|
華盛頓蘋果。(2023)。蘋果品種特色。 Washington Apples - Varieties, Nutrition, Recipes & More (waapple.org) (May 13, 2023) 行政院農委會。(2023)。農產品進出口統計。 https://m.coa.gov.tw/FarmProductStat/Index (May 15, 2023) Food and Agriculture Organization of the United Nations。(2021, May 17)。2021產量統計。https://web.archive.org/web/20170511194947/http://www.fao.org/faostat/en/#data/QC (May 17, 2023) 衛生福利部。(2023)。食品營養成分資料庫(新版)。 https://consumer.fda.gov.tw/Food/tfndDetail.aspx?nodeID=178&f=0&id=2040 (Dec 17, 2023) AOAC. (2005). Official methods of analysis, 18th edn. AOAC International, Mary-land Achanta, S., Okos, M. R., Cushman, J. H., & Kessler, D. P. (1997). Moisture transport in shrinking gels during saturated drying. AIChE Journal, 43(8), 2112-2122. Aktas, T., Ulger, P., Daglioglu, F., & Hasturk, F. (2013). Changes of nutritional and physical quality characteristics during storage of osmotic pretreated apple before hot air drying and sensory evaluation. Journal of Food Quality, 36(6), 411-425. Alberti, A., Vieira, R. G., Drilleau, J. F., Wosiacki, G., & Nogueira, A. (2011). Apple wine processing with different nitrogen contents. Brazilian Archives of Biol-ogy and Technology, 54, 551-558. Ames, J. M. (1998). Applications of the Maillard reaction in the food industry. Food Chemistry, 62(4), 431-439. Antal, T., & Kerekes, B. (2016). Investigation of hot air‐and infrared‐assisted freeze‐drying of apple. Journal of Food Processing and Preservation, 40(2), 257-269. Arnold, M., & Gramza‐Michałowska, A. (2022). Enzymatic browning in apple products and its inhibition treatments: A comprehensive review. Comprehen-sive Reviews in Food Science and Food Safety, 21(6), 5038-5076. Bai, J.-W., Sun, D.-W., Xiao, H.-W., Mujumdar, A., & Gao, Z.-J. (2013). Novel high-humidity hot air impingement blanching (HHAIB) pretreatment en-hances drying kinetics and color attributes of seedless grapes. Innovative Food Science & Emerging Technologies, 20, 230-237. Bai, Y., Rahman, M. S., Perera, C. O., Smith, B., & Melton, L. D. (2002). Structural changes in apple rings during convection air-drying with controlled tempera-ture and humidity. Journal of agricultural and food chemistry, 50(11), 3179-3185. Baryłko-Pikielna, N., & Matuszewska, I. (2014). Sensoryczne badania żywności: podstawy, metody, zastosowania. Wydawnictwo Naukowe PTTŻ . 8393542138, 267-269 Beveridge, T., & Weintraub, S. (1995). Effect of blanching pretreatment on color and texture of apple slices at various water activities. Food Research Internation-al, 28(1), 83-86. Bhatta, S., Stevanovic Janezic, T., & Ratti, C. (2020). Freeze-drying of plant-based foods. Foods, 9(1), 87. Calín-Sánchez, Á., Kharaghani, A., Lech, K., Figiel, A., Carbonell-Barrachina, Á. A., & Tsotsas, E. (2015). Drying kinetics and microstructural and SensoryProp-erties of black chokeberry (aronia melanocarpa) as affected by drying method. Food and Bioprocess Technology, 8, 63-74. Chong, C.-H., Figiel, A., Law, C.-L., & Wojdyło, A. (2014). Combined drying of ap-ple cubes by using of heat pump, vacuum-microwave, and intermittent tech-niques. Food and Bioprocess Technology, 7, 975-989. Clary, C., Mejia‐Meza, E., Wang, S., & Petrucci, V. (2007). Improving grape quality using microwave vacuum drying associated with temperature control. Journal of Food Science, 72(1), 23-28. Cortellino, G., Gobbi, S., Bianchi, G., & Rizzolo, A. (2015). Modified atmosphere packaging for shelf life extension of fresh-cut apples. Trends in Food Science & Technology, 46(2), 320-330. Coumans, W. J., Kerkhof, P. J., & Bruin, S. (1994). Theoretical and practical aspects of aroma retention in spray drying and freeze drying. Drying Technology, 12(1-2), 99-149. Croguennec, T. (2016). Non‐enzymatic browning. Handbook of Food Science and Technology 1: Food Alteration and Food Quality, 9781848219328 133-157. Cui, Z.