|
陳薪妤 (2022)。石蓴多醣/聚己內酯複合奈米纖維支架對小鼠纖維母細胞之影響。國立臺灣海洋大學生命科學暨生物科技學系論文。基隆。台灣。 Adrien, A., Bonnet, A., Dufour, D., Baudouin, S., Maugard, T., & Bridiau, N. (2017). Pilot production of ulvans from Ulva sp. and their effects on hyaluronan and collagen production in cultured dermal fibroblasts. Carbohydrate Polymers, 157, 1306-1314. Affolter, M., Zeller, R., & Caussinus, E. (2009). Tissue remodelling through branching morphogenesis. Nature Reviews Molecular Cell Biology, 10(12), 831-842. Afzal, S., Yadav, A. K., Poonia, A. K., Choure, K., Yadav, A. N., & Pandey, A. (2023). Antimicrobial therapeutics isolated from algal source: retrospect and prospect. Biologia, 78(2), 291-305. Ahmed, S., & Ikram, S. (2016). Chitosan based scaffolds and their applications in wound healing. Achievements in the Life Sciences, 10(1), 27-37. Akkaya, N. E., Ergun, C., Saygun, A., Yesilcubuk, N., Akel-Sadoglu, N., Kavakli, I. H., Turkmen, H. S., & Catalgil-Giz, H. (2020). New biocompatible antibacterial wound dressing candidates; agar-locust bean gum and agar-salep films. International Journal of Biological Macromolecules, 155, 430-438. Alghoraibi, I., & Alomari, S. (2018). Different methods for nanofiber design and fabrication. Handbook of Nanofibers, 1-46. Alves, A., Caridade, S. G., Mano, J. F., Sousa, R. A., & Reis, R. L. (2010). Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydrate Research, 345(15), 2194-2200. Alves, A., Sousa, R. A., & Reis, R. L. (2013). In vitro cytotoxicity assessment of ulvan, a polysaccharide extracted from green algae. Phytotherapy Research, 27(8), 1143-1148. Ambekar, R. S., & Kandasubramanian, B. (2019). Advancements in nanofibers for wound dressing: a review. European Polymer Journal, 117, 304-336. AOAC. (1990). Official methods of analysis. In: Aoac Washington, DC. Armstrong, D. G., Lipsky, B. A., Polis, A. B., & Abramson, M. A. (2006). Does dermal thermometry predict clinical outcome in diabetic foot infection? Analysis of data from the SIDESTEP* trial. International Wound Journal, 3(4), 302-307. Attinger, B. G. J. J. C. (2006). A brief history of wound care. Plast Reconstr Surg, 117(7). Azwa, Z., Yousif, B., Manalo, A., & Karunasena, W. (2013). A review on the degradability of polymeric composites based on natural fibres. Materials & Design, 47, 424-442. Babu, M. (2000). Collagen based dressings—a review. Burns, 26(1), 54-62. Balaji, A., Vellayappan, M., John, A., Subramanian, A., Jaganathan, S., Supriyanto, E., & Razak, S. (2015). An insight on electrospun-nanofibers-inspired modern drug delivery system in the treatment of deadly cancers. RSC Advances, 5(71), 57984-58004. Bierman, W. (1936). The temperature of the skin surface. Journal of the American Medical Association, 106(14), 1158-1162. Blachowicz, T., & Ehrmann, A. (2023). Optical properties of electrospun nanofiber mats. Membranes, 13(4), 441. Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry, 54(2), 484-489. Boutris, C., Chatzi, E., & Kiparissides, C. (1997). Characterization of the LCST behaviour of aqueous poly (N-isopropylacrylamide) solutions by thermal and cloud point techniques. Polymer, 38(10), 2567-2570. Brancato, S. K., & Albina, J. E. (2011). Wound macrophages as key regulators of repair: origin, phenotype, and function. The American Journal of Pathology, 178(1), 19-25. Brauchle, M., Angermeyer, K., Hübner, G., & Werner, S. (1994). Large induction of keratinocyte growth factor expression by serum growth factors and pro-inflammatory cytokines in cultured fibroblasts. Oncogene, 9(11), 3199-3204. Bucatariu, S., Fundueanu, G., Prisacaru, I., Balan, M., Stoica, I., Harabagiu, V., & Constantin, M. (2014). Synthesis and characterization of thermosensitive poly (N-isopropylacrylamide-co-hydroxyethylacrylamide) microgels as potential carriers for drug delivery. Journal of Polymer Research, 21, 1-12. Buranov, A. U., & Mazza, G. (2009). Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents. Food Chemistry, 115(4), 1542-1548. Campiglio, C. E., Contessi Negrini, N., Farè, S., & Draghi, L. (2019). Cross-linking strategies for electrospun gelatin scaffolds. Materials, 12(15), 2476. Can-Herrera, L. A., Oliva, A. I., Dzul-Cervantes, M. A. A., Pacheco-Salazar, O. F., & Cervantes-Uc, J. M. (2021). Morphological and mechanical properties of electrospun polycaprolactone scaffolds: effect of applied voltage. Polymers, 13(4), 662. Chen, C.