|
Abbott, A. P., Boothby, D., Capper, G., Davies, D. L., & Rasheed, R. K. (2004). Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. Journal of the American Chemical Society, 126(29), 9142-9147. Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2003). Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, 2003(1), 70-71. Al Sagheer, F. A., Al-Sughayer, M. A., Muslim, S., & Elsabee, M. Z. (2009). Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydrate Polymers, 77(2), 410-419. Arbia, W., Arbia, L., Adour, L., & Amrane, A. (2013). Chitin extraction from crustacean shells using biological methods–a review. Food Technology and Biotechnology, 51(1), 12-25. Azuma, K., Izumi, R., Osaki, T., Ifuku, S., Morimoto, M., Saimoto, H., Minami, S., & Okamoto, Y. (2015). Chitin, chitosan, and its derivatives for wound healing: old and new materials. Journal of Functional Biomaterials, 6(1), 104-142. Black, M. M., & Schwartz, H. M. (1950). The estimation of chitin and chitin nitrogen in crawfish waste and derived products. Analyst, 75(889), 185-189. Bradić, B., Novak, U., & Likozar, B. (2020). Crustacean shell bio-refining to chitin by natural deep eutectic solvents. Green Processing and Synthesis, 9(1), 13-25. Brett, C. M. (2018). Deep eutectic solvents and applications in electrochemical sensing. Current Opinion in Electrochemistry, 10, 143-148. Chang, F. S., Chin, H. Y., & Tsai, M. L. (2018). Preparation of chitin with puffing pretreatment. Research on Chemical Intermediates, 44(8), 4939-4955. Choi, Y. H., & Verpoorte, R. (2019). Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Current Opinion in Food Science, 26, 87-93. Choi, Y. H., van Spronsen, J., Dai, Y., Verberne, M., Hollmann, F., Arends, I. W., Witkamp, G-J., & Verpoorte, R. (2011). Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology. Plant Physiology, 156(4), 1701-1705. Cui, R., & Zhu, F. (2021). Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications. Trends in Food Science & Technology, 107, 491-508. de Marco, B. A., Rechelo, B. S., Tótoli, E. G., Kogawa, A. C., & Salgado, H. R. N. (2019). Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharmaceutical Journal, 27(1), 1-8. Fakayode, O. A., Aboagarib, E. A. A., Yan, D., Li, M., Wahia, H., Mustapha, A. T., & Ma, H. (2020). Novel two-pot approach ultrasonication and deep eutectic solvent pretreatments for watermelon rind delignification: Parametric screening and optimization via response surface methodology. Energy, 203, 117872. Feng, M., Lu, X., Zhang, J., Li, Y., Shi, C., Lu, L., & Zhang, S. (2019). Direct conversion of shrimp shells to O-acylated chitin with antibacterial and anti-tumor effects by natural deep eutectic solvents. Green Chemistry, 21(1), 87-98. García, G., Atilhan, M., & Aparicio, S. (2015). An approach for the rationalization of melting temperature for deep eutectic solvents from DFT. Chemical Physics Letters, 634, 151-155. Gerde, J. A., Montalbo-Lomboy, M., Yao, L., Grewell, D., & Wang, T. (2012). Evaluation of microalgae cell disruption by ultrasonic treatment. Bioresource Technology, 125, 175-181. Gontrani, L., Plechkova, N. V., & Bonomo, M. (2019). In-depth physico-chemical and structural investigation of a dicarboxylic acid/choline chloride natural deep eutectic solvent (NADES): a spotlight on the importance of a rigorous preparation procedure. Acs Sustainable Chemistry & Engineering, 7(14), 12536-12543. Hajji, S., Ghorbel-Bellaaj, O., Younes, I., Jellouli, K., & Nasri, M. (2015). Chitin extraction from crab shells by Bacillus bacteria. Biological activities of fermented crab supernatants. International Journal of Biological Macromolecules, 79, 167-173. Hayes, B. L. (2004). Recent advances in microwave-assisted synthesis. Aldrichimica Acta, 37(2), 