-W., Li, C.-Y., Song, C.-F., & Song, Y. (2008). Combined microwave-vacuum and freeze drying of carrot and apple chips. Drying Technology, 26(12), 1517-1523. de Bruijn, J., Rivas, F., Rodriguez, Y., Loyola, C., Flores, A., Melin, P., & Borquez, R. (2016). Effect of vacuum microwave drying on the quality and storage stabil-ity of strawberries. Journal of Food Processing and Preservation, 40(5), 1104-1115. Delgado, A., & Rubiolo, A. C. (2005). Microstructural changes in strawberry after freezing and thawing processes. LWT-Food Science and Technology, 38(2), 135-142. Donsì, G., Ferrari, G., Nigro, R., & Matteo, P. D. (1998). Combination of mild dehy-dration and freeze-drying processes to obtain high quality dried vegetables and fruits. Food and Bioproducts Processing, 76(4), 181-187. Eisele, T. A., & Drake, S. R. (2005). The partial compositional characteristics of ap-ple juice from 175 apple varieties. Journal of food composition and analysis, 18(2-3), 213-221. Feng, L., Xu, Y.-Y., Xiao, Y.-D., Song, J.-F., Li, D.-J., Zhang, Z.-Y., Liu, C.-Q., Liu, C.-J., Jiang, N., & Zhang, M. (2021). Effects of pre-drying treatments com-bined with explosion puffing drying on the physicochemical properties, anti-oxidant activities and flavor characteristics of apples. Food Chemistry, 338, 128015. Ferenczi, S., Czukor, B., & Cserhalmi, Z. (2014). Evaluation of microwave vacuum drying combined with hot-air drying and compared with freeze-and hot-air drying by the quality of the dried apple product. Periodica Polytechnica Chemical Engineering, 58(2), 111-116. Güzel, M., & Akpınar, Ö. (2019). Valorisation of fruit by-products: Production char-acterization of pectins from fruit peels. Food and Bioproducts Processing, 115, 126-133. Gümüşay, Ö. A., Borazan, A. A., Ercal, N., & Demirkol, O. (2015). Drying effects on the antioxidant properties of tomatoes and ginger. Food Chemistry, 173, 156-162. Gao, K., Chen, Q.-Q., Bi, J.-F., Liu, X., Wu, X.-Y., & Wang, X.-Y. (2016). Changes in browning‐related components of apple slices during different stages of in-stant controlled pressure drop‐assisted hot air drying (AD‐DIC). International Journal of Food Science & Technology, 51(10), 2242-2250. Gerhauser, C. (2008). Cancer chemopreventive potential of apples, apple juice, and apple components. Planta Medica, 74(13), 1608-1624. González-Fésler, M., Salvatori, D., Gómez, P., & Alzamora, S. (2008). Convective air drying of apples as affected by blanching and calcium impregnation. Journal of Food Engineering, 87(3), 323-332. Guiné, R. P., & Barroca, M. J. (2012). Effect of drying treatments on texture and color of vegetables (pumpkin and green pepper). Food and Bioproducts Pro-cessing, 90(1), 58-63. Gulati, T., & Datta, A. K. (2015). Mechanistic understanding of case-hardening and texture development during drying of food materials. Journal of Food Engi-neering, 166, 119-138. Hawlader, M., Perera, C. O., Tian, M., & Yeo, K. (2006). Drying of guava and papaya: Impact of different drying methods. Drying Technology, 24(1), 77-87. Hazervazifeh, A., Moghaddam, P. A., & Nikbakht, A. M. (2017). Microwave