中華民國國家標準 (CNS)。(1984)。食品中水分之檢驗方法。總號: 5033,類號: N6114。
中華民國國家標準 (CNS)。(1984)。食品中粗灰分之檢驗方法。總號: 5034,類號: N6115。
中華民國國家標準 (CNS)。(1984)。食品中粗脂肪之檢驗方法。總號: 5036,類號: N6117。
中華民國國家標準 (CNS)。(1986)。食品中粗蛋白質之檢驗法。總號: 5035,類號: N6116。
中華民國國家標準 (CNS)。(1997)。食品中粗纖維之檢驗法。總號: 5037,類號: N6118。
中華民國國家標準 (CNS)。(2006)。水果及蔬菜汁飲料檢驗法-羥甲胺基氮之測定。總號: 12630,類號: N6219。
中華民國國家標準 (CNS)。(2007)。乳品檢驗法-酸度之滴定。總號: 3441,類號: N6057。
林姿君。(2008)。具血栓分解酶活性之海藻納豆菌。國立臺灣海洋大學食品科學研究所碩士學位論文。基隆。臺灣。柯智元。(2011)。乳酸菌發酵黑豆奶最適產 γ-胺基丁酸條件及以強迫游泳試驗探討其抗憂鬱效果。國立臺灣海洋大學食品科學研究所碩士學位論文。基隆。臺灣。楊舒卉。(2015)。魚腸道具植酸酶活性之乳酸菌株篩選及其降解黃豆植酸能力探討。國立臺灣海洋大學食品科學研究所碩士學位論文。基隆。臺灣。鍾昀峰。(2016)。複合菌株發酵黃豆製品開發功能性魚類飼料添加劑。國立臺灣海洋大學食品科學研究所碩士學位論文。基隆。臺灣。謝承哲。(2018)。利用 Lactobacillus sp. FPS 2520 和 Bacillus sp. N1 菌株發酵豆粕開發飼料營養添加劑及利用細胞模式探討發酵產品之抗肥胖和促進葡萄糖吸收活性。國立臺灣海洋大學食品科學研究所碩士學位論文。基隆。臺灣。Abusham, R. A., Rahman, R. N. Z. R., Salleh, A. B., & Basri, M. (2009). Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand. Microbial Cell Factories, 8(1), 20.
Ademiluyi, A. O., & Oboh, G. (2013). Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Experimental and Toxicologic Pathology, 65(3), 305-309.
Beg, Q. K., Saxena, R. K., & Gupta, R. (2002). De-repression and subsequent induction of protease synthesis by Bacillus mojavensis under fed-batch operations. Process Biochemistry, 37(10), 1103-1109.
Behloul, N., & Wu, G. (2013). Genistein: a promising therapeutic agent for obesity and diabetes treatment. European Journal of Pharmacology, 698(1-3), 31-38.
Bhathena, S. J., & Velasquez, M. T. (2002). Beneficial role of dietary phytoestrogens in obesity and diabetes. The American Journal of Clinical Nutrition, 76(6), 1191-1201.
Canabady-Rochelle, L. L., Selmeczi, K., Collin, S., Pasc, A., Muhr, L., & Boschi-Muller, S. (2018). SPR screening of metal chelating peptides in a hydrolysate for their antioxidant properties. Food Chemistry, 239, 478-485.
Chantawannakul, P., Oncharoen, A., Klanbut, K., Chukeatirote, E., & Lumyong, S. (2002). Characterization of proteases of Bacillus subtilis strain 38 isolated from traditionally fermented soybean in Northern Thailand. Science Asia, 28(4), 241-245.
Chen, H. (2013). Modern solid state fermentation. Netherlands: Springer.
Chen, J., Cheng, Y. Q., Yamaki, K., & Li, L. T. (2007). Anti-α-glucosidase activity of Chinese traditionally fermented soybean (douchi). Food Chemistry, 103(4), 1091-1096.
Chen, L., Vadlani, P. V., & Madl, R. L. (2014). High‐efficiency removal of phytic acid in soy meal using two‐stage temperature‐induced Aspergillus oryzae solid‐state fermentation. Journal of the Science of Food and Agriculture, 94(1), 113-118.
Chen, Y. F., Lee, S. L., & Chou, C. C. (2011). Fermentation with Aspergillus awamori enhanced contents of amino nitrogen and total phenolics as well as the low-density lipoprotein oxidation inhibitory activity of black soybeans. Journal of Agricultural and Food Chemistry, 59(8), 3974-3979.
Chien, H. L., Huang, H. Y., & Chou, C. C. (2006). Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbiology, 23(8), 772-778.
Choi, M. S., Jung, U. J., Yeo, J. K. M. J., Kim, M. J., & Lee, M. K. (2008). Genistein and daidzein prevent diabetes onset by elevating insulin level and altering hepatic gluconeogenic and lipogenic enzyme activities in non‐obese diabetic (NOD) mice. Diabetes/Metabolism Research and Reviews, 24(1), 74-81.