66-77. Hong, S., Yuan, Y., Yang, Q., Zhu, P., & Lian, H. (2018). Versatile acid base sustainable solvent for fast extraction of various molecular weight chitin from lobster shell. Carbohydrate Polymers, 201, 211-217. Hou, F., Ma, X., Fan, L., Wang, D., Ding, T., Ye, X., & Liu, D. (2020). Enhancement of chitin suspension hydrolysis by a combination of ultrasound and chitinase. Carbohydrate Polymers, 231, 115669. Hu, X., Tang, Y., Wang, Q., Li, Y., Yang, J., Du, Y., & Kennedy, J. F. (2011). Rheological behaviour of chitin in NaOH/urea aqueous solution. Carbohydrate Polymers, 83(3), 1128-1133. Hu, X., Tian, Z., Li, X., Wang, S., Pei, H., Sun, H., & Zhang, Z. (2020). Green, simple, and effective process for the comprehensive utilization of shrimp shell waste. ACS Omega, 5(30), 19227-19235. Huang, J., Zhong, Y., Wei, P., & Cai, J. (2021). Rapid dissolution of β-chitin and hierarchical self-assembly of chitin chains in aqueous KOH/urea solution. Green Chemistry, 23(8), 3048-3060. Huang, W. C., Zhao, D., Guo, N., Xue, C., & Mao, X. (2018). Green and facile production of chitin from crustacean shells using a natural deep eutectic solvent. Journal of Agricultural and Food Chemistry, 66(45), 11897-11901. Hülsey, M. J. (2018). Shell biorefinery: A comprehensive introduction. Green Energy & Environment, 3(4), 318-327. Jang, M. K., Kong, B. G., Jeong, Y. I., Lee, C. H., & Nah, J. W. (2004). Physicochemical characterization of α‐chitin, β‐chitin, and γ‐chitin separated from natural resources. Journal of Polymer Science Part A: Polymer Chemistry, 42(14), 3423-3432. Jangir, A. K., Mandviwala, H., Patel, P., Sharma, S., & Kuperkar, K. (2020). Acumen into the effect of alcohols on choline chloride: L-lactic acid-based natural deep eutectic solvent (NADES): A spectral investigation unified with theoretical and thermophysical characterization. Journal of Molecular Liquids, 317, 113923. Kaoui, S., Chebli, B., Basaid, K., & Mir, Y. (2023). Deep eutectic solvents as sustainable extraction media for plants and food samples: A review. Sustainable Chemistry and Pharmacy, 31, 100937. Kasprzak, D., & Galiński, M. (2021). DMSO as an auxiliary solvent in the fabrication of homogeneous chitin-based films obtaining from an ionic liquid process. European Polymer Journal, 158, 110681. Kaur, R., Kumar, A., Kumar, V., Kumar, S., Saini, R. K., Nayi, P., & Gehlot, R. (2022). Recent advancements and applications of explosion puffing. Food Chemistry, 134452. Kaya, M., Mujtaba, M., Ehrlich, H., Salaberria, A. M., Baran, T., Amemiya, C. T.,Galli, R., Akyuz, L., Sargin, I., & Labidi, J. (2017). On chemistry of γ-chitin. Carbohydrate Polymers, 176, 177-186. Khajavian, M., Vatanpour, V., Castro-Muñoz, R., & Boczkaj, G. (2022). Chitin and derivative chitosan-based structures—Preparation strategies aided by deep eutectic solvents: A review. Carbohydrate Polymers, 275, 118702. Kjartansson, G. T., Zivanovic, S., Kristbergsson, K., & Weiss, J. (2006). Sonication-assisted extraction of chitin from North Atlantic shrimps (Pandalus borealis). Journal of Agricultural and food Chemistry, 54(16), 5894-5902. Kollau, L. J., Vis, M., van den Bruinhorst, A., Tuinier, R., & de With, G. (2020). Entropy models for the description of the solid–liquid regime of deep eutectic solutions. Journal of Molecular Liquids, 302, 112155. Kudłak, B., Owczarek, K., & Namieśnik, J. (2015). Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—a review. Environmental Science and Pollution Research, 22(16), 11975-11992. Kumar, M., Dhingra, D., Yadav, A., & Pandey, S. (2022). Effect of lithium salt on fluorescence quenching in glycerol: a comparison with ionic liquid/deep eutectic solvent. Physical Chemistry Chemical Physics, 24(1), 459-467. Lee, K. M., Hong, J. Y., & Tey, W. Y. (2021). Combination of ultrasonication and deep eutectic solvent in pretreatment of lignocellulosic biomass for enhanced enzymatic saccharification. Cellulose, 28, 1513-1526. Lee, K. M., Quek, J. D., Tey, W. Y., Lim, S., Kang, H. S., Quen, L. K., Ten. K. H., & Khoo, K. S. (2022). Biomass valorization by integrating ultrasonication and deep eutectic solvents: delignification, cellulose digestibility and solvent reuse. Biochemical Engineering Journal, 187, 108587. Li, G., Yan, C., Cao, B., Jiang, J., Zhao, W., Wang, J., & Mu, T. (2016). Highly efficient I 2 capture by simple and low-cost deep eutectic solvents. Green Chemistry, 18(8), 2522-2527. Li, X., & Row, K. H. (2016). Development of deep eutectic solvents applied in extraction and separation. Journal of Separation Science, 39(18), 3505-3520. Li, Z., Liu, C., Hong, S., Lian, H., Mei, C., Lee, J., Wu, Q., Hubbe, M. A., & Li, M. C. (2022). Recent advances in extraction and processing of chitin using deep eutectic solvents. Chemical Engineering Journal, 136953. Lin, S. B., Hsu, C. P., Chen, L. C., & Chen, H. H. (2009). Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose. Food Hydrocolloids, 23(8), 2195-2203. Liu, T., Li, B., Zheng, X., Liang, S., Song, X., Zhu, B., Kennedy, J. F., & Xia, J. (2010). Effects of freezing on the condensed state structure of chitin in alkaline solution. Carbohydrate Polymers, 82(3), 753-760. Mathew, G. M., Mathew, D. C., Sukumaran, R. K., Sindhu, R., Huang, C. C., Binod, P., Sirohi, R., Kim, S-H., & Pandey, A. (2020). Sustainable and eco-friendly strategies for shrimp shell valorization. Environmental Pollution, 267, 115656. Mukesh, C., Mondal, D., Sharma, M., & Prasad, K. (2014). Choline chloride–thiourea, a deep eutectic solvent for the production of chitin nanofibers. Carbohydrate Polymers, 103, 466-471. Musarurwa, H., & Tavengwa, N. T. (2021). Deep eutectic solvent-based dispersive liquid-liquid micro-extraction of pesticides in food samples. Food Chemistry, 342, 127943. Nguyen, T. T., Zhang, W., Barber, A. R., Su, P., & He, S. (2016). Microwave-intensified enzymatic deproteinization of Australian rock lobster shells (Jasus edwardsii) for the efficient recovery of protein hydrolysate as food functional nutrients. Food and Bioprocess Technology, 9(4), 628-636. Özel, N., & Elibol, M. (2021). A review on the potential uses of deep eutectic solvents in chitin and chitosan related processes. Carbohydrate Polymers, 262, 117942. Pachapur, V. L., Guemiza, K., Rouissi, T., Sarma, S. J., & Brar, S. K. (2016). Novel biological and chemical methods of chitin extraction from crustacean waste using saline water. Journal of Chemical Technology & Biotechnology, 91(8), 2331-2339. Prado, A. G. (2003). Química verde, os desafios da química do novo milênio. Química Nova, 26, 738-744. Qin, Y., Lu, X., Sun, N., & Rogers, R. D. (2010). Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chemistry, 12(6), 968-971. Rodrigues, L. A., Pereira, C. V., Leonardo, I. C., Fernández, N., Gaspar, F. B., Silva, J. M., Reis, R. L., Duarte, A. R. C., Paiva, A., & Matias, A. A. (2020). Terpene-Based natural deep eutectic systems as efficient solvents to recover astaxanthin from brown crab shell residues. ACS Sustainable Chemistry & Engineering, 8(5), 2246-2259. Saravana, P. S., Ho, T. C., Chae, S. J., Cho, Y. J., Park, J. S., Lee, H. J., & Chun, B. S. (2018). Deep eutectic solvent-based extraction and fabrication of chitin films from crustacean waste. Carbohydrate Polymers, 195, 622-630. Sedaghat, F., Yousefzadi, M., Toiserkani, H., & Najafipour, S. (2016). Chitin from Penaeus merguiensis via microbial fermentation processing and antioxidant activity. International Journal of Biological Macromolecules, 82, 279-283. Sharma, M., Mukesh, C., Mondal, D., & Prasad, K. (2013). Dissolution of α-chitin in deep eutectic solvents. Rsc