dehy-dration of apple fruit: Investigation of drying efficiency and energy costs. Journal of Food Process Engineering, 40(3), e12463, 63-70 Hemachandran, H., Anantharaman, A., Mohan, S., Mohan, G., Kumar, D. T., Dey, D., Kumar, D., Dey, P., Choudhury, A., & Doss, C. G. P. (2017). Unraveling the inhibition mechanism of cyanidin-3-sophoroside on polyphenol oxidase and its effect on enzymatic browning of apples. Food Chemistry, 227, 102-110. Henríquez, C., Speisky, H., Chiffelle, I., Valenzuela, T., Araya, M., Simpson, R., & Almonacid, S. (2010). Development of an ingredient containing apple peel, as a source of polyphenols and dietary fiber. Journal of Food Science, 75(6), 172-181. Hlebowicz, J., Darwiche, G., Björgell, O., & Almér, L.-O. (2007). Effect of apple ci-der vinegar on delayed gastric emptying in patients with type 1 diabetes mellitus: a pilot study. BMC gastroenterology, 7, 1-6. Huang, L.-L., Zhang, M., Mujumdar, A. S., & Lim, R.-X. (2011). Comparison of four drying methods for re-structured mixed potato with apple chips. Journal of Food Engineering, 103(3), 279-284. Huang, L.-L., Zhang, M., Wang, L.-P., Mujumdar, A. S., & Sun, D.-F. (2012). Influ-ence of combination drying methods on composition, texture, aroma and mi-crostructure of apple slices. LWT-Food Science and Technology, 47(1), 183-188. Huxsoll, C., & Morgan Jr, A. (1968). Microwave Dehydration of Potatoes and Apples. Food Technol, 22, 47-52 Jung, M., Triebel, S., Anke, T., Richling, E., & Erkel, G. (2009). Influence of apple polyphenols on inflammatory gene expression. Molecular Nutrition & Food Research, 53(10), 1263-1280. Kövilein, A., Kubisch, C., Cai, L., & Ochsenreither, K. (2020). Malic acid production from renewables: a review. Journal of Chemical Technology & Biotechnolo-gy, 95(3), 513-526. Köprüalan, Ö., Altay, Ö., Bodruk, A., & Kaymak-Ertekin, F. (2021). Effect of hybrid drying method on physical, textural and antioxidant properties of pumpkin chips. Journal of Food Measurement and Characterization, 15, 2995-3004. Kahle, K., Kempf, M., Schreier, P., Scheppach, W., Schrenk, D., Kautenburger, T., Hecker, D., Huemmer, W., Ackermann, M., & Richling, E. (2011). Intestinal transit and systemic metabolism of apple polyphenols. European Journal of Nutrition, 50, 507-522. Kakiuchi, N., Moriguchi, S., Fukuda, H., Ichimura, N., Kato, Y., & Banba, Y. (1986). Composition of volatile compounds of apple fruits in relation to cultivars. Journal of the Japanese Society for Horticultural Science, 55(3), 280-289. Kidoń, M., & Grabowska, J. (2021). Bioactive compounds, antioxidant activity, and sensory qualities of red-fleshed apples dried by different methods. LWT-Food Science and Technology, 136, 110302. Kriaa, K., & Nassar, A. F. (2020). Study of gala apples (Malus pumila) thin-layer microwave drying: drying kinetics, diffusivity, structure and color. Food Science and Technology, 41, 483-493. Krokida, M., & Philippopoulos, C. (2006). Volatility of apples during air and freeze drying. Journal of Food Engineering, 73(2), 135-141. Krokida, M., Tsami, E., & Maroulis, Z. (1998). Kinetics on color changes during drying of some fruits and vegetables. Drying Technology, 16(3-5), 667-685. Kumar, H., Phanindra, Radhakrishna, K., Nagaraju, P., & Rao, D. V. (2001). Effect of combination drying on the physico‐chemical characteristics of carrot and pumpkin. Journal of Food Processing and Preservation, 25(6), 447-460. Kumar, S., Ozukum, R., & Mathad, G. M. (2020). Extraction, characterization and utilization of pectin from apple peels. Journal of Pharmacognosy and Phyto-chemistry, 9(5), 2599-2604. Labuza, T., McNally, L., Gallagher, D., Hawkes, J., & Hurtado, F. (1972). Stability of intermediate moisture foods. 