-Y., Huang, S. Y., Wan, H.-Y., Chen, Y.-T., Yu, S.-K., Wu, H.-C., & Yang, T.-I. (2020). Electrospun hydrophobic polyaniline/silk fibroin electrochromic nanofibers with low electrical resistance. Polymers, 12(9), 2102. Chen, H., Zhang, M., & Xie, B. (2004). Quantification of uronic acids in tea polysaccharide conjugates and their antioxidant properties. Journal of Agricultural and Food Chemistry, 52(11), 3333-3336. Chen, W., Gao, Z., He, M., Dou, Y., Yin, G., & Ding, J. (2022). Vapor-phase glutaraldehyde crosslinked waste protein-based nanofiber nonwovens as an environmentally friendly wound dressing. Reactive and Functional Polymers, 172, 105203. Chen, X., Yue, Z., Winberg, P. C., Dinoro, J. N., Hayes, P., Beirne, S., & Wallace, G. G. (2019). Development of rhamnose-rich hydrogels based on sulfated xylorhamno-uronic acid toward wound healing applications. Biomaterials Science, 7(8), 3497-3509. Chen, Z., Ma, W., & Han, M. (2008). Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): application of isotherm and kinetic models. Journal of Hazardous Materials, 155(1-2), 327-333. Chiellini, F., & Morelli, A. (2011). Ulvan: a versatile platform of biomaterials from renewable resources. Biomaterials Physics and Chemistry, 75-98. Chin, J. S., Madden, L., Chew, S. Y., & Becker, D. L. (2019). Drug therapies and delivery mechanisms to treat perturbed skin wound healing. Advanced Drug Delivery Reviews, 149, 2-18. Chirapart, A., Ohno, M., Ukeda, H., Sawamura, M., & Kusunose, H. (1995). Chemical composition of agars from a newly reported Japanese agarophyte, Gracilariopsis lemaneiformis. Journal of Applied Phycology, 7, 359-365. Chuang, W.-J., & Chiu, W.-Y. (2012). Thermo-responsive nanofibers prepared from poly (N-isopropylacrylamide-co-N-methylol acrylamide). Polymer, 53(14), 2829-2838. Cindana Mo’o, F. R., Wilar, G., Devkota, H. P., & Wathoni, N. (2020). Ulvan, a polysaccharide from macroalga Ulva sp.: a review of chemistry, biological activities and potential for food and biomedical applications. Applied Sciences, 10(16), 5488. Costa, C., Alves, A., Pinto, P. R., Sousa, R. A., da Silva, E. A. B., Reis, R. L., & Rodrigues, A. E. (2012). Characterization of ulvan extracts to assess the effect of different steps in the extraction procedure. Carbohydrate Polymers, 88(2), 537-546. Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. A., Câmara, R. B. G., Nobre, L. T. D. B., Costa, M. S. S. P., Almeida-Lima, J., & Farias, E. (2010). Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy, 64(1), 21-28. Dąbrowska, A., Rotaru, G. M., Derler, S., Spano, F., Camenzind, M., Annaheim, S., Stämpfli, R., Schmid, M., & Rossi, R. (2016). Materials used to simulate physical properties of human skin. Skin Research and Technology, 22(1), 3-14. Darby, I. A., Laverdet, B., Bonté, F., & Desmoulière, A. (2014). Fibroblasts and myofibroblasts in wound healing. Clinical, Cosmetic and Investigational Dermatology, 7, 301. de Souza, M. C. R., Marques, C. T., Dore, C. M. G., da Silva, F. R. F., Rocha, H. A. O., & Leite, E. L. (2007). Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. Journal of Applied Phycology, 19, 153-160. De Vrieze, S., Van Camp, T., Nelvig, A., Hagström, B., Westbroek, P., & De Clerck, K. (2009). The effect of temperature and humidity on electrospinning. Journal of Materials Science, 44, 1357-1362. Denizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89(2), 271-277. Doberenz, F., Zeng, K., Willems, C., Zhang, K., & Groth, T. (2020). Thermoresponsive polymers and their biomedical application in tissue engineering–a review. Journal of Materials Chemistry B, 8(4), 607-628. Dodgson, K., & Price, R. (1962). A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochemical Journal, 84(1), 106. Don, T.-M., Liu, L.-M., Chen, M., & Huang, Y.-C. (2021). Crosslinked complex films based on chitosan and ulvan with antioxidant and whitening activities. Algal Research, 58, 102423. Don, T.-M., Ma, C.-H., & Huang, Y.-C. (2022). In situ release of ulvan from crosslinked ulvan/chitosan complex films and their evaluation as wound dressings. Polymers, 14(24), 5382. Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2), 151-160. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. t., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. Dunnill, C., Patton, T., Brennan, J., Barrett, J., Dryden, M., Cooke, J., Leaper, D., & Georgopoulos, N. T. (2017). Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS‐modulating technologies for augmentation of the healing process. International Wound Journal, 14(1), 89-96. Edwards, C., & Marks, R. (1995). Evaluation of biomechanical properties of human skin. Clinics in Dermatology, 13(4), 375-380. Elashnikov, R., Rimpelová, S., Lyutakov, O., Pavlíčková, V. r. S., Khrystonko, O., Kolská, Z. k., & Švorčík, V. c. (2022). Ciprofloxacin-loaded poly (N-isopropylacrylamide-co-acrylamide)/polycaprolactone nanofibers as dual thermo-and pH-responsive antibacterial materials. ACS Applied Bio Materials, 5(4), 1700-1709. Ellis, S., Lin, E. J., & Tartar, D. (2018). Immunology of wound healing. Current Dermatology Reports, 7(4), 350-358. Fadida, T., & Lellouche, J.-P. (2012). Preparation and characterization of composites built of poly (N-benzophenoyl methacrylamide-co-N-hydroxyethyl acrylamide) cores and silica raspberry-like shells with dual orthogonal functionality. Journal of Colloid and Interface Science, 386(1), 167-173. Fahimirad, S., & Ajalloueian, F. (2019). Naturally-derived electrospun wound dressings for target delivery of bio-active agents. International Journal of Pharmaceutics, 566, 307-328. Fantin, A., Vieira, J. M., Gestri, G., Denti, L., Schwarz, Q., Prykhozhij, S., Peri, F., Wilson, S. W., & Ruhrberg, C. (2010). Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood, The Journal of the American Society of Hematology, 116(5), 829-840. Farvin, K. S., & Jacobsen, C. (2013). Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chemistry, 138(2-3), 1670-1681. Faury, G., Ruszova, E., Molinari, J., Mariko, B., Raveaud, S., Velebny, V., & Robert, L. (2008). The α-L-Rhamnose recognizing lectin site of human dermal fibroblasts functions as a signal transducer: modulation of Ca2+ fluxes and gene expression. Biochim Biophys Acta, 1780(12), 1388-1394. Fierheller, M., & Sibbald, R. G. (2010). A clinical investigation into the relationship between increased periwound skin temperature and local wound infection in patients with chronic leg ulcers. Advances in Skin & Wound Care, 23(8), 369-379. Fong, H., Chun, I., & Reneker, D. H. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592. Fundueanu, G., Constantin, M., Asmarandei, I., Bucatariu, S., Harabagiu, V., Ascenzi, P., & Simionescu, B. C. (2013). Poly (N-isopropylacrylamide-co-hydroxyethylacrylamide) thermosensitive microspheres: The size of microgels dictates the pulsatile release mechanism. European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 614-623. Gethin, G. (2007). The significance of surface pH in chronic wounds. Wounds Uk, 3(3), 52. Ghorani, B., & Tucker, N. (2015). Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids, 51, 227-240. Gjødsbøl, K., Christensen, J. J., Karlsmark, T., Jørgensen, B., Klein, B. M., & Krogfelt, K. A. (2006). Multiple bacterial species reside in chronic wounds: a longitudinal study. International Wound Journal, 3(3), 225-231. Haider, A., Haider, S., & Kang, I.-K. (2018). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8), 1165-1188. Henriques, C., Vidinha, R., Botequim, D., Borges, J., & Silva, J. (2009). A systematic study of solution and processing parameters on nanofiber morphology using a new electrospinning apparatus. Journal of Nanoscience and Nanotechnology, 9(6), 3535-3545. Hoagland, D., & Lieb, L. (1915). The complex carbohydrates and forms of sulphur in marine algae of the Pacific coast. Journal of Biological Chemistry, 23(1), 287-297. Hoogenboom, R. (2014). 2 - Temperature-responsive polymers: properties, synthesis and applications. In M. R. Aguilar & J. San Román (Eds.), Smart Polymers and their Applications (pp. 15-44). Woodhead Publishing. Hou, Y., Wang, J., Jin, W., Zhang, H., & Zhang, Q. (2012). Degradation of Laminaria japonica fucoidan by hydrogen peroxide and antioxidant activities of the degradation products of different molecular weights. Carbohydrate Polymers, 87, 153-159. Hu, H., & Xu, F.