|
農友種苗股份有限公司。專業栽培蔬果目錄-食用南瓜(西洋南瓜)。2001 年。 陳玉如 (2005)。質譜技術與蛋白質體學。中央研究院化學研究所。26-28。 張裕旺、陳淑華、陳玉如 (2005)。質譜技術於臨床蛋白質體學的應用。中央研究院化學研究所。637-649。 莊清榮、游勝傑 (2008)。微過濾與超過濾。科學發展,429,14-15。 呂金盈 (2011)。腸泌素在第二型糖尿病治療的角色。內科學誌,22,401-408。 徐崇榮、何佳靜、陳智信、王仁俊、黃耿祥、楊智惠(2012)。冷凍真空乾燥。科學發展,473,72-74。 李昕升 (2017)。中國南瓜。中國:中國農業科學技術出版社。 行政院農業委員會農業統計年報(2018年版)。臺北市:行政院。 農特產品-東昇南瓜(2020)。高雄市:杉林區公所。
Abdel Aziz, A. R., AbouLaila, M. R., Aziz, M., Omar, M. A., & Sultan, K. (2018). In vitro and in vivo anthelmintic activity of pumpkin seeds and pomegranate peels extracts against Ascaridia galli. Beni-Suef University Journal of Basic and Applied Sciences, 7(2), 231-234. Abrahami, D., Douros, A., Yin, H., Yu, O. H. Y., Renoux, C., Bitton, A., et al. (2018). Dipeptidyl peptidase-4 inhibitors and incidence of inflammatory bowel disease among patients with type 2 diabetes: population based cohort study. British Medical Journal, 360, k872. Acosta-Patiño, J. L., Jiménez-Balderas, E., Juárez-Oropeza, M. A., & Dı́az-Zagoya, J. C. (2001). Hypoglycemic action of Cucurbita ficifolia on Type 2 diabetic patients with moderately high blood glucose levels. Journal of Ethnopharmacology, 77(1), 99-101. Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422(6928), 198-207. Ahmadifard, N., Murueta, J. H. C., Abedian-Kenari, A., Motamedzadegan, A., & Jamali, H. (2016). Comparison the effect of three commercial enzymes for enzymatic hydrolysis of two substrates (rice bran protein concentrate and soy-been protein) with SDS-PAGE. Journal of food science and technology, 53(2), 1279-1284. Ahn, C.-B., Jeon, Y.-J., Kim, Y.-T., & Je, J.-Y. (2012). Angiotensin I converting enzyme (ACE) inhibitory peptides from salmon byproduct protein hydrolysate by Alcalase hydrolysis. Process Biochemistry, 47(12), 2240-2245. Ahn, J. E., Park, S. Y., Atwal, A., Gibbs, B. F., & Lee, B. H. (2009). Angiotensin I-converting enzyme (ACE) inhibitory peptides from whey fermented by Lactobacillus species. Journal of Food Biochemistry, 33(4), 587-602. Aluko, R. E., Girgih, A. T., He, R., Malomo, S., Li, H., Offengenden, M., et al. (2015). Structural and functional characterization of yellow field pea seed (Pisum sativum L.) protein-derived antihypertensive peptides. Food Research International, 77, 10-16. Amin, M. Z., Islam, T., Uddin, M. R., Uddin, M. J., Rahman, M. M., & Satter, M. A. (2019). Comparative study on nutrient contents in the different parts of indigenous and hybrid varieties of pumpkin (Cucurbita maxima Linn.). Heliyon, 5(9), e02462. Amin, T., Naik, H. R., Hussain, S. Z., Jabeen, A., & Thakur, M. (2018). In-vitro antioxidant and antibacterial activities of pumpkin, quince, muskmelon and bottle gourd seeds. Journal of Food Measurement and Characterization, 12(1), 182-190. Amini Sarteshnizi, R., Sahari, M. A., Ahmadi Gavlighi, H., Regenstein, J. M., Nikoo, M., & Udenigwe, C. C. (2021). Influence of fish protein hydrolysate-pistachio green hull extract interactions on antioxidant activity and inhibition of α-glucosidase, α-amylase, and DPP-IV enzymes. Food Science and Technology, 142, 111019. Aondona, M. M., Ikya, J. K., Ukeyima, M. T., Gborigo, T.-w. J. A., Aluko, R. E., & Girgih, A. T. (2021). In vitro antioxidant and antihypertensive properties of sesame seed enzymatic protein hydrolysate and ultrafiltration peptide fractions. Journal of Food Biochemistry, 45(1), e13587. Apweiler, R., Bairoch, A., & Wu, C. H. (2004). Protein sequence databases. Current opinion in chemical biology, 8(1), 76-80. Arnao, M. B. (2000). Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends in Food Science and Technology, 11(11), 419-421. Arrutia, F., Puente, Á., Riera, F. A., Menéndez, C., & González, U. A. (2016). Influence of heat pre-treatment on BSA tryptic hydrolysis and peptide release. Food Chemistry, 202, 40-48. Ashaolu, T. J., & Yupanqui, C. T. (2018). Hypoallergenic and immunomodulatory prospects of pepsin-educed soy protein hydrolysates. Croatian journal of food science and technology, 10(2), 270-278. Association of Official Analytical Chemists. (2023). Official methods of Analysis, 22nd Edition. Association, A. D. (2013). Diagnosis and classification of diabetes mellitus. Diabetes Care, 37, S81-S90. Awosika, T. O., & Aluko, R. E. (2019). Inhibition of the in vitro activities of α-amylase, α-glucosidase and pancreatic lipase by yellow field pea (Pisum sativum L.) protein hydrolysates. International Journal of Food Science and Technology, 54(6), 2021-2034. Baldwin, M. A. (2004). Protein identification by mass spectrometry: issues to be considered *. Molecular & Cellular Proteomics, 3(1), 1-9. Balti, R., Bougatef, A., Sila, A., Guillochon, D., Dhulster, P., & Nedjar-Arroume, N. (2015). Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats. Food Chemistry, 170, 519-525. Bayat, A., Jamali, Z., Hajianfar, H., & Heidari Beni, M. (2014). Effects of Cucurbita ficifolia intake on type 2 diabetes: review of current evidences. Shiraz E-Medical Journal.15(2):e20586. Bayir, H. (2005). Reactive oxygen species. Critical Care Medicine, 33, S498-501. Berghout, J. A. M., Boom, R. M., & van der Goot, A. J. (2015). Understanding the differences in gelling properties between lupin protein isolate and soy protein isolate. Food Hydrocolloids, 43, 465-472. Biemann, K. (1990). Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation. Methods Enzymol, 193, 455-479. Blaskovich, M. A., Sun, J., Cantor, A., Turkson, J., Jove, R., & Sebti, S. M. (2003). Discovery of JSI-124 (Cucurbitacin I), a selective janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Research, 63(6), 1270. Bombardelli, E., & Morazzoni, P. (1997). Cucurbita pepo L. Fitoterapia, 68, 291-302. Bong, J., Middleditch, M., Loomes, K. M., & Stephens, J. M. (2021). Proteomic analysis of honey. Identification of unique peptide markers for authentication of NZ mānuka (Leptospermum scoparium) honey. Food Chemistry, 350, 128442. Bottesini, C., Paolella, S., Lambertini, F., Galaverna, G., Tedeschi, T., Dossena, A., et al. (2013). Antioxidant capacity of water soluble extracts from Parmigiano-Reggiano cheese. International Journal of Food Sciences and Nutrition, 64(8), 953-958. Boukil, A., Suwal, S., Chamberland, J., Pouliot, Y., & Doyen, A. (2018). Ultrafiltration performance and recovery of bioactive peptides after fractionation of tryptic hydrolysate generated from pressure-treated β-lactoglobulin. Journal of Membrane Science, 556, 42-53. Branen, A. L. (1975). Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. Journal of the American Oil Chemists’ Society, 52(2), 59. Bučko, S., Katona, J., Popović, L., Petrović, L., & Milinković, J. (2016). Influence of enzymatic hydrolysis on solubility, interfacial and emulsifying properties of pumpkin (Cucurbita pepo) seed protein isolate. Food Hydrocolloids, 60, 271-278. Caili, F. U., Huan, S. H. I., & Quanhong, L. I. (2006). A review on pharmacological activities and utilization technologies of pumpkin. Plant Foods for Human Nutrition, 61(2), 70-77. Calabrese, B. (2019). Experimental platforms for extracting biological data: mass spectrometry, microarray, next generation sequencing. Encyclopedia of Bioinformatics and Computational Biology, 88, 126-129. Chaipoot, S., Punfa, W., Ounjaijean, S., Phongphisutthinant, R., Kulprachakarn, K., Parklak, W., et al. (2023). Antioxidant, anti-Diabetic, anti-Obesity, and antihypertensive properties of protein hydrolysate and peptide fractions from black sesame cake. Molecules, 28(1). Chait, Y. A., Gunenc, A., Bendali, F., & Hosseinian, F. (2020). Simulated gastrointestinal digestion and in vitro colonic fermentation of carob polyphenols: Bioaccessibility and bioactivity. Food Science and Technology, 117, 108623. Chalamaiah, M., Keskin Ulug, S., Hong, H., & Wu, J. (2019). Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. Journal of Functional Foods, 58, 123-129. Chalmers, J., MacMahon, S., Mancia, G., Whitworth, J., Beilin, L., Hansson, L., et al. (1999). 1999 World health organization-international society of hypertension guidelines for the management of hypertension. Clinical and Experimental Hypertension, 21(5-6), 1009-1060. Chatterjee, S., Khunti, K., & Davies, M. J. (2017). Type 2 diabetes. The Lancet, 389(10085), 2239-2251. Chen, B., Lietz, C. B., OuYang, C., Zhong, X., Xu, M., & Li, L. (2016). Matrix-assisted ionization vacuum for protein detection, fragmentation and PTM analysis on a high resolution linear ion trap-orbitrap platform. Analytica Chimica Acta, 916, 52-59. Chen, J., Hu, Y., Wang, J., Hu, H., & Cui, H. (2016). Combined effect of ozone treatment and modified atmosphere packaging on antioxidant defense system of fresh‐cut green peppers. Journal of Food Processing and Preservation, 40(5), 1145-1150. Chen, Z., Wang, J., Liu, W., & Chen, H. (2017). Physicochemical characterization, antioxidant and anticancer activities of proteins from four legume species. Journal of Food Science and Technologyl, 54(4), 964-972. Ciurko, D., Łaba, W., Żarowska, B., & Janek, T. (2021). Enzymatic hydrolysis using bacterial cultures as a novel method for obtaining antioxidant peptides from brewers' spent grain. RSC advances, 11(8), 4688-4700. Classics Lowry, O., Rosebrough, N., Farr, A., & Randall, R. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. Colman, P. M., Suzuki, E., & Van Donkelaar, A. (1980). The structure of cucurbitin: subunit symmetry and organization in situ. European Journal of Biochemistry, 103(3), 585-588. Connolly, A., O'Keeffe, M. B., Nongonierma, A. B., Piggott, C. O., & FitzGerald, R. J. (2017). Isolation of peptides from a novel brewers spent grain protein isolate with potential to modulate glycaemic response. International Journal of Food Science and Technology, 52(1), 146-153. Coon, J. J., Syka, J. E. P., Shabanowitz, J., & Hunt, D. F. (2005). Tandem Mass Spectrometry for Peptide and Protein Sequence Analysis. BioTechniques, 38(4), 519-523. Cotabarren, J., Rosso, A. M., Tellechea, M., García-Pardo, J., Rivera, J. L., Obregón, W. D., et al. (2019). Adding value to the chia (Salvia hispanica L.) expeller: Production of bioactive peptides with antioxidant properties by enzymatic hydrolysis with Papain. Food Chemistry, 274, 848-856. Cottrell, J. S. (2011). Protein identification using MS/MS data. Journal of Proteomics, 74(10), 1842-1851. Cravatt, B. F., Simon, G. M., & Yates Iii, J. R. (2007). The biological impact of mass-spectrometry-based proteomics. Nature, 450(7172), 991-1000. Cruz-Casas, D. E., Aguilar, C. N., Ascacio-Valdés, J. A., Rodríguez-Herrera, R., Chávez-González, M. L., & Flores-Gallegos, A. C. (2021). Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chemistry: Molecular Sciences, 3, 100047. Daliri, E. B., Oh, D. H., & Lee, B. H. (2017). Bioactive Peptides. Foods, 6(5). 