1. Lipid oxidation. Journal of Food Science, 37(1), 154-159. Labuza, T. P. (1980). The effect of water activity on reaction kinetics of food deteri-oration. Food Technology, 34(4), 36-41 Li, C., Niu, L.-Y., Li, D.-J., Liu, C.-Q., Liu, Y.-P., Liu, C.-J., & Song, J.-F. (2018). Effects of different drying methods on quality, bacterial viability and storage stability of probiotic enriched apple snacks. Journal of Integrative Agricul-ture, 17(1), 247-255. Lin, T.-M., Durance, T. D., & Scaman, C. H. (1998). Characterization of vacuum microwave, air and freeze dried carrot slices. Food Research International, 31(2), 111-117. Lin, Y.-P., Tsen, J.-H., & King, V. A.-E. (2005). Effects of far-infrared radiation on the freeze-drying of sweet potato. Journal of Food Engineering, 68(2), 249-255. Mannozzi, C., Rompoonpol, K., Fauster, T., Tylewicz, U., Romani, S., Dalla Rosa, M., & Jaeger, H. (2019). Influence of pulsed electric field and ohmic heating pretreatments on enzyme and antioxidant activity of fruit and vegetable juic-es. Foods, 8(7), 247. Marques, L. G., Silveira, A. M., & Freire, J. T. (2006). Freeze-drying characteristics of tropical fruits. Drying Technology, 24(4), 457-463. Martini, N. (2021). Apple cider vinegar. Journal of Primary Health Care, 13(2), 191-192. Martínez-Hernández, G. B., Álvarez-Hernández, M. H., & Artés-Hernández, F. (2019). Browning control using cyclodextrins in high pressure–treated apple juice. Food and Bioprocess Technology, 12(4), 694-703. Marzec, A., Kowalska, H., & ZadroŻNa, M. (2010). Analysis of instrumental and sensory texture attributes of microwave–convective dried apples. Journal of Texture Studies, 41(4), 417-439. Michalska, A., Lech, K., Figiel, A., & Łysiak, G. P. (2017). The Influence of selected drying methods on the physical properties of dried apples cv. jonagold grown in different locations in Europe. International Journal of Food Engineering, 13(6). Moon, K.-M., Kwon, E.-B., Lee, B., & Kim, C.-Y. (2020). Recent trends in control-ling the enzymatic browning of fruit and vegetable products. Molecules, 25(12), 2754. Moon, S.-Y., Hong, S.-H., Kim, T.-Y., & Lee, S.-Y. (2008). Metabolic engineering of Escherichia coli for the production of malic acid. Biochemical Engineering Journal, 40(2), 312-320. Nadian, M. H., Rafiee, S., Aghbashlo, M., Hosseinpour, S., & Mohtasebi, S. S. (2015). Continuous real-time monitoring and neural network modeling of ap-ple slices color changes during hot air drying. Food and Bioproducts Pro-cessing, 94, 263-274. Nakagawa, K., Horie, A., Nakabayashi, M., Nishimura, K., & Yasunobu, T. (2021). Influence of processing conditions of atmospheric freeze-drying/low-temperature drying on the drying kinetics of sliced fruits and their vitamin C retention. Journal of Agriculture and Food Research, 6, 100231, 2666-1543 Nicolau-Lapeña, I., Lafarga, T., Viñas, I., Abadias, M., Bobo, G., & Aguiló-Aguayo, I. (2019). Ultrasound processing alone or in combination with other chemical or physical treatments as a safety and quality preservation strategy of fresh and processed fruits and vegetables: a review. Food and Bioprocess Technol-ogy, 12, 1452-1471. Nimmanpipug, N., Therdthai, N., & Dhamvithee, P. (2013). Characterisation