-J. (2020). Rational design and latest advances of polysaccharide-based hydrogels for wound healing. Biomaterials Science, 8(8), 2084-2101. Ibrahim, M. I. A., Amer, M. S., Ibrahim, H. A. H., & Zaghloul, E. H. (2022). Considerable production of ulvan from Ulva lactuca with special emphasis on its antimicrobial and anti-fouling properties. Applied Biochemistry and Biotechnology, 194(7), 3097-3118. Jin, T., Liu, T., Lam, E., & Moores, A. (2021). Chitin and chitosan on the nanoscale. Nanoscale Horizons, 6(7), 505-542. Kanikireddy, V., Varaprasad, K., Jayaramudu, T., Karthikeyan, C., & Sadiku, R. (2020). Carboxymethyl cellulose-based materials for infection control and wound healing: a review. International Journal of Biological Macromolecules, 164, 963-975. Kidgell, J. T., Magnusson, M., de Nys, R., & Glasson, C. R. (2019). Ulvan: a systematic review of extraction, composition and function. Algal Research, 39, 101422. Kikionis, S., Ioannou, E., Toskas, G., & Roussis, V. (2015). Electrospun biocomposite nanofibers of ulvan/PCL and ulvan/PEO. Journal of Applied Polymer Science, 132(26). Kikionis, S., Koromvoki, M., Tagka, A., Polichronaki, E., Stratigos, A., Panagiotopoulos, A., Kyritsi, A., Karalis, V., Vitsos, A., & Rallis, M. (2022). Ulvan-based nanofibrous patches enhance wound healing of skin trauma resulting from cryosurgical treatment of keloids. Marine Drugs, 20(9), 551. Kildeeva, N., Perminov, P., Vladimirov, L., Novikov, V., & Mikhailov, S. (2009). About mechanism of chitosan cross-linking with glutaraldehyde. Russian Journal of Bioorganic Chemistry, 35, 360-369. Kohse, S., Grabow, N., Schmitz, K.-P., & Eickner, T. (2017). Electrospinning of polyimide nanofibres–effects of working parameters on morphology. Current Directions in Biomedical Engineering, 3(2), 687-690. Kojima, H., & Tanaka, F. (2012). Reentrant volume phase transition of cross-linked poly (N-isopropylacrylamide) gels in mixed solvents of water/methanol. Soft Matter, 8(10), 3010-3020. Kumar, K. S., Ganesan, K., & Rao, P. S. (2008). Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty–an edible seaweed. Food Chemistry, 107(1), 289-295. Kumar, P., Nagarajan, A., & Uchil, P. D. (2018). Analysis of cell viability by the MTT assay. Cold Spring Harbor Protocols, 2018(6). Kumar, Y., Tarafdar, A., & Badgujar, P. C. (2021). Seaweed as a source of natural antioxidants: Therapeutic activity and food applications. Journal of Food Quality, 2021, 5753391. Kurabayashi, H., Tamura, K., Machida, I., & Kubota, K. (2002). Inhibiting bacteria and skin pH in hemiplegia: effects of washing hands with acidic mineral water. American Journal of Physical Medicine & Rehabilitation, 81(1), 40-46. Kuznetsova, T. A., Andryukov, B. G., Besednova, N. N., Zaporozhets, T. S., & Kalinin, A. V. (2020). Marine algae polysaccharides as basis for wound dressings, drug delivery, and tissue engineering: a review. Journal of Marine Science and Engineering, 8(7), 481. Lahaye, M., & Ray, B. (1996). Cell-wall polysaccharides from the marine green alga Ulva “rigida”(Ulvales, Chlorophyta)—NMR analysis of ulvan oligosaccharides. Carbohydrate Research, 283, 161-173. Lahaye, M., & Robic, A. (2007). Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules, 8(6), 1765-1774. Laudenslager, M. J., & Sigmund, W. M. (2012). Electrospinning. Encyclopedia of Nanotechnology; Bhushan, B., Ed.; Springer: Dordrecht, The Netherlands, 769-775. Lazarus, G. S., Cooper, D. M., Knighton, D. R., Margolis, D. J., Percoraro, R. E., Rodeheaver, G., & Robson, M. C. (1994). Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair and Regeneration, 2(3), 165-170. Leveen, H. H., Falk, G., Borek, B., Diaz, C., Lynfield, Y., Wynkoop, B. J., Mabunda, G. A., Rubricius, J. L., & Christoudias, G. C. (1973). Chemical acidification of wounds. An adjuvant to healing and the unfavorable action of alkalinity and ammonia. Annals of Surgery, 178(6), 745. Li, B., Liu, S., Xing, R., Li, K., Li, R., Qin, Y., Wang, X., Wei, Z., & Li, P. (2013). Degradation of sulfated polysaccharides from Enteromorpha prolifera and their antioxidant activities. Carbohydrate Polymers, 92(2), 1991-1996. Li, J., Chen, J., & Kirsner, R. (2007). Pathophysiology of acute wound healing. Clinics in Dermatology, 25(1), 9-18. Li, P.-W., Wang, G., Yang, Z.-M., Duan, W., Peng, Z., Kong, L.-X., & Wang, Q.