoba, A., & Goyanes, S. (2017). Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids, 63, 488-495. Polat, S., Guclu, G., Kelebek, H., Keskin, M., & Selli, S. (2022). Comparative elucidation of colour, volatile and phenolic profiles of black carrot (Daucus carota L.) pomace and powders prepared by five different drying methods. Food Chemistry, 369, 130941. Pourjavaher, S., Almasi, H., Meshkini, S., Pirsa, S., & Parandi, E. (2017). Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract. Carbohydrate Polymers, 156, 193-201. Prabhakar, P. K., Vatsa, S., Srivastav, P. P., & Pathak, S. S. (2020). A comprehensive review on freshness of fish and assessment: Analytical methods and recent innovations. Food Research International, 133, 109157. Prietto, L., Mirapalhete, T. C., Pinto, V. Z., Hoffmann, J. F., Vanier, N. L., Lim, L. T., Dias, A. R. G., & da Rosa Zavareze, E. (2017). pH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage. LWT, 80, 492-500. Qin, Y., Liu, Y., Yong, H., Liu, J., Zhang, X., & Liu, J. (2019a). Preparation and characterization of active and intelligent packaging films based on cassava starch and anthocyanins from Lycium ruthenicum Murr. International Journal of Biological Macromolecules, 134, 80-90. Qin, Y., Liu, Y., Yuan, L., Yong, H., & Liu, J. (2019b). Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocolloids, 96, 102-111. Raj, V., Shim, J. J., & Lee, J. (2020). Grafting modification of okra mucilage: Recent findings, applications, and future directions. Carbohydrate Polymers, 246, 116653. Rostamzad, H., Paighambari, S. Y., Shabanpour, B., Ojagh, S. M., & Mousavi, S. M. (2016). Improvement of fish protein film with nanoclay and transglutaminase for food packaging. Food Packaging and Shelf Life, 7, 1-7. Roy, S., & Rhim, J. W. (2021). Anthocyanin food colorant and its application in pH-responsive color change indicator films. Critical Reviews in Food Science and Nutrition, 61(14), 2297-2325. Rukmanikrishnan, B., Ismail, F. R. M., Manoharan, R. K., Kim, S. S., & Lee, J. (2020). Blends of gellan gum/xanthan gum/zinc oxide based nanocomposites for packaging application: rheological and antimicrobial properties. International Journal of Biological Macromolecules, 148, 1182-1189. Sani, M. A., Azizi-Lalabadi, M., Tavassoli, M., Mohammadi, K., & McClements, D. J. (2021a). Recent advances in the development of smart and active biodegradable packaging materials. Nanomaterials, 11(5), 1331. Sani, M. A., Tavassoli, M., Hamishehkar, H., & McClements, D. J. (2021b). Carbohydrate-based films containing pH-sensitive red barberry anthocyanins: Application as biodegradable smart food packaging materials. Carbohydrate Polymers, 255, 117488. Santos, V. P., Marques, N. S., Maia, P. C., Lima, M. A. B. D., Franco, L. D. O., & Campos-Takaki, G. M. D. (2020). Seafood waste as attractive source of chitin and chitosan production and their applications. International Journal of Molecular Sciences, 21(12), 4290. Sanyang, M. L., Ilyas, R. A., Sapuan, S. M., & Jumaidin, R. (2018). Sugar palm starch-based composites for packaging applications. Bionanocomposites for Packaging Applications, 125-147. Jawaid, M., & Swain, S. K., Editor. Springer Nature. Switzerland. Sikorski, Z. E., Kolakowska, A., & Burt, J. R. (1990). Postharvest biochemical and microbial changes. Seafood: Resources, Nutritional Composition and Preservation, 55-75. Sikorski, Z. E., Editor. CRC Press. United States. Sinela, A., Rawat, N., Mertz, C., Achir, N., Fulcrand, H., & Dornier, M. (2017). Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products. Food Chemistry, 214, 234-241. Sivapragasam, N., Neelakandan, N., & Rupasinghe, H. V. (2023). Potential health benefits of fermented blueberry: A review of current scientific evidence. Trends in Food Science & Technology , 132, 103-120. Stevens, L. R., Gilmore, K. J., & Wallace, G. G. (2016). Tissue engineering with gellan gum. Biomaterials Science, 4(9), 1276-1290. Smeriglio, A., Barreca, D., Bellocco, E., & Trombetta, D. (2016). Chemistry, pharmacology and health benefits of anthocyanins. Phytotherapy Research, 30(8), 1265-1286. Sun, G., Chi, W., Zhang, C., Xu, S., Li, J., & Wang, L. (2019). Developing a green film with pH-sensitivity and antioxidant activity based on к-carrageenan and hydroxypropyl methylcellulose incorporating Prunus maackii juice. Food Hydrocolloids, 94, 345-353. Tang, X., & Alavi, S. (2011). Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydrate Polymers, 85(1), 7-16. Tavakoli, S., Mubango, E., Tian, L., ŃDri, Y. B., Tan, Y., Hong, H., & Luo, Y. (2023). Novel intelligent films containing anthocyanin and phycocyanin for nondestructively tracing fish spoilage. Food Chemistry, 402, 134203. Varela, P., & Fiszman, S. M. (2011). Hydrocolloids in fried foods. A review. Food Hydrocolloids, 25(8), 1801-1812. Viji, P., Venkateshwarlu, G., Ravishankar, C. N., & Gopal, T. S. (2017). Role of plant extracts as natural additives in fish and fish products-a review. Fishery Technology, 54, 145–154. Wang, G. Y., Wang, H. H., Han, Y. W., Xing, T., Ye, K. P., Xu, X. L., & Zhou, G. H. (2017). Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ. Food Microbiology, 63, 139-146. Wang, S. T., Tsai, C. C., Shih, M. C., & Tsai, M. L. (2021). Flavor-related applications of chitin and chitosan in foods: Effect of Structure and Properties on the Efficacy. Chitosan for Biomaterials III: Structure-Property Relationships, 169-202. Jayakumar, R., & Prabaharan, M., Editor. Springer Nature. Switzerland. Wei, Y. C., Cheng, C. H., Ho, Y. C., Tsai, M. L., & Mi, F. L. (2017). Active gellan gum/purple sweet potato composite films capable of monitoring pH variations. Food Hydrocolloids, 69, 491-502. Weng, W., & Wu, F. (2015). Water resistance and mechanical property improvement of tilapia (Tilapia zillii) scale gelatin films by dehydrated thermal treatment. Journal of Food Science and Technology, 52, 3358-3366. Wood, C. A., Jacobson, R. E., & Attridge, G. G. (1989). Minimum perceptible differences in the colour reproduction of photographic prints in colour appearance terms. The Journal of Photographic Science, 38(4-5), 101-104. Wu, C., Sun, J., Zheng, P., Kang, X., Chen, M., Li, Y.,Ge,Y., Hu,Y., & Pang, J. (2019). Preparation of an intelligent film based on chitosan/oxidized chitin nanocrystals incorporating black rice bran anthocyanins for seafood spoilage monitoring. Carbohydrate Polymers, 222, 115006. Wu, L. T., Tsai, I. L., Ho, Y. C., Hang, Y. H., Lin, C., Tsai, M. L., & Mi, F. L. (2021). Active and intelligent gellan gum-based packaging films for controlling anthocyanins release and monitoring food freshness. Carbohydrate Polymers, 254, 117410. Xue, W., Zhu, J., Sun, P., Yang, F., Wu, H., & Li, W. (2023). Permeability of biodegradable film comprising biopolymers derived from marine origin for food packaging application: A review. Trends in Food Science & Technology, 136, 295-307. Yang, Y., Yu, X., Zhu, Y., Zeng, Y., Fang, C., Liu, Y., Hu, S., Ge,Y., & Jiang, W. (2022). Preparation and application of a colorimetric film based on sodium alginate/sodium carboxymethyl cellulose incorporated with rose anthocyanins. Food Chemistry, 393, 133342. Yan, J., Cui, R., Qin, Y., Li, L., & Yuan, M. (2021). A pH indicator film based on chitosan and butterfly pudding extract for monitoring fish freshness. International Journal of Biological Macromolecules, 177, 328-336. Yong, H., & Liu, J. (2020). Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packaging and Shelf Life, 26, 2214-2894. Zavareze, E. D. R., Halal, S. L. M. E., Marques e Silva, R., Dias, A. R. G., & Prentice‐Hernandez, C. (2014). Mechanical, barrier and morphological properties of biodegradable films based on muscle and waste proteins from the whitemouth croaker (Micropogonias furnieri). Journal of Food Processing and Preservation, 38(4), 1973-1981. Zeng, P., Chen, X., Qin, Y. R., Zhang, Y. H., Wang, X. P., Wang, J. Y., Ning, Z. X., Ruan, Q. J., & Zhang, Y. S. (2019). Preparation and characterization of a novel colorimetric indicator film based on gelatin/polyvinyl alcohol incorporating mulberry anthocyanin extracts for monitoring fish freshness. Food Research International, 126, 108604. Zhai, X., Shi, J., Zou, X., Wang, S., Jiang, C., Zhang, J., Huang, X., Zhang,W., & Holmes, M. (2017). Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocolloids, 69, 308-317. Zhang, K., Huang, T. S., Yan, H., Hu, X., & Ren, T. (2020). Novel pH-sensitive films based on starch/polyvinyl alcohol and food anthocyanins as a visual indicator of shrimp deterioration. International Journal of Biological Macromolecules, 145, 768-776. Zhao, L., Liu, Y., Zhao, L., & Wang, Y. (2022). Anthocyanin-based pH-sensitive smart packaging films for monitoring food freshness. Journal of Agriculture and Food Research, 9, 100340. Zheng, L., Liu, L., Yu, J., Farag, M. A., & Shao, P. (2023). Intelligent starch/chitosan-based film incorporated by anthocyanin-encapsulated amylopectin nanoparticles with high stability for food freshness monitoring. Food Control, 151, 109798. Zhu, G., Sheng, L., & Tong, Q. (2014). Preparation and characterization of carboxymethyl-gellan and pullulan blend films. Food Hydrocolloids, 35, 341-347.
|