of os-motically dehydrated papaya with further hot air drying and microwave vac-uum drying. International Journal of Food Science & Technology, 48(6), 1193-1200. Noorbakhsh, R., Yaghmaee, P., & Durance, T. (2013). Radiant energy under vacuum (REV) technology: A novel approach for producing probiotic enriched apple snacks. Journal of Functional Foods, 5(3), 1049-1056. Oikonomopoulou, V. P., Krokida, M. K., & Karathanos, V. T. (2011). The influence of freeze drying conditions on microstructural changes of food products. Procedia food science, 1, 647-654. Pei, F., Yang, W.-J., Shi, Y., Sun, Y., Mariga, A. M., Zhao, L.-Y., Fang, Y., Ma, N., An, X.-X., & Hu, Q.-H. (2014). Comparison of freeze-drying with three different combinations of drying methods and their influence on colour, texture, mi-crostructure and nutrient retention of button mushroom (Agaricus bisporus) slices. Food and Bioprocess Technology, 7, 702-710. Peng, B.-Z., Li, F.-L., Cui, L., & Guo, Y.-D. (2015). Effects of fermentation temper-ature on key aroma compounds and sensory properties of apple wine. Journal of Food Science, 80(12), 2937-2943. Petrucci, V., & Clary, C. (1989). Microwave vacuum drying of food products: Final report. EPRI-CU-6247, 6366578 , 46-52 Polat, A., Taskin, O., Izli, N., & Asik, B. B. (2019). Continuous and intermittent mi-crowave‐vacuum drying of apple: drying kinetics, protein, mineral content, and color. Journal of Food Process Engineering, 42(3), e13012, 52-61 Qiao, F., Huang, L.-L., & Xia, W.-S. (2012). A study on microwave vacuum dried re-structured lychee (Litchi chinensis Sonn.) mixed with purple sweet potato (Ipomoea batatas) snacks. Food and Bioproducts Processing, 90(4), 653-658. Quevedo, R., Pedreschi, F., Bastias, J., & Díaz, O. (2016). Correlation of the fractal enzymatic browning rate with the temperature in mushroom, pear and apple slices. LWT-Food Science and Technology, 65, 406-413. Ramírez, C., Troncoso, E., Muñoz, J., & Aguilera, J. (2011). Microstructure analysis on pre-treated apple slices and its effect on water release during air drying. Journal of Food Engineering, 106(3), 253-261. Ratti, C. (2001). Hot air and freeze-drying of high-value foods: a review. Journal of Food Engineering, 49(4), 311-319. Reagan-Shaw, S., Eggert, D., Mukhtar, H., & Ahmad, N. (2010). Antiproliferative effects of apple peel extract against cancer cells. Nutrition and Cancer, 62(4), 517-524. Rinaldi, M., Langialonga, P., Dhenge, R., Aldini, A., & Chiavaro, E. (2021). Quality traits of apple puree treated with conventional, ohmic heating and high-pressure processing. European Food Research and Technology, 247, 1679-1688. Rodríguez-Arzuaga, M., & Piagentini, A. M. (2018). New antioxidant treatment with yerba mate (Ilex paraguariensis) infusion for fresh-cut apples: Modeling, op-timization, and acceptability. Food Science and Technology International, 24(3), 223-231. Roobab, U., Abida, A., Chacha, J. S., Athar, A., Madni, G. M., Ranjha, M. M. A. N., Rusu, A. V., Zeng, X.-A., Aadil, R. M., & Trif, M. (2022). Applications of in-novative non-thermal pulsed electric field technology in developing safer and healthier fruit juices. Molecules, 27(13), 4031. 47-51. Sablani, S. S., Dasse, F., Bastarrachea, L., Dhawan, S., Hendrix, K. M., & Min, S. C. (2009). Apple peel‐based edible film development using a high‐pressure ho-mogenization. Journal of Food Science, 74(7), 372-381. Saravacos, G. D., & Maroulis, Z. B. (2001). Transport properties of foods. CRC Press. 