-H. (2016). Development of drug-loaded chitosan–vanillin nanoparticles and its cytotoxicity against HT-29 cells. Drug Delivery, 23(1), 30-35. Liang, Y., He, J., & Guo, B. (2021). Functional hydrogels as wound dressing to enhance wound healing. ACS Nano. Lin, C., Wang, C., Chang, S., Inbaraj, B. S., & Chen, B. (2009). Antioxidative activity of polysaccharide fractions isolated from Lycium barbarum Linnaeus. International Journal of Biological Macromolecules, 45(2), 146-151. Lin, H.-J., & Chen, C.-Y. (2016). Thermo-responsive electrospun nanofibers doped with 1, 10-phenanthroline-based fluorescent sensor for metal ion detection. Journal of Materials Science, 51(3), 1620-1631. Lin, Z. Q., Kondo, T., Ishida, Y., Takayasu, T., & Mukaida, N. (2003). Essential involvement of IL‐6 in the skin wound‐healing process as evidenced by delayed wound healing in IL‐6‐deficient mice. Journal of Leukocyte Biology, 73(6), 713-721. Liu, X., & Jia, G. (2018). Modern wound dressing using polymers/biopolymers. Journal of Material Sciences and Engineering, 7(454), 2169-0022.1000454. Liu, X., Xu, H., Zhang, M., & Yu, D.-G. (2021a). Electrospun medicated nanofibers for wound healing. Membranes, 11(10), 770. Liu, X., Xu, H., Zhang, M., & Yu, D.-G. (2021b). Electrospun medicated nanofibers for wound healing: review. Membranes, 11(10), 770. Liu, Y., Kalén, A., Risto, O., & Wahlström, O. (2002). Fibroblast proliferation due to exposure to a platelet concentrate in vitro is pH dependent. Wound Repair and Regeneration, 10(5), 336-340. Liu, Z., Ju, K., Wang, Z., Li, W., Ke, H., & He, J. (2019). Electrospun jets number and nanofiber morphology effected by voltage value: Numerical simulation and experimental verification. Nanoscale Research Letters, 14, 1-9. Macdonald, J., Galley, H. F., & Webster, N. R. (2003). Oxidative stress and gene expression in sepsis. British Journal of Anaesthesia, 90(2), 221-232. Madany, M. A., Abdel-Kareem, M. S., Al-Oufy, A. K., Haroun, M., & Sheweita, S. A. (2021). The biopolymer ulvan from Ulva fasciata: extraction towards nanofibers fabrication. International Journal of Biological Macromolecules, 177, 401-412. Madub, K., Goonoo, N., Gimié, F., Arsa, I. A., Schönherr, H., & Bhaw-Luximon, A. (2021). Green seaweeds ulvan-cellulose scaffolds enhance in vitro cell growth and in vivo angiogenesis for skin tissue engineering. Carbohydrate Polymers, 251, 117025. Marin, L., Stoica, I., Mares, M., Dinu, V., Simionescu, B. C., & Barboiu, M. (2013). Antifungal vanillin–imino-chitosan biodynameric films. Journal of Materials Chemistry B, 1(27), 3353-3358. McKee, M. G., Wilkes, G. L., Colby, R. H., & Long, T. E. (2004). Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules, 37(5), 1760-1767. Megelski, S., Stephens, J. S., Chase, D. B., & Rabolt, J. F. (2002). Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 35(22), 8456-8466. Mele, E. (2016). Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings. Journal of Materials Chemistry B, 4(28), 4801-4812. Menon, G. K. (2002). New insights into skin structure: scratching the surface. Advanced Drug Delivery Reviews, 54, S3-S17. Mihai, M. M., Dima, M. B., Dima, B., & Holban, A. M. (2019). Nanomaterials for wound healing and infection control. Materials, 12(13), 2176. Morales-Hurtado, M., Zeng, X., Gonzalez-Rodriguez, P., Ten Elshof, J. E., & van der Heide, E. (2015). A new water absorbable mechanical epidermal skin equivalent: the combination of hydrophobic PDMS and hydrophilic PVA hydrogel. Journal of the Mechanical Behavior of Biomedical Materials, 46, 305-317. Narumi, A., Chen, Y., Sone, M., Fuchise, K., Sakai, R., Satoh, T., Duan, Q., Kawaguchi, S., & Kakuchi, T. (2009). Poly (N‐hydroxyethylacrylamide) prepared by atom transfer radical polymerization as a nonionic, water‐soluble, and hydrolysis‐eesistant polymer and/or segment of block copolymer with a well‐defined molecular weight. Macromolecular Chemistry and Physics, 210(5), 349-358. Nauman, S., Lubineau, G., & Alharbi, H. F. (2021). Post processing strategies for the enhancement of mechanical properties of enms (Electrospun nanofibrous membranes): a review. Membranes, 11(1), 39. Ng, K. W., & Lau, W. M. (2015). Skin deep: the basics of human skin structure and drug penetration. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement (pp. 3-11). Springer. Nguyen, A., & Luong, J. (1989). Syntheses and applications of water‐soluble reactive polymers for purification and immobilization of biomolecules. Biotechnology and Bioengineering, 34(9), 1186-1190. Norlen, L. (2006). Stratum corneum keratin structure, function and formation–a comprehensive review. International Journal of Cosmetic Science, 28(6), 397-425. Oh, S. Y., Yoo, D. I., Shin, Y., Kim, H. C., Kim, H. Y., Chung, Y. S., Park, W. H., & Youk, J. H. (2005). Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydrate Research, 340(15), 2376-2391. Parejo, I., Viladomat, F., Bastida, J., Rosas-Romero, A., Flerlage, N., Burillo, J., & Codina, C. (2002). Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled mediterranean herbs and aromatic plants. Journal of Agricultural and Food Chemistry, 50(23), 6882-6890. Peasura, N., Laohakunjit, N., Kerdchoechuen, O., & Wanlapa, S. (2015). Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents. International Journal of Biological Macromolecules, 81, 912-919. Pelton, R. (2010). Poly (N-isopropylacrylamide)(PNIPAM) is never hydrophobic. Journal of Colloid and Interface Science, 348(2), 673-674. Petricevich, V. L. (2004). Cytokine and nitric oxide production following severe envenomation. Current Drug Targets-Inflammation & Allergy, 3(3), 325-332. Qi, H., Zhang, Q., Zhao, T., Chen, R., Zhang, H., Niu, X., & Li, Z. (2005). Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. International Journal of Biological Macromolecules, 37(4), 195-199. Qiao, D., Hu, B., Gan, D., Sun, Y., Ye, H., & Zeng, X. (2009). Extraction optimized by using response surface methodology, purification and preliminary characterization of polysaccharides from Hyriopsis cumingii. Carbohydrate Polymers, 76(3), 422-429. Redouan, E., Emmanuel, P., Michelle, P., Bernard, C., Josiane, C., & Cédric, D. (2011). Evaluation of antioxidant capacity of ulvan-like polymer obtained by regioselective oxidation of gellan exopolysaccharide. Food Chemistry, 127(3), 976-983. Rioux, L.-E., Moulin, V., Beaulieu, M., & Turgeon, S. L. (2013). Human skin fibroblast response is differentially regulated by galactofucan and low molecular weight galactofucan. Bioactive Carbohydrates and Dietary Fibre, 1(2), 105-110. Robic, A., Gaillard, C., Sassi, J. F., Lerat, Y., & Lahaye, M. (2009). Ultrastructure of ulvan: a polysaccharide from green seaweeds. Biopolymers: Original Research on Biomolecules, 91(8), 652-664. Robicsek, F., Masters, T., Daugherty, H., Cook, J., Selle, J., Hess, P., Vajtai, P., Rice, H., & Lawhorn, R. (1984). The value of thermography in the early diagnosis of postoperative sternal wound infections. The Thoracic and Cardiovascular Surgeon, 32(04), 260-265. Romanò, C. L., Romanò, D., Dell’Oro, F., Logoluso, N., & Drago, L. (2011). Healing of surgical site after total hip and knee replacements show similar telethermographic patterns. Journal of Orthopaedics and Traumatology, 12(2), 81-86. Süntar, I., Akkol, E. K., Nahar, L., & Sarker, S. D. (2012). Wound healing and antioxidant properties: do they coexist in plants? Free Radicals and Antioxidants, 2(2), 1-7. Saghazadeh, S., Rinoldi, C., Schot, M., Kashaf, S. S., Sharifi, F., Jalilian, E., Nuutila, K., Giatsidis, G., Mostafalu, P., Derakhshandeh, H., Yue, K., Swieszkowski, W., Memic, A., Tamayol, A., & Khademhosseini, A. (2018). Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev, 127, 138-166. Schade, H., & Marchionini, A. (1928). Der säuremantel der haut (nach gaskettenmessungen). Klinische Wochenschrift, 7(1), 12-14. Schneider, L. A., Korber, A., Grabbe, S., & Dissemond, J. (2007). Influence of pH on wound-healing: a new perspective for wound-therapy? Archives of Dermatological Research, 298(9), 413-420. Schwartz, S. I., & Brunicardi, F. C. (2010). Schwartz's principles of surgery. McGraw Hill Professional. Shao, H., Fang, J., Wang, H., & Lin, T. (2015). Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly (vinylidene fluoride) nanofiber mats. RSC Advances, 5(19), 14345-14350. Shomron, A., Duanis-Assaf, D., Galsurker, O., Golberg, A., & Alkan, N. (2022). Extract from the macroalgae Ulva rigida induces table grapes resistance to Botrytis cinerea. Foods, 11(5), 723. Siddiqui, A. R., & Bernstein, J. M. (2010). Chronic wound infection: facts and controversies. Clinics in Dermatology, 28(5), 519-526. Simões, D., Miguel, S. P., Ribeiro, M. P., Coutinho, P., Mendonça, A. G., & Correia, I. J. (2018). Recent advances on antimicrobial wound dressing: a review. European Journal of Pharmaceutics and Biopharmaceutics, 127, 130-141. Singh, A., Halder, S., Chumber, S., Misra, M. C., Sharma, L. K., Srivastava, A., & Menon, G. R. (2004). Meta-analysis of randomized controlled trials on hydrocolloid occlusive dressing versus conventional gauze dressing in the healing of chronic wounds. Asian Journal of Surgery, 27(4), 326-332. Skjelbred, B., Horsberg, T. E., Tollefsen, K. E., Andersen, T., & Edvardsen, B. (2011). Toxicity of the ichthyotoxic marine flagellate Pseudochattonella (Dictyochophyceae, Heterokonta) assessed by six bioassays. Harmful Algae, 10(2), 144-154. Smith, S. A., Travers, R. J., & Morrissey, J. H. (2015). How it all starts: initiation of the clotting cascade. Critical Reviews in Biochemistry and Molecular Biology, 50(4), 326-336. Son, Y. J., Kim, W. J., & Yoo, H. S. (2014). Therapeutic applications of electrospun nanofibers for drug delivery systems. Archives of Pharmacal Research, 37, 69-78. Song, H., Zhang, Q., Zhang, Z., & Wang, J. (2010). In vitro antioxidant activity of polysaccharides extracted from Bryopsis plumosa. Carbohydrate Polymers, 80(4), 1057-1061. Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96(2), 557-569. Suresh, S., Becker, A., & Glasmacher, B. (2020). Impact of apparatus orientation and gravity in electrospinning—A review of empirical evidence. Polymers, 12(11), 2448. Sussman, C., & Bates-Jensen, B. M. (2007). Wound care: a collaborative practice manual. Lippincott Williams & Wilkins. Tabarsa, M., You, S., Dabaghian, E. H., & Surayot, U. (2018). Water-soluble polysaccharides from Ulva intestinalis: Molecular properties, structural elucidation and immunomodulatory activities. Journal of Food and Drug Analysis, 26(2), 599-608. Takehara, K. (2000). Growth regulation of skin fibroblasts. Journal of Dermatological Science, 24, S70-S77. Tan, J., Yang, Q., Hu, G., Zhang, H., Pei, L., & Wang, J. (2022). Experimental study on the temperature-sensitive behavior of poly-n-isopropylacrylamide/graphene oxide composites and the flexible conductive cotton fabrics. Polymer Testing, 110, 107563. Tanigami, T., Iwata, H., & Mori, T. (2007). Ion‐exchange membrane based on poly (styrene sulfonic acid‐co‐n‐(2‐hydroxyethyl) acrylamide). Journal of Applied Polymer Science, 103(5), 2788-2796. Taylor, K. R., & Gallo, R. L. (2006). Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. Faseb Journal, 20(1), 9-22. Thanh, T. T. T., Quach, T. M. T., Nguyen, T. N., Luong, D. V., Bui, M. L., & Van Tran, T. T. (2016). Structure and cytotoxic activity of ulvan extracted from green seaweed Ulva lactuca. International Journal of Biological Macromolecules, 93, 695-702. Tian, H., Yin, X., Zeng, Q., Zhu, L., & Chen, J. (2015). Isolation, structure, and surfactant properties of polysaccharides from Ulva lactuca L. from South China Sea. International Journal of Biological Macromolecules, 79, 577-582. Toskas, G., Hund, R.-D., Laourine, E., Cherif, C., Smyrniotopoulos, V., & Roussis, V. (2011). Nanofibers based on polysaccharides from the green seaweed Ulva rigida. Carbohydrate Polymers, 84(3), 1093-1102. Tran, T. T. V., Truong, H. B., Tran, N. H. V., Quach, T. M. T., Nguyen, T. N., Bui, M. L., Yuguchi, Y., & Thanh, T. T. T. (2018). Structure, conformation in aqueous solution and antimicrobial activity of ulvan extracted from green seaweed Ulva reticulata. Natural Product Research, 32(19), 2291-2296. Tsao, C. T., Chang, C. H., Lin, Y. Y., Wu, M. F., Wang, J. L., Young, T. H., Han, J. L., & Hsieh, K. H. (2011). Evaluation of chitosan/γ-poly (glutamic acid) polyelectrolyte complex for wound dressing materials. Carbohydrate Polymers, 84(2), 812-819. Tziveleka, L.