|
Abbasi, A. R., Sohail, M., Minhas, M. U., Khaliq, T., Kousar, M., Khan, S., Hussain, Z., & Munir, A. (2020). Bioinspired sodium alginate based thermosensitive hydrogel membranes for accelerated wound healing. International Journal of Biological Macromolecules, 155, 751-765. Aggarwal, B. B., Bhatt, I. D., Ichikawa, H., Ahn, K. S., Sethi, G., Sandur, S. K., Natarajan, C., Seeram, N., & Shishodia, S. (2006). 10 Curcumin—biological and medicinal properties. In. Aggarwal, B. B., Kumar, A., & Bharti, A. C. (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer research, 23(1/A), 363-398. Aguilar-Briseño, J. A., Cruz-Suarez, L. E., Sassi, J.-F., Ricque-Marie, D., Zapata-Benavides, P., Mendoza-Gamboa, E., Rodríguez-Padilla, C., & Trejo-Avila, L. M. (2015). Sulphated polysaccharides from Ulva clathrata and Cladosiphon okamuranus seaweeds both inhibit viral attachment/entry and cell-cell fusion, in NDV infection. Marine Drugs, 13(2), 697-712. Ahsan, R., Arshad, M., Khushtar, M., Ahmad, M. A., Muazzam, M., Akhter, M. S., Gupta, G., & Muzahid, M. (2020). A comprehensive review on physiological effects of curcumin. Drug Research, 70(10), 441-447. Ak, T., & Gülçin, I. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico-biological Interactions, 174(1), 27-37. Akash, M. S. H., & Rehman, K. (2015). Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical perspectives. Journal of Controlled Release, 209, 120-138. Ali, S. M., & Yosipovitch, G. (2013). Skin pH: from basic science to basic skin care. Acta Dermato-venereologica, 93(3), 261-267. Alves, A., Sousa, R. A., & Reis, R. L. (2013). In vitro cytotoxicity assessment of ulvan, a polysaccharide extracted from green algae. Phytotherapy Research, 27(8), 1143-1148. Amalraj, A., Pius, A., Gopi, S., & Gopi, S. (2017). Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives–A review. Journal of Traditional and Complementary Medicine, 7(2), 205-233. Anand, P., Kunnumakkara, A. B., Newman, R. A., & Aggarwal, B. B. (2007). Bioavailability of curcumin: problems and promises. Molecular Pharmaceutics, 4(6), 807-818. Andrès, E., Molinari, J., Péterszegi, G., Mariko, B., Ruszova, E., Velebny, V., Faury, G., & Robert, L. (2006). Pharmacological properties of rhamnose-rich polysaccharides, potential interest in age-dependent alterations of connectives tissues. Pathologie Biologie, 54(7), 420-425. Anitha, A., Deepagan, V., Rani, V. D., Menon, D., Nair, S., & Jayakumar, R. (2011). Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydrate Polymers, 84(3), 1158-1164. Argos, P., Pedersen, K., Marks, M. D., & Larkins, B. A. (1982). A structural model for maize zein proteins. Journal of Biological Chemistry, 257(17), 9984-9990. Berri, M., Olivier, M., Holbert, S., Dupont, J., Demais, H., Le Goff, M., & Collen, P. N. (2017). Ulvan from Ulva armoricana (Chlorophyta) activates the PI3K/Akt signalling pathway via TLR4 to induce intestinal cytokine production. Algal Research, 28, 39-47. Brown, W., Schillen, K., & Hvidt, S. (1992). Triblock copolymers in aqueous solution studied by static and dynamic light scattering and oscillatory shear measurements: influence of relative block sizes. The Journal of Physical Chemistry, 96(14), 6038-6044. Buckley, C. D. (2011). Why does chronic inflammation persist: An unexpected role for fibroblasts. Immunology letters, 138(1), 12-14. Calleja-Agius, J., Brincat, M., & Borg, M. (2013). Skin connective tissue and ageing. Best Practice & Research Clinical Obstetrics & Gynaecology, 27(5), 727-740. Chang, C., Wang, T., Hu, Q., Zhou, M., Xue, J., & Luo, Y. (2017). Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin. Food Hydrocolloids, 70, 143-151. Chen, S., Han, Y., Wang, Y., Yang, X., Sun, C., Mao, L., & Gao, Y. (2019). Zein-hyaluronic acid binary complex as a delivery vehicle of quercetagetin: Fabrication, structural characterization, physicochemical stability and in vitro release property. Food Chemistry, 276, 322-332. Chen, X., Zhi, F., Jia, X., Zhang, X., Ambardekar, R., Meng, Z., Paradkar, A. R., Hu, Y., & Yang, Y. (2013). Enhanced brain targeting of curcumin by intranasal administration of a thermosensitive poloxamer hydrogel. Journal of Pharmacy and Pharmacology, 65(6), 807-816. Cidade, M., Ramos, D., Santos, J., Carrelo, H., Calero, N., & Borges, J. (2019). Injectable hydrogels based on pluronic/water systems filled with alginate microparticles for biomedical applications. Materials, 12(7), 1083. da Rosa, C. G., Maciel, M. V. d. O. B., de Carvalho, S. M., de Melo, A. P. Z., Jummes, B., da Silva, T., Martelli, S. M., Villetti, M. A., Bertoldi, F. C., & Barreto, P. L. M. (2015). Characterization and evaluation of physicochemical and antimicrobial properties of zein nanoparticles loaded with phenolics monoterpenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481, 337-344. Dai, L., Sun, C., Li, R., Mao, L., Liu, F., & Gao, Y. (2017). Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation. Food Chemistry, 237, 1163-1171. Das, R. K., Kasoju, N., & Bora, U. (2010). Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), 153-160. Deljoo, S., Rabiee, N., & Rabiee, M. (2019). Curcumin-hybrid nanoparticles in drug delivery system. Asian Journal of Nanosciences and Materials, 2(1), 66-91. Demidova-Rice, T. N., Hamblin, M. R., & Herman, I. M. (2012). Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Advances in Skin & Wound Care, 25(7), 304. Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings–a review. BioMedicine, 5(4), 22. Doğan, A., Demirci, S., Çağlayan, A. B., Kılıç, E., Günal, M. Y., Uslu, Ü., Cumbul, A., & Şahin, F. (2014). Sodium pentaborate pentahydrate and pluronic containing hydrogel increases cutaneous wound healing in vitro and in vivo. Biological Trace Element Research, 162, 72-79. Don, T.-M., Chang, W.-J., Jheng, P.-R., Huang, Y.-C., & Chuang, E.-Y. (2021). Curcumin-laden dual-targeting fucoidan/chitosan nanocarriers for inhibiting brain inflammation via intranasal delivery. International Journal of Biological Macromolecules, 181, 835-846. Don, T.-M., Liu, L.-M., Chen, M., & Huang, Y.-C. (2021). Crosslinked complex films based on chitosan and ulvan with antioxidant and whitening activities. Algal Research, 58, 102423. Don, T.-M., Ma, C.-H., & Huang, Y.