9780429079733, 145-152 Schössler, K., Jäger, H., & Knorr, D. (2012). Novel contact ultrasound system for the accelerated freeze-drying of vegetables. Innovative Food Science & Emerg-ing Technologies, 16, 113-120. Sham, P., Scaman, C., & Durance, T. (2001). Texture of vacuum microwave dehy-drated apple chips as affected by calcium pretreatment, vacuum level, and apple variety. Journal of Food Science, 66(9), 1341-1347. Shao, L.-L., Zhao, Y.-J., Zou, B., Li, X.-M., & Dai, R.-T. (2021). Ohmic heating in fruit and vegetable processing: Quality characteristics, enzyme inactivation, challenges and prospective. Trends in Food Science & Technology, 118, 601-616. Shishehgarha, F., Makhlouf, J., & Ratti, C. (2002). Freeze-drying characteristics of strawberries. Drying Technology, 20(1), 131-145. Shyu, S.-L., & Hwang, L. S. (2001). Effects of processing conditions on the quality of vacuum fried apple chips. Food Research International, 34(2-3), 133-142. Siguemoto, E. S., & GUT, J. A. W. (2017). Validation of spectrophotometric micro-plate methods for polyphenol oxidase and peroxidase activities analysis in fruits and vegetables. Food Science and Technology, 37, 148-153. Siguemoto, É. S., Pereira, L. J., & Gut, J. A. W. (2018). Inactivation kinetics of pec-tin methylesterase, polyphenol oxidase, and peroxidase in cloudy apple juice under microwave and conventional heating to evaluate non-thermal micro-wave effects. Food and Bioprocess Technology, 11, 1359-1369. Silva, L. C., Almeida, P. S., Rodrigues, S., & Fernandes, F. A. (2015). Inactivation of polyphenoloxidase and peroxidase in apple cubes and in apple juice subjected to high intensity power ultrasound processing. Journal of Food Processing and Preservation, 39(6), 2081-2087. Singh, B., Suri, K., Shevkani, K., Kaur, A., Kaur, A., & Singh, N. (2018). Enzymatic browning of fruit and vegetables: A review. Enzymes in Food Technology: Improvements and Innovations, 63-78. Sommano, S. R., Chanasut, U., & Kumpoun, W. (2020). Enzymatic browning and its amelioration in fresh-cut tropical fruits. Elsevier. 9780128161845, 51-76 Soto‐Reyes, N., Sosa‐Morales, M. E., Rojas‐Laguna, R., & López‐Malo, A. (2022). Advances in radio frequency pasteurisation equipment for liquid foods: A re-view. International Journal of Food Science & Technology, 57(6), 3207-3222. Sulaiman, A., Soo, M. J., Yoon, M. M., Farid, M., & Silva, F. V. (2015). Modeling the polyphenoloxidase inactivation kinetics in pear, apple and strawberry pu-rees after high pressure processing. Journal of Food Engineering, 147, 89-94. Therdthai, N., & Northongkom, H. (2011). Characterization of hot air drying and microwave vacuum drying of fingerroot (Boesenbergia pandurata). Interna-tional Journal of Food Science & Technology, 46(3), 601-607. Tinello, F., & Lante, A. (2018). Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products. Innovative Food Science & Emerging Technologies, 50, 73-83. Tinello, F., Mihaylova, D., & Lante, A. (2018). Effect of dipping pre-treatment with unripe grape juice on dried “Golden Delicious” apple slices. Food and Bio-process Technology, 11, 2275-2285. Truong, T., Truong, V., Fukai, S., & Bhandari, B. (2019). Changes in physicochemi-cal properties of rice in response to high-temperature fluidized bed drying and tempering. Drying Technology, 37(3), 331-340. Vadivambal, R., & Jayas, D. (2007). Changes in quality of microwave-treated agri-cultural products—a review. Biosystems Engineering, 98(1), 1-16. Velickova, E., Winkelhausen, E., & Kuzmanova, S. (2011). Apple chips produced by combined drying techniques. Food Technologists, Biotechnologists and Nuri-tionists, 7, 248-252 Wang, H.