-A., Sapalidis, A., Kikionis, S., Aggelidou, E., Demiri, E., Kritis, A., Ioannou, E., & Roussis, V. (2020). Hybrid sponge-like scaffolds based on ulvan and gelatin: design, characterization and evaluation of their potential use in bone tissue engineering. Materials, 13(7), 1763. Van De Water, L., Varney, S., & Tomasek, J. J. (2013). Mechanoregulation of the myofibroblast in wound contraction, scarring, and fibrosis: opportunities for new therapeutic intervention. Advances in Wound Care, 2(4), 122-141. Vijayabaskar, P., Vaseela, N., & Thirumaran, G. (2012). Potential antibacterial and antioxidant properties of a sulfated polysaccharide from the brown marine algae Sargassum swartzii. Chinese Journal of Natural Medicines, 10(6), 421-428. Viollier, E., Inglett, P., Hunter, K., Roychoudhury, A., & Van Cappellen, P. (2000). The ferrozine method revisited: Fe (II)/Fe (III) determination in natural waters. Applied Geochemistry, 15(6), 785-790. Wahlström, N., Nylander, F., Malmhäll-Bah, E., Sjövold, K., Edlund, U., Westman, G., & Albers, E. (2020). Composition and structure of cell wall ulvans recovered from Ulva spp. along the Swedish west coast. Carbohydrate Polymers, 233, 115852. Wang, B., Xu, X.-D., Wang, Z.-C., Cheng, S.-X., Zhang, X.-Z., & Zhuo, R.-X. (2008). Synthesis and properties of pH and temperature sensitive P (NIPAAm-co-DMAEMA) hydrogels. Colloids and Surfaces B: Biointerfaces, 64(1), 34-41. Wang, J., Zhang, Q., Zhang, Z., & Li, Z. (2008). Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules, 42(2), 127-132. Wang, W., Jin, X., Zhu, Y., Zhu, C., Yang, J., Wang, H., & Lin, T. (2016). Effect of vapor-phase glutaraldehyde crosslinking on electrospun starch fibers. Carbohydrate Polymers, 140, 356-361. Wang, Y., Armato, U., & Wu, J. (2020). Targeting tunable physical properties of materials for chronic wound care. Frontiers in Bioengineering and Biotechnology, 8, 584. Wang, Y., Zhang, M., Ruan, D., Shashkov, A. S., Kilcoyne, M., Savage, A. V., & Zhang, L. (2004). Chemical components and molecular mass of six polysaccharides isolated from the sclerotium of Poria cocos. Carbohydrate Research, 339(2), 327-334. Wei, H., Cheng, S.-X., Zhang, X.-Z., & Zhuo, R.-X. (2009). Thermo-sensitive polymeric micelles based on poly (N-isopropylacrylamide) as drug carriers. Progress in Polymer Science, 34(9), 893-910. Weng, L., & Xie, J. (2015). Smart electrospun nanofibers for controlled drug release: recent advances and new perspectives. Current Pharmaceutical Design, 21(15), 1944-1959. Whitney, J. D., Salvadalena, G., Higa, L., & Mich, M. (2001). Treatment of pressure ulcers with noncontact normothermic wound therapy: healing and warming effects. Journal of WOCN, 28(5), 244-252. Winnik, F. M., Ringsdorf, H., & Venzmer, J. (1990). Methanol-water as a co-nonsolvent system for poly (N-isopropylacrylamide). Macromolecules, 23(8), 2415-2416. Xia, Z., Sato, A., Hughes, M. A., & Cherry, G. W. (2000). Stimulation of fibroblast growth in vitro by intermittent radiant warming. Wound Repair and Regeneration, 8(2), 138-144. Yaich, H., Amira, A. B., Abbes, F., Bouaziz, M., Besbes, S., Richel, A., Blecker, C., Attia, H., & Garna, H. (2017). Effect of extraction procedures on structural, thermal and antioxidant properties of ulvan from Ulva lactuca collected in Monastir coast. International Journal of Biological Macromolecules, 105, 1430-1439. Yamaguchi, T., Takamura, H., Matoba, T., & Terao, J. (1998). HPLC method for evaluation of the free radical-scavenging activity of foods by using 1, 1-diphenyl-2-picrylhydrazyl. Bioscience, Biotechnology, and Biochemistry, 62(6), 1201-1204. Yannas, I. V., Tzeranis, D. S., & So, P. T. (2017). Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation. Wound Repair and Regeneration, 25(2), 177-191. Yuan, T. T., Jenkins, P. M., DiGeorge Foushee, A. M., Jockheck-Clark, A. R., & Stahl, J. M. (2016). Electrospun chitosan/polyethylene oxide nanofibrous scaffolds with potential antibacterial wound dressing applications. Journal of Nanomaterials, 2016. Zargham, S., Bazgir, S., Tavakoli, A., Rashidi, A. S., & Damerchely, R. (2012). The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber. Journal of Engineered Fibers and Fabrics, 7(4), 155892501200700414. Zeng, H., Zhang, Y., Lin, S., Jian, Y., Miao, S., & Zheng, B. (2015). Ultrasonic–microwave synergistic extraction (UMSE) and molecular weight distribution of polysaccharides from Fortunella margarita (Lour.) Swingle. Separation and Purification Technology, 144, 97-106. Zhang, J., Zhang, Q., Wang, J., Shi, X., & Zhang, Z. (2009). Analysis of the monosaccharide composition of fucoidan by precolumn derivation HPLC. Chinese Journal of Oceanology and Limnology, 27(3), 578-582. Zhang, Z., Wang, F., Wang, X., Liu, X., Hou, Y., & Zhang, Q. (2010). Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohydrate Polymers, 82(1), 118-121.
|