-C. (2022). In Situ Release of Ulvan from Crosslinked Ulvan/Chitosan Complex Films and Their Evaluation as Wound Dressings. Polymers, 14(24), 5382. Faury, G., Ruszova, E., Molinari, J., Mariko, B., Raveaud, S., Velebny, V., & Robert, L. (2008). The α-l-Rhamnose recognizing lectin site of human dermal fibroblasts functions as a signal transducer: Modulation of Ca2+ fluxes and gene expression. Biochimica et Biophysica Acta (BBA)-General Subjects, 1780(12), 1388-1394. Feng, C., Shen, Z., Li, Y., Gu, L., Zhang, Y., Lu, G., & Huang, X. (2009). PNIPAM‐b‐(PEA‐g‐PDMAEA) double‐hydrophilic graft copolymer: Synthesis and its application for preparation of gold nanoparticles in aqueous media. Journal of Polymer Science Part A: Polymer Chemistry, 47(7), 1811-1824. Feng, T., Wei, Y., Lee, R. J., & Zhao, L. (2017). Liposomal curcumin and its application in cancer. International Journal of Nanomedicine, 12, 6027. Flora, G., Gupta, D., & Tiwari, A. (2013). Nanocurcumin: a promising therapeutic advancement over native curcumin. Critical Reviews™ in Therapeutic Drug Carrier Systems, 30(4). Forman, H. J., Davies, K. J., & Ursini, F. (2014). How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radical Biology and Medicine, 66, 24-35. Garraud, O., Hozzein, W. N., & Badr, G. (2017). Wound healing: time to look for intelligent,‘natural’immunological approaches. BMC immunology, 18(1), 1-8. Handel, T., Johnson, Z., Crown, S., & Lau, E. (2005). Regulation of protein function by glycosaminoglycans-as exemplified by chemokines. Annual Review of Biochemistry, 74, 385. Huang, Y.-C., & Kuo, T.-H. (2016). O-carboxymethyl chitosan/fucoidan nanoparticles increase cellular curcumin uptake. Food Hydrocolloids, 53, 261-269. Jayakumar, R., Prabaharan, M., Nair, S., Tokura, S., Tamura, H., & Selvamurugan, N. (2010). Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Progress in Materials Science, 55(7), 675-709. Jovanovic, S. V., Steenken, S., Boone, C. W., & Simic, M. G. (1999). H-atom transfer is a preferred antioxidant mechanism of curcumin. Journal of the American Chemical Society, 121(41), 9677-9681. Kant, V., Gopal, A., Kumar, D., Gopalkrishnan, A., Pathak, N. N., Kurade, N. P., Tandan, S. K., & Kumar, D. (2014). Topical pluronic F-127 gel application enhances cutaneous wound healing in rats. Acta Histochemica, 116(1), 5-13. Khan, A. M., Abid, O. U. R., & Mir, S. (2020). Assessment of biological activities of chitosan Schiff base tagged with medicinal plants. Biopolymers, 111(3), e23338. Khattak, S. F., Bhatia, S. R., & Roberts, S. C. (2005). Pluronic F127 as a cell encapsulation material: utilization of membrane-stabilizing agents. Tissue Engineering, 11(5-6), 974-983. Khavkin, J., & Ellis, D. A. (2011). Aging skin: Histology, physiology, and pathology. Facial Plastic Surgery Clinics of North America, 19(2), 229-234. Kidgell, J. T., Magnusson, M., de Nys, R., & Glasson, C. R. (2019). Ulvan: A systematic review of extraction, composition and function. Algal Research, 39, 101422. Kost, J., & Langer, R. (2012). Responsive polymeric delivery systems. Advanced Drug Delivery Reviews, 64, 327-341. Krausz, A. E., Adler, B. L., Cabral, V., Navati, M., Doerner, J., Charafeddine, R. A., Chandra, D., Liang, H., Gunther, L., & Clendaniel, A. (2015). Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine: Nanotechnology, Biology and Medicine, 11(1), 195-206. Kunwar, A., & Priyadarsini, K. (2011). Free radicals, oxidative stress and importance of antioxidants in human health. Journal of Medical & Allied Sciences, 1(2). Kvítek, L., Panáček, A., Soukupová, J., Kolář, M., Večeřová, R., Prucek, R., Holecová, M., & Zbořil, R. (2008). Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). The Journal of Physical Chemistry C, 112(15), 5825-5834. Lee, S., Alwahab, N. S. A., & Moazzam, Z. M. (2013). Zein-based oral drug delivery system targeting activated macrophages. International Journal of Pharmaceutics, 454(1), 388-393. Leung, M. H., & Shen, A. Q. (2018). Microfluidic assisted nanoprecipitation of PLGA nanoparticles for curcumin delivery to leukemia jurkat cells. Langmuir, 34(13), 3961-3970. Li, G., Wu, J., Wang, B., Yan, S., Zhang, K., Ding, J., & Yin, J. (2015). Self-healing supramolecular self-assembled hydrogels based on poly (L-glutamic acid). Biomacromolecules, 16(11), 3508-3518. Li, H., Wang, D., Liu, C., Zhu, J., Fan, M., Sun, X., Wang, T., Xu, Y., & Cao, Y. (2019). Fabrication of stable zein nanoparticles coated with soluble soybean polysaccharide for encapsulation of quercetin. Food Hydrocolloids, 87, 342-351. Li, P., Wang, Y., Peng, Z., She, F., & Kong, L. (2011). Development of chitosan nanoparticles as drug delivery systems for 5-fluorouracil and leucovorin blends. Carbohydrate Polymers, 85(3), 698-704. Li, Q., Luo, J., Wang, C., Tai, W., Wang, H., Zhang, X., Liu, K., Jia, Y., Lyv, X., & Wang, L. (2018). Ulvan extracted from green seaweeds as new natural additives in diets for laying hens. Journal of Applied Phycology, 30(3), 2017-2027. Li, W., Jiang, N., Li, B., Wan, M., Chang, X., Liu, H., Zhang, L., Yin, S., Qi, H., & Liu, S. (2018). Antioxidant activity of purified ulvan in hyperlipidemic mice. International Journal of Biological Macromolecules, 113, 971-975. Lin, C. H., Wu, H. L., & Huang, Y. L. (2007). Combining high-performance liquid chromatography with on-line microdialysis sampling for the simultaneous determination of ascorbyl glucoside, kojic acid, and niacinamide in bleaching cosmetics. Analytica Chimica Acta, 581(1), 102-107. Lin, X., Bai, D., Wei, Z., Zhang, Y., Huang, Y., Deng, H., & Huang, X. (2019). Curcumin attenuates oxidative stress in RAW264. 7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PloS one, 14(5), e0216711. Liu, H., Zhao, Y., Zou, Y., Huang, W., Zhu, L., Liu, F., Wang, D., Guo, K., Hu, J., & Chen, J. (2019). Heparin‐poloxamer hydrogel‐encapsulated rhFGF21 enhances wound healing in diabetic mice. The FASEB Journal, 33(9), 9858-9870. Liu, J., Chen, Z., Wang, J., Li, R., Li, T., Chang, M., Yan, F., & Wang, Y. (2018). Encapsulation of curcumin nanoparticles with MMP9-responsive and thermos-sensitive hydrogel improves diabetic wound healing. ACS Applied Materials & Interfaces, 10(19), 16315-16326. Liu, Y., Yang, J., Zhao, Z., Li, J., Zhang, R., & Yao, F. (2012). Formation and characterization of natural polysaccharide hollow nanocapsules via template layer-by-layer self-assembly. Journal of Colloid and Interface Science, 379(1), 130-140. Madaghiele, M., Demitri, C., Sannino, A., & Ambrosio, L. (2014). Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates. Burns & Trauma, 2(4), 2321-3868.143616. Madhyastha, R., Madhyastha, H., Nakajima, Y., Omura, S., & Maruyama, M. (2011). Curcumin facilitates fibrinolysis and cellular migration during wound healing by modulating urokinase plasminogen activator expression. Pathophysiology of Haemostasis and Thrombosis, 37(2-4), 59-66. Makvandi, P., Ali, G. W., Della Sala, F., Abdel-Fattah, W. I., & Borzacchiello, A. (2019). Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohydrate Polymers, 223, 115023. Martin, P. (1997). Wound healing--aiming for perfect skin regeneration. Science, 276(5309), 75-81. Medrado, A., Costa, T., Prado, T., Reis, S., & Andrade, Z. (2010). Phenotype characterization of pericytes during tissue repair following low‐level laser therapy. Photodermatology, Photoimmunology & Photomedicine, 26(4), 192-197. Meng, R., Wu, Z., Xie, Q.-T., Cheng, J.-S., & Zhang, B. (2021). Preparation and characterization of zein/carboxymethyl dextrin nanoparticles to encapsulate curcumin: Physicochemical stability, antioxidant activity and controlled release properties. Food Chemistry, 340, 127893. Mottaghitalab, F., Hosseinkhani, H., Shokrgozar, M. A., Mao, C., Yang, M., & Farokhi, M. (2015). Silk as a potential candidate for bone tissue engineering. Journal of Controlled Release, 215, 112-128. Narauskaitė, D., Vydmantaitė, G., Rusteikaitė, J., Sampath, R., Rudaitytė, A., Stašytė, G., Aparicio Calvente, M. I., & Jekabsone, A. (2021). Extracellular vesicles in skin wound healing. Pharmaceuticals, 14(8), 811. Nishikimi, M., Rao, N. A., & Yagi, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications, 46(2), 849-854. Oh, H., Lee, J. S., Sung, D., Yang, S., & Choi, W. I. (2022). Size-controllable Prussian blue nanoparticles using pluronic series for improved antioxidant activity and anti-inflammatory efficacy. Antioxidants, 11(12), 2392. Oh, S. H., Kang, J. G., & Lee, J. H. (2018). Co‐micellized Pluronic mixture with thermo‐sensitivity and residence stability as an injectable tissue adhesion barrier hydrogel. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106(1), 172-182. Onoue, S., Takahashi, H., Kawabata, Y., Seto, Y., Hatanaka, J., Timmermann, B., & Yamada, S. (2010). Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability. Journal of Pharmaceutical Sciences, 99(4), 1871-1881. Ousey, K., Cutting, K., Rogers, A. A., & Rippon, M. G. (2016). The importance of hydration in wound healing: reinvigorating the clinical perspective. Journal of Wound Care, 25(3), 122-130. Pari, L., Tewas, D., & Eckel, J. (2008). Role of curcumin in health and disease. Archives of Physiology and Biochemistry, 114(2), 127-149. Park, C.-E., Park, D.-J., & Kim, B.-K. (2015). Effects of a chitosan coating on properties of retinol-encapsulated zein nanoparticles. Food Science and Biotechnology, 24(5), 1725-1733. Patel, A., Hu, Y., Tiwari, J. K., & Velikov, K. P. (2010). Synthesis and characterisation of zein–curcumin colloidal particles. Soft Matter, 6(24), 6192-6199. Patel, A. R., Bouwens, E. C., & Velikov, K. P. (2010). Sodium caseinate stabilized zein colloidal particles. Journal of Agricultural and Food Chemistry, 58(23), 12497-12503. Patra, A., Satpathy, S., Shenoy, A. K., Bush, J. A., Kazi, M., & Hussain, M. D. (2018). Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers. International Journal of Nanomedicine, 13, 2869. Peasura, N., Laohakunjit, N., Kerdchoechuen, O., Vongsawasdi, P., & Chao, L. K. (2016). Assessment of biochemical and immunomodulatory activity of sulphated polysaccharides from Ulva intestinalis. International Journal of Biological Macromolecules, 91, 269-277. Pérez-Mosqueda, L. M., Ramírez, P., Trujillo-Cayado, L. A., Santos, J., & Muñoz, J. (2014). Development of eco-friendly submicron emulsions stabilized by a bio-derived gum. Colloids and Surfaces B: Biointerfaces, 123, 797-802. Qiao, D., Ke, C., Hu, B., Luo, J., Ye, H., Sun, Y., Yan, X., & Zeng, X. (2009). Antioxidant activities of polysaccharides from Hyriopsis