-O., Fu, Q.-Q., Chen, S.-J., Hu, Z.-C., & Xie, H.-X. (2018). Effect of hot-water blanching pretreatment on drying characteristics and product qual-ities for the novel integrated freeze-drying of apple slices. Journal of Food Quality, 2018, 347513, 1-12. Wang, J., Huo, Y.-J., Wang, Y.-T., Zhao, H.-Y., Li, K., Liu, L., & Shi, Y.-G. (2022). Grading detection of “Red Fuji” apple in Luochuan based on machine vision and near-infrared spectroscopy. Plos one, 17(8), e0271352, 56-61. Wang, R., Zhang, M., & Mujumdar, A. S. (2010). Effect of food ingredient on mi-crowave freeze drying of instant vegetable soup. LWT-Food Science and Technology, 43(7), 1144-1150. Weichselbaum, E., Wyness, L., & Stanner, S. (2010). Apple polyphenols and cardio-vascular disease–a review of the evidence. Nutrition Bulletin, 35(2), 92-101. Wolfe, K. L., & Liu, R. H. (2003). Apple peels as a value-added food ingredient. Journal of Agricultural and Food Chemistry, 51(6), 1676-1683. Xiao, H.-W., Pan, Z., Deng, L.-Z., El-Mashad, H. M., Yang, X.-H., Mujumdar, A. S., Gao, Z.-J., & Zhang, Q. (2017). Recent developments and trends in thermal blanching–A comprehensive review. Information Processing in Agriculture, 4(2), 101-127. Xu, D., Zhang, Min, & Mujumdar, A. S. (2007). Study on a combination drying technique of sea cucumber. Drying Technology, 25(12), 2011-2019. Xu, Y., Zhang, M., Tu, D., Sun, J., Zhou, L., & Mujumdar, A. S. (2005). A two‐stage convective air and vacuum freeze‐drying technique for bamboo shoots. In-ternational Journal of Food Science & Technology, 40(6), 589-595. Yan, H.-T., & Kerr, W. L. (2013). Total phenolics content, anthocyanins, and dietary fiber content of apple pomace powders produced by vacuum‐belt drying. Journal of the Science of Food and Agriculture, 93(6), 1499-1504. Yeung, A. W. K., Tzvetkov, N. T., El-Demerdash, A., Horbanczuk, O. K., Das, N., Pirgozliev, V., Lucarini, M., Durazzo, A., Souto, E. B., & Santini, A. (2021). Apple polyphenols in human and animal health. Animal Science Papers and Reports, 39(2), 105-118 Yongsawatdigul, J., & Gunasekaran, S. (1996a). Microwave‐vacuum drying of cran-berries: Part I. Energy use and efficiency. Journal of Food Processing and Preservation, 20(2), 121-143. Yongsawatdigul, J., & Gunasekaran, S. (1996b). Microwave‐vacuum drying of cran-berries: Part II. Quality evaluation. Journal of Food Processing and Preserva-tion, 20(2), 145-156. Zhao, R., & Gao, T.-H. (2016). Research progress of hot air drying technology for fruits and vegetables. Advance Journal of Food Science and Technology, 10(3), 160-166. Zhu, J., Liu, Y., Zhu, C., & Wei, M. (2022). Effects of different drying methods on the physical properties and sensory characteristics of apple chip snacks. LWT-Food Science and Technology, 154, 112829. Zhu, Y., & Pan, Z. (2009). Processing and quality characteristics of apple slices un-der simultaneous infrared dry-blanching and dehydration with continuous heating. Journal of Food Engineering, 90(4), 441-452. Zhu, Y., Zhang, M., Mujumdar, A. S., & Liu, Y. (2022). Application advantages of new non-thermal technology in juice browning control: A comprehensive re-view. Food Reviews International, 39(7), 4102-4123.
|