123-145. Damodaran, S., Wood, T. D., Nagarajan, P., & Rabin, R. A. (2007). Evaluating peptide mass fingerprinting-based protein identification. Genomics, Proteomics and Bioinformatics, 5(3), 152-157. Damrongsakkul, S., Ratanathammapan, K., Komolpis, K., & Tanthapanichakoon, W. (2008). Enzymatic hydrolysis of rawhide using papain and neutrase. Journal of Industrial and Engineering Chemistry, 14(2), 202-206. Deleu, L. J., Lambrecht, M. A., Van de Vondel, J., & Delcour, J. A. (2019). The impact of alkaline conditions on storage proteins of cereals and pseudo-cereals. Current opinion in food science, 25, 98-103. Dissanayake, D., Deraniyagala, S. A., Hettiarachchi, C., & Thiripuranathar, G. (2018). The study of antioxidant and antibacterial properties of skin, seeds and leaves of the Sri Lankan variety of pumpkin. IOSR Journal of Pharmacy, 8, 43-48. Dotto, J. M., & Chacha, J. S. (2020). The potential of pumpkin seeds as a functional food ingredient: A review. Scientific African, 10, e00575. Du, Z., Comer, J., & Li, Y. (2023). Bioinformatics approaches to discovering food-derived bioactive peptides: Reviews and perspectives. TrAC Trends in Analytical Chemistry, 162, 117051. Eckert, E., Han, J., Swallow, K., Tian, Z., Jarpa-Parra, M., & Chen, L. (2019). Effects of enzymatic hydrolysis and ultrafiltration on physicochemical and functional properties of faba bean protein. Cereal Chemistry, 96(4), 725-741. Edwards, N., Lippert, R. (2002). Generating peptide candidates from amino-acid sequence databases for protein identification via mass spectrometry. In: Guigó, R., Gusfield, D. (eds) Algorithms in Bioinformatics. WABI 2002. Lecture Notes in Computer Science, vol 2452. Springer, Berlin, Heidelberg. Elavarasan, K., & Shamasundar, B. A. (2016). Effect of oven drying and freeze drying on the antioxidant and functional properties of protein hydrolysates derived from freshwater fish (Cirrhinus mrigala) using papain enzyme. Journal of Food Science and Technology, 53(2), 1303-1311. Elavarasan, K., Shamasundar, B. A., Badii, F., & Howell, N. (2016). Angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of oven- and freeze-dried protein hydrolysate from fresh water fish (Cirrhinus mrigala). Food Chemistry, 206, 210-216. Esmaeili, M., Rissanen, T., Lahti, J., Mänttäri, M., & Kallioinen, M. (2019). Vanillin as an antifouling and hydrophilicity promoter agent in surface modification of polyethersulfone membrane. Membranes. 9(4), 56. Famuwagun, A. A., Alashi, A. M., Gbadamosi, S. O., Taiwo, K. A., Oyedele, D. J., Adobooye, O., et al. (2020). In vitro characterization of fluted pumpkin leaf protein hydrolysates and ultrafiltration of peptide fractions: Antioxidant and enzyme-inhibitory properties. Polish Journal of Food and Nutrition Sciences, 70(4), 429-443. Fan, J., He, J., Zhuang, Y., & Sun, L. (2012). Purification and identification of antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) frame protein. Molecules, 17(11), 12836-12850. Fan, S., Hu, Y., Li, C., & Liu, Y. (2014). Optimization of preparation of antioxidative peptides from pumpkin seeds using response surface method. PLoS One, 9(3), e92335. FAO, 2021. FAOSTAT-pumpkins, squash & gourds glossaries: UN Statistics Division. Retrieved from https://www.fao.org/faostat/en/#data Fawzy, E. I., El Makawy, A. I., El-Bamby, M. M., & Elhamalawy, H. O. (2018). Improved effect of pumpkin seed oil against the bisphenol-A adverse effects in male mice. Toxicology Reports, 5, 857-863. Feng, Y.-X., Ruan, G.-R., Jin, F., Xu, J., & Wang, F.-J. (2018). Purification, identification, and synthesis of five novel antioxidant peptides from Chinese chestnut (Castanea mollissima Blume) protein hydrolysates. Food Science and Technology, 92, 40-46. Fernández-Lucas, J., Castañeda, D., & Hormigo, D. (2017). New trends for a classical enzyme: Papain, a biotechnological success story in the food industry. Trends in Food Science and Technology, 68, 91-101. Fruhwirth, G. O., & Hermetter, A. (2007). Seeds and oil of the Styrian oil pumpkin: Components and biological activities. European Journal of Lipid Science and Technology, 109(11), 1128-1140. Fruton, J. S. (1970). Specificity and mechanism of pepsin action. Structure–Function Relationships of Proteolytic Enzymes, 37, 222-236. Fu, Y., Young, J. F., Dalsgaard, T. K., & Therkildsen, M. (2015). Separation of angiotensin I‐converting enzyme inhibitory peptides from bovine connective tissue and their stability towards temperature, pH and digestive enzymes. International Journal of Food Science & Technology, 50(5), 1234-1243. Görgüç, A., Gençdağ, E., & Yılmaz, F. M. (2020). Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments – A review. Food Research International, 136, 109504. Gan, J. Y., Chang, L. S., Mat Nasir, N. A., Babji, A. S., & Lim, S. J. (2020). Evaluation of physicochemical properties, amino acid profile and bioactivities of edible Bird's nest hydrolysate as affected by drying methods. Food Science and Technology, 131, 109777. Gang, K.-Q., Wu, Z.-X., Zhou, D.-Y., Zhao, Q., Zhou, X., Lv, D.-D., et al. (2019). Effects of hot air drying process on lipid quality of whelks Neptunea arthritica cumingi Crosse and Neverita didyma. Journal of Food Science and Technology, 56, 4166-4176. Gao, D., Helikh, A., Duan, Z., Liu, Y., & Shang, F. (2022). Development of pumpkin seed meal biscuits. Eastern-European Journal of Enterprise Technologies, 2(11), 116. García Arteaga, V., Apéstegui Guardia, M., Muranyi, I., Eisner, P., & Schweiggert-Weisz, U. (2020). Effect of enzymatic hydrolysis on molecular weight distribution, techno-functional properties and sensory perception of pea protein isolates. Innovative Food Science and Emerging Technologies, 65, 102449. Ge, B., Hou, C., Bao, B., Pan, Z., de Val, J. E., Elango, J., et al. (2022). Comparison of physicochemical and structural properties of acid-soluble and pepsin-soluble collagens from blacktip reef shark skin. Marine Drugs, 20(6). Genestra, M. (2007). Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cellular Signalling, 19(9), 1807-1819. Ghribi, A. M., Gafsi, I. M., Blecker, C., Danthine, S., Attia, H., & Besbes, S. (2015). Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates. Journal of Food Engineering, 165, 179-188. Giese, S. H., Fischer, L., & Rappsilber, J. (2016). A study into the collision-induced dissociation (CID) behavior of cross-linked peptides. Molecular & Cellular Proteomics, 15(3), 1094-1104. Girgih, A. T., He, R., Malomo, S., Offengenden, M., Wu, J., & Aluko, R. E. (2014). Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. Journal of Functional Foods, 6, 384-394. Girgih, A. T., Udenigwe, C. C., & Aluko, R. E. (2013). Reverse-phase HPLC separation of hemp seed (Cannabis sativa L.) protein hydrolysate produced peptide fractions with enhanced antioxidant capacity. Plant Foods for Human Nutrition, 68(1), 39-46. Glatter, T., Ludwig, C., Ahrné, E., Aebersold, R., Heck, A. J. R., & Schmidt, A. (2012). Large-scale quantitative assessment of different in-solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys-C/Trypsin proteolysis over Trypsin digestion. Journal of Proteome Research, 11(11), 5145-5156. González-Montoya, M., Hernández-Ledesma, B., Silván, J. M., Mora-Escobedo, R., & Martínez-Villaluenga, C. (2018). Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food Chemistry, 242, 75-82. Guerrero, P., & de la Caba, K. (2010). Thermal and mechanical properties of soy protein films processed at different pH by compression. Journal of Food Engineering, 100(2), 261-269. Guo, Y., Pan, D., & Tanokura, M. (2009). Optimisation of hydrolysis conditions for the production of the angiotensin-I converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology. Food Chemistry, 114(1), 328-333. He, R., Girgih, A. T., Malomo, S. A., Ju, X., & Aluko, R. E. (2013). Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods, 5(1), 219-227. Henzel, W. J., Watanabe, C., & Stults, J. T. (2003). Protein identification: The origins of peptide mass fingerprinting. Journal of the American Society for Mass Spectrometry, 14(9), 931-942. Hou, H., Fan, Y., Li, B., Xue, C., Yu, G., Zhang, Z., et al. (2012). Purification and identification of immunomodulating peptides from enzymatic hydrolysates of Alaska pollock frame. Food Chemistry, 134(2), 821-828. Hu, L., Song, R., & Gu, Z. (2012). An antioxidant peptide produced by autolysis reactions from wheat germ. African Journal of Biotechnology, 11(15), 6340-6348. Huang, B.-B., Lin, H.-C., & Chang, Y.-W. (2015). Analysis of proteins and potential bioactive peptides from tilapia (Oreochromis spp.) processing co-products using proteomic techniques coupled with BIOPEP database. Journal of Functional Foods, 19, 629-640. Huang, X., Wang, H., & Tu, Z. (2023). A comprehensive review of the control and utilization of aquatic animal products by autolysis-based processes: Mechanism, process, factors, and application. Food Research International, 164, 112325. Hussein, F. A., Chay, S. Y., Ghanisma, S. B. M., Zarei, M., Auwal, S. M., Hamid, A. A., et al. (2020). Toxicity study and blood pressure–lowering efficacy of whey protein concentrate hydrolysate in rat models, plus peptide characterization. Journal of Dairy Science, 103(3), 2053-2064. Jang, B.-C., Sim, H.-S., Jeong, B.-Y., Park, H.-M., & Oh, M.-J. (2008). Isolation of cucurbitacin E from pumpkin seed and analysis of its anti-cancer and anti-inflammatory activities. The FASEB Journal, 22(1), 886-889. Jayaprakasam, B., Seeram, N. P., & Nair, M. G. (2003). Anticancer and antiinflammatory activities of cucurbitacins from Cucurbita andreana. Cancer Letters, 189(1), 11-16. Jun, H.-I., Lee, C.-H., Song, G.-S., & Kim, Y.-S. (2006). Characterization of the pectic polysaccharides from pumpkin peel. Food Science and Technology, 39(5), 554-561. Jung, S., Murphy, P. A., & Johnson, L. A. (2005). Physicochemical and functional properties of soy protein substrates modified by low levels of protease hydrolysis. Journal of Food Science, 70(2), 180-187. Kaprasob, R., Khongdetch, J., Laohakunjit, N., Selamassakul, O., & Kaisangsri, N. (2022). Isolation and characterization, antioxidant, and antihypertensive activity of novel bioactive peptides derived from hydrolysis of King Boletus mushroom. Food Science and Technology, 160, 113287. Kari, N., Azmi, S., Tuan Zainazor, T., Zamri, A., & Ahmad, F. (2023). Anchovy’s protein as a potential precursor of Angiotensin-I Converting Enzyme (ACE) inhibitory peptide and Dipeptidyl Peptidase-IV (DPP-IV) inhibitory peptide by an in silico approach. Food Research, 7(2), 248-261. Kearney, P. M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P. K., & He, J. (2005). Global burden of hypertension: analysis of worldwide data. The Lancet, 365(9455), 217-223. Kheeree, N., Sangtanoo, P., Srimongkol, P., Saisavoey, T., Reamtong, O., Choowongkomon, K., et al. (2020). ACE inhibitory peptides derived from de-fatted lemon basil seeds: Optimization, purification, identification, structure–activity relationship and molecular docking analysis. Food & function, 11(9), 8161-8178. Kiettiolarn, M., Kitsanayanyong, L., Maneerote, J., Unajak, S., & Tepwong, P. (2022). Optimization and production of protein hydrolysate containing antioxidant activity from tuna cooking juice concentrate by response surface methodology. Fisheries and Aquatic Sciences, 25(6), 335-349. Kim, M. Y., Kim, E. J., Kim, Y.-N., Choi, C., & Lee, B.-H. (2012). Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutrition Research and Practice, 6(1), 21-27. Kong, X., Zhang, L., Song, W., Zhang, C., Hua, Y., Chen, Y., et al. (2021). Separation, identification and molecular binding mechanism of dipeptidyl peptidase IV inhibitory peptides derived from walnut (Juglans regia L.) protein. Food Chemistry, 347, 129062. Kumar, S., Mittal, A., & Mittal, A. (2021). A review upon medicinal perspective and designing rationale of DPP-4 inhibitors. Bioorganic & Medicinal Chemistry, 46, 116354. Kushawaha, D. K., Yadav, M., Chatterji, S., Srivastava, A. K., & Watal, G. (2017). Evidence based study of antidiabetic potential of C. maxima seeds - In vivo. Journal of Traditional and Complementary Medicine, 7(4), 466-470. Lacroix, I. M. E., & Li-Chan, E. C. Y. (2016). Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation - Current knowledge and future research considerations. Trends in Food Science and Technology, 54, 1-16. Lahrichi, S. L., Affolter, M., Zolezzi, I. S., & Panchaud, A. (2013). Food peptidomics: large scale analysis of small bioactive peptides. Journal of Proteomics, 88, 83-91. Lewicki, P. P. (2006). Design of hot air drying for better foods. Trends in Food Science and Technology, 17(4), 153-163. Li, M., Xia, S., Zhang, Y., & Li, X. (2018). Optimization of ACE inhibitory peptides from black soybean by microwave-assisted enzymatic method and study on its stability. Food Science and Technology, 98, 358-365. Li, Y., Shahbazi, A., & Kadzere, C. T. (2006). Separation of cells and proteins from fermentation broth using ultrafiltration. Journal of Food Engineering, 75(4), 574-580. Lindenschmidt, R. C., Tryka, A. F., Goad, M. E., & Witschi, H. P. (1986). The effects of dietary butylated hydroxytoluene on liver and colon tumor development in mice. Toxicology, 38(2), 151-160. Liu, C., Ren, D., Li, J., Fang, L., Wang, J., Liu, J., et al. (2018). Cytoprotective effect and purification of novel antioxidant peptides from hazelnut (C. heterophylla Fisch) protein hydrolysates. Journal of Functional Foods, 42, 203-215. Liu, D., Guo, Y., Wu, P., Wang, Y., Kwaku Golly, M., & Ma, H. (2020). The necessity of walnut proteolysis based on evaluation after in vitro simulated digestion: ACE inhibition and DPPH radical-scavenging activities. Food Chemistry, 311, 125960. Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy reviews, 4(8), 118-126. Lu, D., Peng, M., Yu, M., Jiang, B., Wu, H., & Chen, J. (2021). Effect of enzymatic hydrolysis on the zinc binding capacity and in vitro gastrointestinal stability of peptides derived from pumpkin (Cucurbita pepo L.) seeds. Frontiers in Nutrition, 8, 647-782. Lu, X., Zhang, L., Sun, Q., Song, G., & Huang, J. (2019). Extraction, identification and structure-activity relationship of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate. Food Research International, 116, 707-716. Mäkinen, S., Streng, T., Larsen, L. B., Laine, A., & Pihlanto, A. (2016). Angiotensin I-converting enzyme inhibitory and antihypertensive properties of potato and rapeseed protein-derived peptides. Journal of Functional Foods, 25, 160-173. Maizel Jr, J. V. (2000). SDS polyacrylamide gel electrophoresis. Trends in biochemical sciences, 25(12), 590-592. Mak, A., & Jones, B. (1978). Application of S-pyridylethylation of cysteine to the sequence analysis of proteins. Analytical Biochemistry, 84(2), 432-440. Mann, M., Hendrickson, R. C., & Pandey, A. (2001). Analysis of proteins and proteomes by mass spectrometry. Annual Review of Biochemistry, 70, 437-473. Manns, J. M. (2011). SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) of Proteins. Current Protocols in Microbiology, 22(1), 1-13. Marcone, M. F., Kakuda, Y., & Yada, R. Y. (1998). Salt-soluble seed globulins of various dicotyledonous and monocotyledonous plants—I. Isolation/purification and characterization. Food Chemistry, 62(1), 27-47. Marcuse, R. (1960). Antioxidative effect of amino-acids. Nature, 186, 886-887. Mazloomi-Kiyapey, S. N., Sadeghi-Mahoonak, A., Ranjbar-Nedamani, E., & Nourmohammadi, E. (2019). Production of antioxidant peptides through hydrolysis of medicinal pumpkin seed protein using pepsin enzyme and the evaluation of their functional and nutritional properties. ARYA Atheroscler, 15(5), 218-227. Megías, C., Yust, M. d. M., Pedroche, J., Lquari, H., Girón-Calle, J., Alaiz, M., et al. (2004). Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. Journal of Agricultural and Food Chemistry, 52(7), 1928-1932. Melini, F., Melini, V., Luziatelli, F., Ficca, A. G., & Ruzzi, M. (2019). Health-promoting components in fermented foods: An up-to-date systematic Review. Nutrients, 11(5). Meru, G., Fu, Y., Leyva, D., Sarnoski, P., & Yagiz, Y. (2018). Phenotypic relationships among oil, protein, fatty acid composition and seed size traits in Cucurbita pepo. Scientia Horticulturae, 233, 47-53. Michalski, A., Damoc, E., Lange, O., Denisov, E., Nolting, D., Müller, M., et al. (2012). Ultra high resolution linear ion trap Orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Molecular and Cellular Proteomics, 11(3), 111-116. Minkiewicz, P., Iwaniak, A., & Darewicz, M. (2019). BIOPEP-UWM database of bioactive peptides: Current opportunities. International journal of molecular sciences, 20(23), 5978. Minkiewicz, P., Iwaniak, A., & Darewicz, M. (2019). BIOPEP-UWM database of bioactive peptides: current opportunities. International Journal of Molecular Sciences, 20(23). Morato, M., Reina-Couto, M., Pinho, D., Albino-Teixeira, A., & Sousa, T. (2017). Regulation of the renin-angiotensin-Aldosterone system by reactive oxygen species. Renin-angiotensin system-past, present and future, 2020, 119-157. Moure, A., Sineiro, J., Domínguez, H., & Parajó, J. C. (2006). Functionality of oilseed protein products: A review. Food Research International, 39(9), 945-963. Mudgil, P., Omar, L. S., Kamal, H., Kilari, B. P., & Maqsood, S. (2019). Multi-functional bioactive properties of intact and enzymatically hydrolysed quinoa and amaranth proteins. Food Science and Technology, 110, 207-213. Murkovic, M., Hillebrand, A., Winkler, J., Leitner, E., & Pfannhauser, W. (1996). Variability of fatty acid content in pumpkin seeds (Cucurbita pepo L.). Zeitschrift für Lebensmittel-Untersuchung und Forschung, 203(3), 216-219. Natesh, R., Schwager, S. L., Sturrock, E. D., & Acharya, K. R. (2003). Crystal structure of the human angiotensin-converting enzyme–lisinopril complex. Nature, 421(6922), 551-554. Neagu, A.