cumingii. Carbohydrate Polymers, 78(2), 199-204. Qin, M., Guo, H., Dai, Z., Yan, X., & Ning, X. (2019). Advances in flexible and wearable pH sensors for wound healing monitoring. Journal of Semiconductors, 40(11), 111607. Rittié, L. (2016). Cellular mechanisms of skin repair in humans and other mammals. Journal of Cell Communication and Signaling, 10, 103-120. Rizk, M. Z., Aly, H. F., Matloub, A. A., & Fouad, G. I. (2016). The anti-hypercholesterolemic effect of ulvan polysaccharide extracted from the green alga Ulva fasciata on aged hypercholesterolemic rats. Asian Journal of Pharmaceutical and Clinical Research, 9(3), 165-176. Robic, A., Gaillard, C., Sassi, J. F., Lerat, Y., & Lahaye, M. (2009). Ultrastructure of ulvan: a polysaccharide from green seaweeds. Biopolymers: Original Research on Biomolecules, 91(8), 652-664. Rullan, M., Cerdà, L., Frontera, G., Masmiquel, L., & Llobera, J. (2008). Treatment of chronic diabetic foot ulcers with bemiparin: a randomized, triple‐blind, placebo‐controlled, clinical trial. Diabetic Medicine, 25(9), 1090-1095. Sandur, S. K., Ichikawa, H., Pandey, M. K., Kunnumakkara, A. B., Sung, B., Sethi, G., & Aggarwal, B. B. (2007). Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane). Free Radical Biology and Medicine, 43(4), 568-580. Sanon, S., Hart, D. A., & Tredget, E. E. (2016). Molecular and cellular biology of wound healing and skin regeneration. Skin Tissue Engineering and Regenerative Medicine, 19-47. Sathivel, A., Balavinayagamani, Hanumantha Rao, B. R., & Devaki, T. (2014). Sulfated polysaccharide isolated from Ulva lactuca attenuates d-galactosamine induced DNA fragmentation and necrosis during liver damage in rats. Pharmaceutical Biology, 52(4), 498-505. Schneider, L. A., Korber, A., Grabbe, S., & Dissemond, J. (2007). Influence of pH on wound-healing: a new perspective for wound-therapy? Archives of Dermatological Research, 298(9), 413-420. Schreml, S., Szeimies, R.-M., Prantl, L., Landthaler, M., & Babilas, P. (2010). Wound healing in the 21st century. Journal of the American Academy of Dermatology, 63(5), 866-881. Seok, H.-Y., Rejinold, N. S., Lekshmi, K. M., Cherukula, K., Park, I.-K., & Kim, Y.-C. (2018). CD44 targeting biocompatible and biodegradable hyaluronic acid cross-linked zein nanogels for curcumin delivery to cancer cells: In vitro and in vivo evaluation. Journal of Controlled Release, 280, 20-30. Sharma, R., Gescher, A., & Steward, W. (2005). Curcumin: the story so far. European journal of cancer, 41(13), 1955-1968. Sharpe, J., Harris, K., Jubin, K., Bainbridge, N., & Jordan, N. (2009). The effect of pH in modulating skin cell behaviour. British Journal of Dermatology, 161(3), 671-673. Sheikhi, A., Hayashi, J., Eichenbaum, J., Gutin, M., Kuntjoro, N., Khorsandi, D., & Khademhosseini, A. (2019). Recent advances in nanoengineering cellulose for cargo delivery. Journal of Controlled Release, 294, 53-76. Shi, Q., Wang, X., Tang, X., Zhen, N., Wang, Y., Luo, Z., Zhang, H., Liu, J., Zhou, D., & Huang, K. (2021). In vitro antioxidant and antitumor study of zein/SHA nanoparticles loaded with resveratrol. Food Science & Nutrition, 9(7), 3530-3537. Shukla, R., & Cheryan, M. (2001). Zein: the industrial protein from corn. Industrial Crops and Products, 13(3), 171-192. Song, Z., Feng, R., Sun, M., Guo, C., Gao, Y., Li, L., & Zhai, G. (2011). Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: Preparation, pharmacokinetics and distribution in vivo. Journal of Colloid and Interface Science, 354(1), 116-123. Sorg, H., Tilkorn, D. J., Hager, S., Hauser, J., & Mirastschijski, U. (2017). Skin wound healing: an update on the current knowledge and concepts. European Surgical Research, 58(1-2), 81-94. Suwannateep, N., Wanichwecharungruang, S., Haag, S., Devahastin, S., Groth, N., Fluhr, J., Lademann, J., & Meinke, M. (2012). Encapsulated curcumin results in prolonged curcumin activity in vitro and radical scavenging activity ex vivo on skin after UVB-irradiation. European Journal of Pharmaceutics and Biopharmaceutics, 82(3), 485-490. Tabarsa, M., Han, J. H., Kim, C. Y., & You, S. G. (2012). Molecular characteristics and immunomodulatory activities of water-soluble sulfated polysaccharides from Ulva pertusa. Journal of Medicinal Food, 15(2), 135-144. Teixeira, C., Mendonça, L., Bergamaschi, M., Queiroz, R. H. C., Souza, G. E. P. d., Antunes, L. M. G., & Freitas, L. A. P. d. (2016). Microparticles containing curcumin solid dispersion: stability, bioavailability and anti-inflammatory activity. AAPS PharmSciTech, 17(2), 252-261. Toskas, G., Hund, R. D., Laourine, E., Cherif, C., Smyrniotopoulos, V., & Roussis, V. (2011). Nanofibers based on polysaccharides from the green seaweed Ulva rigida. Carbohydrate Polymers, 84, 1093-1102. Ucisik, M. H., Küpcü, S., Schuster, B., & Sleytr, U. B. (2013). Characterization of curcuemulsomes: Nanoformulation for enhanced solubility anddelivery of curcumin. Journal of Nanobiotechnology, 11(1), 1-13. Vadnere, M., Amidon, G., Lindenbaum, S., & Haslam, J. L. (1984). Thermodynamic studies on the gel-sol transition of some pluronic polyols. International Journal of Pharmaceutics, 22(2-3), 207-218. van der Maaden, K., Jiskoot, W., & Bouwstra, J. (2012). Microneedle technologies for (trans)dermal drug and vaccine delivery. Journal of Controlled Release, 161(2), 645-655. Vera, J., Castro, J., Gonzalez, A., & Moenne, A. (2011). Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants. Marine Drugs, 9(12), 2514-2525. Wang, J., Hu, S., Nie, S., Yu, Q., & Xie, M. (2016). Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxidative Medicine and Cellular Longevity, 2016. Wang, J., Zhu, R., Sun, D., Sun, X., Geng, Z., Liu, H., & Wang, S.-L. (2015). Intracellular uptake of curcumin-loaded solid lipid nanoparticles exhibit anti-inflammatory activities superior to those of curcumin through the NF-κB signaling pathway. Journal of Biomedical Nanotechnology, 11(3), 403-415. Wang, W., Wat, E., Hui, P. C., Chan, B., Ng, F. S., Kan, C.-W., Wang, X., Hu, H., Wong, E. C., & Lau, C. B. (2016). Dual-functional transdermal drug delivery system with controllable drug loading based on thermosensitive poloxamer hydrogel for atopic dermatitis treatment. Scientific Reports, 6(1), 24112. Wei, Y., Yu, Z., Lin, K., Sun, C., Dai, L., Yang, S., Mao, L., Yuan, F., & Gao, Y. (2019). Fabrication and characterization of resveratrol loaded zein-propylene glycol alginate-rhamnolipid composite nanoparticles: Physicochemical stability, formation mechanism and in vitro digestion. Food Hydrocolloids, 95, 336-348. Xia, G., Liu, Y., Tian, M., Gao, P., Bao, Z., Bai, X., Yu, X., Lang, X., Hu, S., & Chen, X. (2017). Nanoparticles/thermosensitive hydrogel reinforced with chitin whiskers as a wound dressing for treating chronic wounds. Journal of Materials Chemistry B, 5(17), 3172-3185. Xu, R., Ye, H., Sun, Y., Tu, Y., & Zeng, X. (2012). Preparation, preliminary characterization, antioxidant, hepatoprotective and antitumor activities of polysaccharides from the flower of tea plant (Camellia sinensis). Food and Chemical Toxicology, 50(7), 2473-2480. Yaich, H., Garna, H., Besbes, S., Barthélemy, J.