Advances, 3(39), 18149-18155. Singh, A., Benjakul, S., & Prodpran, T. (2019). Ultrasound‐assisted extraction of chitosan from squid pen: Molecular characterization and fat binding capacity. Journal of Food Science, 84(2), 224-234. Smith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep eutectic solvents (DES) and their applications. Chemical Reviews, 114(21), 11060-11082. Sun, X., Wei, Q., Yang, Y., Xiao, Z., & Ren, X. (2022). In-depth study on the extraction and mechanism of high-purity chitin based on NADESs method. Journal of Environmental Chemical Engineering, 10(1), 106859. Tan, T. S., Chin, H. Y., Tsai, M. L., & Liu, C. L. (2015). Structural alterations, pore generation, and deacetylation of α- and β-chitin submitted to steam explosion. Carbohydrate Polymers, 122, 321-328. Tan, Y. T., Chua, A. S. M., & Ngoh, G. C. (2020). Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products–A review. Bioresource Technology, 297, 122522. van Osch, D. J., Dietz, C. H., Van Spronsen, J., Kroon, M. C., Gallucci, F., van Sint Annaland, M., & Tuinier, R. (2019). A search for natural hydrophobic deep eutectic solvents based on natural components. ACS Sustainable Chemistry & Engineering, 7(3), 2933-2942. Vicente, F. A., Bradić, B., Novak, U., & Likozar, B. (2020). α‐Chitin dissolution, N‐deacetylation and valorization in deep eutectic solvents. Biopolymers, 111(5), e23351. Wang, Y., Fu, C., Wu, Z., Chen, L., Chen, X., Wei, Y., & Zhang, P. (2017). A chitin film containing basic fibroblast growth factor with a chitin-binding domain as wound dressings. Carbohydrate Polymers, 174, 723-730. Wang, Y., Yang, Y., Wang, R., Zhu, Y., Yang, P., Lin, Z., Wang, Z., & Cong, W. (2022). Efficient extraction of chitin from crustacean waste via a novel ternary natural deep eutectic solvents. Carbohydrate Polymers, 286, 119281. Wen, Q., Chen, J. X., Tang, Y. L., Wang, J., & Yang, Z. (2015). Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere, 132, 63-69. Yen, M. T., Yang, J. H., & Mau, J. L. (2009). Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers, 75(1), 15-21.Yu, P., He, H., Luo, Y., Jia, D., & Dufresne, A. (2017). Elastomer reinforced with regenerated chitin from alkaline/urea aqueous system. ACS Applied Materials & Interfaces, 9(31), 26460-26467. Yu, Z., Ji, Y., Bourg, V., Bilgen, M., & Meredith, J. C. (2020). Chitin-and cellulose-based sustainable barrier materials: A review. Emergent Materials, 3(6), 919-936. Yuan, Y., Hong, S., Lian, H., Zhang, K., & Liimatainen, H. (2020). Comparison of acidic deep eutectic solvents in production of chitin nanocrystals. Carbohydrate Polymers, 236, 116095. Zdanowicz, M., Wilpiszewska, K., & Spychaj, T. (2018). Deep eutectic solvents for polysaccharides processing. A review. Carbohydrate Polymers, 200, 361-380. Zhang, Q., Vigier, K. D. O., Royer, S., & Jérôme, F. (2012). Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews, 41(21), 7108-7146. Zhao, D., Huang, W. C., Guo, N., Zhang, S., Xue, C., & Mao, X. (2019). Two-step separation of chitin from shrimp shells using citric acid and deep eutectic solvents with the assistance of microwave. Polymers, 11(3), 409. Zheng, H., Zhou, J., Du, Y., & Zhang, L. (2002). Cellulose/chitin films blended in NaOH/urea aqueous solution. Journal of Applied Polymer Science, 86(7), 1679-1683. Zhou, P., Li, J., Yan, T., Wang, X., Huang, J., Kuang, Z., Ye, M., & Pan, M. (2019). Selectivity of deproteinization and demineralization using natural deep eutectic solvents for production of insect chitin (Hermetia illucens). Carbohydrate Polymers, 225, 115255. Zhu, P., Gu, Z., Hong, S., & Lian, H. (2017). One-pot production of chitin with high purity from lobster shells using choline chloride–malonic acid deep eutectic solvent. Carbohydrate Polymers, 177, 217-223.
|