-N., Jayathirtha, M., Baxter, E., Donnelly, M., Petre, B. A., & Darie, C. C. (2022). Applications of tandem mass spectrometry (MS/MS) in protein analysis for biomedical research. Molecules, 27(8), 2411. Nichols, A. M., & White, F. M. (2009). Manual validation of peptide sequence and sites of Tyrosine phosphorylation from MS/MS spectra. Mass Spectrometry of Proteins and Peptides: Methods and Protocols (143-160). Totowa, NJ: Humana Press. Nishinari, K., Fang, Y., Guo, S., & Phillips, G. O. (2014). Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocolloids, 39, 301-318. Nissen, S. H., Schmidt, J. M., Gregersen, S., Hammershøj, M., Møller, A. H., Danielsen, M., et al. (2021). Increased solubility and functional properties of precipitated Alfalfa protein concentrate subjected to pH shift processes. Food Hydrocolloids, 119, 106874. Nogata, Y., Nagamine, T., Yanaka, M., & Ohta, H. (2009). Angiotensin I converting enzyme inhibitory peptides produced by autolysis reactions from wheat bran. Journal of Agricultural and Food Chemistry, 57(15), 6618-6622. Nongonierma, A. B., Cadamuro, C., Le Gouic, A., Mudgil, P., Maqsood, S., & FitzGerald, R. J. (2019). Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation. Food Chemistry, 279, 70-79. Nor, N. M., Carr, A., Hardacre, A., & Brennan, C. S. (2013). The development of expanded snack product made from pumpkin flour-corn grits: effect of extrusion conditions and formulations on physical characteristics and microstructure. Foods, 2(2), 160-169. Onuh, J. O., Girgih, A. T., Aluko, R. E., & Aliani, M. (2014). In vitro antioxidant properties of chicken skin enzymatic protein hydrolysates and membrane fractions. Food Chemistry, 150, 366-373. Ozuna, C., & León-Galván, M. F. (2017). Cucurbitaceae seed protein hydrolysates as a potential source of bioactive peptides with functional properties. BioMed Research International, 2017, 2121878. Pan, X., Zhao, Y.-Q., Hu, F.-Y., & Wang, B. (2016). Preparation and identification of antioxidant peptides from protein hydrolysate of skate (Raja porosa) cartilage. Journal of Functional Foods, 25, 220-230. Panyam, D., & Kilara, A. (1996). Enhancing the functionality of food proteins by enzymatic modification. Trends in Food Science and Technology, 7(4), 120-125. Patel, S. (2013). Pumpkin (Cucurbita sp.) seeds as nutraceutic: a review on status quo and scopes. Mediterranean Journal of Nutrition and Metabolism, 6(3), 183-189. Paul, A. A., Eghianruwa, Q. A., Oparinde, O. G., Adesina, A. S., & Osoniyi, O. (2021). Enzymatic protein hydrolysates, and ultrafiltered peptide fractions from two molluscs: Tympanotonus fuscatus var. radula (L.) and Pachymelania aurita (M.), with Angiotensin-I-converting enzyme inhibitory and DPPH radical scavenging activities. International Journal of Applied and Basic Medical Research, 11(2), 70-74. Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International journal of biomedical science, 4(2), 89-96. Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30(1), 11-26. Phillips, L. K., & Prins, J. B. (2011). Update on incretin hormones. Annals of the New York Academy of Sciences, 1243(1), E55-E74. Piovesana, S., Capriotti, A. L., Cavaliere, C., La Barbera, G., Montone, C. M., Zenezini Chiozzi, R., et al. (2018). Recent trends and analytical challenges in plant bioactive peptide separation, identification and validation. Analytical and Bioanalytical Chemistry, 410(15), 3425-3444. Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55-74. Quanhong, L., & Caili, F. (2005). Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein. Food Chemistry, 92(4), 701-706. Rajapakse, N., Mendis, E., Jung, W.-K., Je, J.-Y., & Kim, S.-K. (2005). Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Research International, 38(2), 175-182. Reid, G. E., & McLuckey, S. A. (2002). ‘Top down’ protein characterization via tandem mass spectrometry. Journal of Mass Spectrometry, 37(7), 663-675. Renkema, J. M. S., Gruppen, H., & van Vliet, T. (2002). Influence of pH and ionic strength on heat-induced formation and rheological properties of soy protein gels in relation to denaturation and their protein compositions. Journal of Agricultural and Food Chemistry, 50(21), 6064-6071. Rezig, L., Chibani, F., Chouaibi, M., Dalgalarrondo, M., Hessini, K., Guéguen, J., et al. (2013). Pumpkin (Cucurbita maxima) seed proteins: sequential extraction processing and fraction characterization. Journal of Agricultural and Food Chemistry, 61(32), 7715-7721. Rezvankhah, A., Yarmand, M. S., Ghanbarzadeh, B., & Mirzaee, H. (2023). Development of lentil peptides with potent antioxidant, antihypertensive, and antidiabetic activities along with umami taste. Food Science & Nutrition, 2023, 1-16. Ribeiro, E., Rocha, T. d. S., & Prudencio, S. H. (2021). Potential of green and roasted coffee beans and spent coffee grounds to provide bioactive peptides. Food Chemistry, 348, 129061. Rizzello, C. G., Tagliazucchi, D., Babini, E., Sefora Rutella, G., Taneyo Saa, D. L., & Gianotti, A. (2016). Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. Journal of Functional Foods, 27, 549-569. Rodríguez-Miranda, J., Hernández-Santos, B., Herman-Lara, E., Vivar-Vera, M. A., Carmona-García, R., Gómez-Aldapa, C. A., et al. (2012). Physicochemical and functional properties of whole and defatted meals from Mexican (Cucurbita pepo) pumpkin seeds. International Journal of Food Science and Technology, 47(11), 2297-2303. Rosenfeld, J., Capdevielle, J., Guillemot, J. C., & Ferrara, P. (1992). In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Analytical Biochemistry, 203(1), 173-179. Roy, I., & Gupta, M. N. (2004). Freeze-drying of proteins: some emerging concerns. Biotechnology and Applied Biochemistry, 39(2), 165-177. Sato, K., Miyasaka, S., Tsuji, A., & Tachi, H. (2018). Isolation and characterization of peptides with dipeptidyl peptidase IV (DPPIV) inhibitory activity from natto using DPPIV from Aspergillus oryzae. Food Chemistry, 261, 51-56. Saveliev, S., Bratz, M., Zubarev, R., Szapacs, M., Budamgunta, H., & Urh, M. (2013). Trypsin/Lys-C protease mix for enhanced protein mass spectrometry analysis. Nature Methods, 10(11), i-ii. Schaich, K. (2016). Analysis of lipid and protein oxidation in fats, oils, and foods. Oxidative stability and shelf life of foods containing oils and fats (pp. 1-131): Elsevier. Schägger, H. (2006). Tricine–sds-page. Nature Protocols, 1(1), 16-22. Shang, H.-M., Zhou, H.-Z., Li, R., Duan, M.-Y., Wu, H.-X., & Lou, Y.-J. (2017). Extraction optimization and influences of drying methods on antioxidant activities of polysaccharide from cup plant (Silphium perfoliatum L.). PLoS One, 12(8), e0183001. Shao, X., Grams, C., & Gao, Y. (2023). Sequence coverage visualizer: A web application for protein sequence coverage 3D visualization. Journal of Proteome Research, 22(2), 343-349. Sharma, P., Kaur, H., Kehinde, B. A., Chhikara, N., Sharma, D., & Panghal, A. (2021). Food-Derived Anticancer Peptides: A Review. International Journal of Peptide Research and Therapeutics, 27(1), 55-70. Shevchenko, A., Tomas, H., Havli, J., Olsen, J. V., & Mann, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 1(6), 2856-2860. Shori, A. B., Yong, Y. S., & Baba, A. S. (2022). Effects of medicinal plants extract enriched cheese with fish collagen on proteolysis and in vitro angiotensin-I converting enzyme inhibitory activity. Food Science and Technology, 159, 113218. Shwaiki, L. N., Lynch, K. M., & Arendt, E. K. (2021). Future of antimicrobial peptides derived from plants in food application – A focus on synthetic peptides. Trends in Food Science and Technology, 112, 312-324. Sila, A., & Bougatef, A. (2016). Antioxidant peptides from marine by-products: Isolation, identification and application in food systems. A review. Journal of Functional Foods, 21, 10-26. Silva-Barbieri, D., Salazar, F. N., López, F., Brossard, N., Escalona, N., & Pérez-Correa, J. R. (2022). Advances in white wine protein stabilization technologies. Molecules, 27(4). Singh, N. P., & Matta, N. K. (2008). Variation studies on seed storage proteins and phylogenetics of the genus Cucumis. Plant Systematics and Evolution, 275(3), 209-218. Sonklin, C., Alashi, M. A., Laohakunjit, N., Kerdchoechuen, O., & Aluko, R. E. (2020). Identification of antihypertensive peptides from mung bean protein hydrolysate and their effects in spontaneously hypertensive rats. Journal of Functional Foods, 64, 103635. Sonklin, C., Laohakunjit, N., & Kerdchoechuen, O. (2018). Assessment of antioxidant properties of membrane ultrafiltration peptides from mungbean meal protein hydrolysates. PeerJ, 6, e5337. Subramaniyam, R., & Vimala, R. (2012). Solid state and submerged fermentation for the production of bioactive substances: a comparative study. International Journal of Natural Sciences, 3(3), 480-486. Sukkhown, P., Jangchud, K., Lorjaroenphon, Y., & Pirak, T. (2018). Flavored-functional protein hydrolysates from enzymatic hydrolysis of dried squid by-products: Effect of drying method. Food Hydrocolloids, 76, 103-112. Tasyurek, H. M., Altunbas, H. A., Balci, M. K., & Sanlioglu, S. (2014). Incretins: Their physiology and application in the treatment of diabetes mellitus. Diabetes/Metabolism Research and Reviews, 30(5), 354-371. Tan-Wilson, A. L., & Wilson, K. A. (2012). Mobilization of seed protein reserves. Physiologia Plantarum, 145(1), 140-153. Tian, S., Du, K., Yan, F., & Li, Y. (2022). Microwave-assisted enzymatic hydrolysis of wheat germ albumin to prepare polypeptides and influence on physical and chemical properties. Food Chemistry, 374, 131707. Tomar, P. P. S., Nikhil, K., Singh, A., Selvakumar, P., Roy, P., & Sharma, A. K. (2014). Characterization of anticancer, DNase and antifungal activity of pumpkin 2S albumin. Biochemical and Biophysical Research Communications, 448(4), 349-354. Tu, M., Cheng, S., Lu, W., & Du, M. (2018). Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. Trends in Analytical Chemistry, 105, 7-17. Udenigwe, C. C., & Aluko, R. E. (2012). Food protein-derived bioactive peptides: production, processing, and potential health benefits. Journal of Food Science, 77(1), R11-24. Ulug, S. K., Jahandideh, F., & Wu, J. (2021). Novel technologies for the production of bioactive peptides. Trends in Food Science and Technology, 108, 27-39. Ven, V. D., Gruppen, C. H., Bont, D. B., & Voragen, A. G. J. (2002). Optimisation of the angiotensin converting enzyme inhibition by whey protein hydrolysates using response surface methodology. International Dairy Journal, 12(10), 813-820. Villanueva, A., Clemente, A., Bautista-Gallego, J., & Millán, F. (1999). Production of an extensive sunflower protein hydrolysate by sequential hydrolysis with endo-and exo-proteases. Grasas y Aceites, 50(6), 142-151. Vásquez-Villanueva, R., Muñoz-Moreno, L., José Carmena, M., Luisa Marina, M., & Concepción García, M. (2018). In vitro antitumor and hypotensive activity of peptides from olive seeds. Journal of Functional Foods, 42, 177-184. Wang, L., Ding, L., Xue, C., Ma, S., Du, Z., Zhang, T., et al. (2018). Corn gluten hydrolysate regulates the expressions of antioxidant defense and ROS metabolism relevant genes in H2O2-induced HepG2 cells. Journal of Functional Foods, 42, 362-370. Wang, L., Zhang, J., yuan, q., Xie, H., Shi, J., & Ju, X. (2016). Separation and purification of anti-tumor peptide from rapeseed (Brassica campestris L.) and the effect on cell apoptosis. Food Function, 7(5), 202-223. Wang, Q., Zhao, Y., Guan, L., Zhang, Y., Dang, Q., Dong, P., et al. (2017). Preparation of astaxanthin-loaded DNA/chitosan nanoparticles for improved cellular uptake and antioxidation capability. Food Chemistry, 227, 9-15. Wang, R., Lu, X., Sun, Q., Gao, J., Ma, L., & Huang, J. (2020). Novel ACE inhibitory peptides derived from simulated gastrointestinal digestion in vitro of sesame (Sesamum indicum L.) protein and molecular docking study. International journal of molecular sciences, 21(3), 1059. Warsame, A. O., Michael, N., O’Sullivan, D. M., & Tosi, P. (2020). Identification and quantification of major faba bean seed proteins. Journal of Agricultural and Food Chemistry, 68(32), 8535-8544. Wen, C., Zhang, J., Feng, Y., Duan, Y., Ma, H., & Zhang, H. (2020). Purification and identification of novel antioxidant peptides from watermelon seed protein hydrolysates and their cytoprotective effects on H2O2-induced oxidative stress. Food Chemistry, 327, 127059. Wilkins, M. R., Appel, R. D., Van Eyk, J. E., Chung, M. C. M., Görg, A., Hecker, M., et al. (2006). Guidelines for the next 10 years of proteomics. Proteomics, 6(1), 4-8. Williams, G. M., Iatropoulos, M. J., & Whysner, J. (1999). Safety assessment of butylated hydroxyanisole and butylated hydroxytoluene as antioxidant food additives. Food and Chemical Toxicology, 37(9), 1027-1038. Wouters, J. T. M., Ayad, E. H. E., Hugenholtz, J., & Smit, G. (2002). Microbes from raw milk for fermented dairy products. International Dairy Journal, 12(2), 91-109. Xia, E., Zhai, L., Huang, Z., Liang, H., Yang, H., Song, G., et al. (2019). Optimization and identification of antioxidant peptide from underutilized dunaliella salina protein: extraction, In Vitro gastrointestinal digestion, and fractionation, BioMed Research International, 2019, 6424651. Xie, Z., Huang, J., Xu, X., & Jin, Z. (2008). Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chemistry, 111(2), 370-376. Xingfei, L., Shunshun, P., Wenji, Z., Lingli, S., Qiuhua, L., Ruohong, C., et al. (2020). Properties of ACE inhibitory peptide prepared from protein in green tea residue and evaluation of its anti-hypertensive activity. Process Biochemistry, 92, 277-287. Xu, F., Yao, Y., Xu, X., Wang, M., Pan, M., Ji, S., et al. (2019). Identification and quantification of DPP-IV-inhibitory peptides from hydrolyzed-rapeseed-protein-derived napin with analysis of the interactions between key residues and protein domains. Journal of Agricultural and Food Chemistry, 67(13), 3679-3690. Xu, Z., Mao, T.-M., Huang, L., Yu, Z.-C., Yin, B., Chen, M.-L., et al. (2019). Purification and identification immunomodulatory peptide from rice protein hydrolysates. Food and Agricultural Immunology, 30(1), 150-162. Yang, Y., Marczak, E. D., Yokoo, M., Usui, H., & Yoshikawa, M. (2003). Isolation and antihypertensive effect of angiotensin I-converting enzyme (ACE) inhibitory peptides from spinach rubisco. Journal of Agricultural and Food Chemistry, 51(17), 4897-4902. Yin, S. W., Tang, C. H., Wen, Q. B., & Yang, X. Q. (2010). Functional and conformational properties of phaseolin (Phaseolus vulgris L.) and kidney bean protein isolate: a comparative study. Journal of the Science of Food and Agriculture, 90(4), 599-607. You, H., Wu, T., Wang, W., Li, Y., Liu, X., & Ding, L. (2022). Preparation and identification of dipeptidyl peptidase IV inhibitory peptides from quinoa protein. Food Research International, 156, 111176. You, H., Zhang, Y., Wu, T., Li, J., Wang, L., Yu, Z., et al. (2022). Identification of dipeptidyl peptidase IV inhibitory peptides from rapeseed proteins. Food Science and Technology, 160, 113255. Yu, D., Feng, T., Jiang, Q., Yang, F., Gao, P., Xu, Y., et al. (2021). The change characteristics in moisture distribution, physical properties and protein denaturation of slightly salted silver carp (Hypophthalmichthys molitrix) fillets during cold/hot air drying processing. Food Science and Technology, 137, 110466. Yust, M., x, a, M., Pedroche, J., Girón-Calle, J., Alaiz, M., et al. (2003). Production of ace inhibitory peptides by digestion of chickpea legumin with alcalase. Food Chemistry, 81(3), 363-369. Zeb, A. (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44(9), e13394. Zhu, L., Chen, J., Tang, X., & Xiong, Y. L. (2008). Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. Journal of Agricultural and Food Chemistry, 56(8), 2714-2721. Zivanovic, I., Vastag, Z., Popovic, S., Popovic, L., & Pericin, D. (2010). Hydrolysis of hull-less pumpkin oil cake protein isolate by pepsin. International Journal of Biological and Life Sciences, 6(1), 30-34.
|