-P., Paquot, M., Blecker, C., & Attia, H. (2014). Impact of extraction procedures on the chemical, rheological and textural properties of ulvan from Ulva lactuca of Tunisia coast. Food Hydrocolloids, 40, 53-63. Yeh, M.-Y., Zhao, J.-Y., Hsieh, Y.-R., Lin, J.-H., Chen, F.-Y., Chakravarthy, R. D., Chung, P.-C., Lin, H.-C., & Hung, S.-C. (2017). Reverse thermo-responsive hydrogels prepared from Pluronic F127 and gelatin composite materials. RSC Advances, 7(34), 21252-21257. Yu, J., Qiu, H., Yin, S., Wang, H., & Li, Y. (2021). Polymeric drug delivery system based on pluronics for cancer treatment. Molecules, 26(12), 3610. Yu, R., Zhang, H., & Guo, B. (2022). Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-micro Letters, 14, 1-46. Yuan, Y., Ma, M., Xu, Y., & Wang, D. (2021). Surface coating of zein nanoparticles to improve the application of bioactive compounds: A review. Trends in Food Science & Technology. Zhang, G., & Jiang, X. (2019). Temperature responsive nanoparticles based on PEGylated polyaspartamide derivatives for drug delivery. Polymers, 11(2), 316. Zhang, H., Jiang, L., Tong, M., Lu, Y., Ouyang, X.-K., & Ling, J. (2021). Encapsulation of curcumin using fucoidan stabilized zein nanoparticles: Preparation, characterization, and in vitro release performance. Journal of Molecular Liquids, 329, 115586. Zhang, W., Gilstrap, K., Wu, L., KC, R. B., Moss, M. A., Wang, Q., Lu, X., & He, X. (2010). Synthesis and characterization of thermally responsive pluronic F127− chitosan nanocapsules for controlled release and intracellular delivery of small molecules. ACS nano, 4(11), 6747-6759. Zhang, X., Dong, C., Hu, Y., Gao, M., & Luan, G. (2021). Zein as a structural protein in gluten-free systems: An overview. Food Science and Human Wellness, 10(3), 270-277. Zhao, R., Yang, B., Wang, L., Xue, P., Deng, B., Zhang, G., Jiang, S., Zhang, M., Liu, M., & Pi, J. (2013). Curcumin protects human keratinocytes against inorganic arsenite-induced acute cytotoxicity through an NRF2-dependent mechanism. Oxidative Medicine and Cellular Longevity, 2013. Zheng, D., Huang, C., Huang, H., Zhao, Y., Khan, M. R. U., Zhao, H., & Huang, L. (2020). Antibacterial mechanism of curcumin: A review. Chemistry & Biodiversity, 17(8), e2000171. Zhi, T. X., Liu, K. Q., Cai, K. Y., Zhao, Y. C., Li, Z. W., Wang, X., He, X. H., & Sun, X. Y. (2022). Anti‐Lung Cancer Activities of 1, 2, 3‐Triazole Curcumin Derivatives via Regulation of the MAPK/NF‐κB/STAT3 Signaling Pathways. ChemMedChem, 17(3), e202100676. Zhu, J., Han, H., Ye, T.-T., Li, F.-X., Wang, X.-L., Yu, J.-Y., & Wu, D.-Q. (2018). Biodegradable and pH sensitive peptide based hydrogel as controlled release system for antibacterial wound dressing application. Molecules, 23(12), 3383. Zoratto, N., & Matricardi, P. (2018). Semi-IPNs and IPN-based hydrogels. Polymeric Gels, 91-124. 林哲寬. (2008). 口服幾丁聚醣奈米微粒載體包覆超短效與短效胰島素之藥物動力學研究. 黃淑芳. (2000). 臺灣東北角海藻圖錄, 國立臺灣博物館. In: 台北.
|