Choi, S. B., Jang, J. S., & Park, S. (2005). Estrogen and exercise may enhance β-cell function and mass via insulin receptor substrate 2 induction in ovariectomized diabetic rats. Endocrinology, 146(11), 4786-4794.
Chun, J., Kim, G. M., Lee, K. W., Choi, I. D., Kwon, G. H., Park, J. Y., Jeong, S. J. Kim, J. S., & Kim, J. H. (2007). Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria. Journal of Food Science, 72(2), M39-M44.
Couto, S. R., & Sanromán, M. A. (2006). Application of solid-state fermentation to food industry-a review. Journal of Food Engineering, 76(3), 291-302.
Dai, C., Ma, H., He, R., Huang, L., Zhu, S., Ding, Q., & Luo, L. (2017). Improvement of nutritional value and bioactivity of soybean meal by solid-state fermentation with Bacillus subtilis. Journal of Food Science and Technology, 86, 1-7.
de Cremoux, P., This, P., Leclercq, G., & Jacquot, Y. (2010). Controversies concerning the use of phytoestrogens in menopause management: bioavailability and metabolism. Maturitas, 65(4), 334-339.
de Olmos, A. R., Bru, E., & Garro, M. S. (2015). Optimization of fermentation parameters to study the behavior of selected lactic cultures on soy solid state fermentation. International Journal of Food Microbiology, 196, 16-23.
Elibol, M., & Moreira, A. R. (2005). Optimizing some factors affecting alkaline protease production by a marine bacterium Teredinobacter turnirae under solid substrate fermentation. Process Biochemistry, 40(5), 1951-1956.
Fu, J., Huo, G., Feng, L., Mao, Y., Wang, Z., Ma, H., Chen, T., & Zhao, X. (2016). Metabolic engineering of Bacillus subtilis for chiral pure meso-2, 3-butanediol production. Biotechnology for Biofuels, 9(1), 90.
Gibbs, B. F., Zougman, A., Masse, R., & Mulligan, C. (2004). Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International, 37(2), 123-131.
Hernández-Ledesma, B., Hsieh, C. C., & Ben, O. (2009). Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochemical and Biophysical Research Communications, 390(3), 803-808.
Hoeck, J. A., Fehr, W. R., Murphy, P. A., & Welke, G. A. (2000). Influence of genotype and environment on isoflavone contents of soybean. Crop Science, 40(1), 48-51.
Hölker, U., & Lenz, J. (2005). Solid-state fermentation-are there any biotechnological advantages?. Current Opinion in Microbiology, 8(3), 301-306.
Hoshi, H., Iijima, H., Ishihara, Y., Yasuhara, T., & Matsunaga, K. (2008). Absorption and tissue distribution of an immunomodulatory α-D-glucan after oral administration of Tricholoma matsutake. Journal of Agricultural & Food Chemistry, 56(17), 7715-7720.
Hou, Y., Sung, B., & Kim, Y. (2019). Hydolysis Optimization and the Effect on Myogenenic Differentiation of Soy Peptides from Soy Protein Isolates by Alcalase and Flavorzyme (P17-001-19). Current Developments in Nutrition.
Hsiao, Y. H., Hsia, S. Y., Chan, Y. C., & Hsieh, J. F. (2017). Complex coacervation of soy proteins, isoflavones and chitosan. Molecules, 22(6), 1022.
Hsu, C., Ho, H. W., Chang, C. F., Wang, S. T., Fang, T. F., Lee, M. H., & Su, N. W. (2013). Soy isoflavone-phosphate conjugates derived by cultivating Bacillus subtilis var. natto BCRC 80517 with isoflavone. Food Research International, 53(1), 487-495.
Hsu, C., Wu, B. Y., Chang, Y. C., Chang, C. F., Chiou, T. Y., & Su, N. W. (2018). Phosphorylation of isoflavones by Bacillus subtilis BCRC 80517 may represent xenobiotic metabolism. Journal of Agricultural and Food Chemistry, 66(1), 127-137.
Huang, C. H., Chen, C. L., Chang, S. H., & Tsai, G. J. (2020). Evaluation of antiobesity activity of soybean meal products fermented by Lactobacillus plantarum FPS 2520 and Bacillus subtilis N1 in rats fed with high-fat diet. Journal of Medicinal Food, 23(6), 667-675.
Hu, Y., Ge, C., Yuan, W., Zhu, R., Zhang, W., Du, L., & Xue, J. (2010). Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation. Journal of the Science of Food and Agriculture, 90(7), 1194-1202.
Ibe, S., Yoshida, K., Kumada, K., Tsurushiin, S., Furusho, T., & Otobe, K. (2009). Antihypertensive effects of natto, a traditional Japanese fermented food, in spontaneously hypertensive rats. Food Science and Technology Research, 15(2), 199-202.
Ilyas, A., Hirabayasi, M., Matsui, T., Yano, H., Yano, F., Kikishima, T., ... & Hayakawa, K. (1995). A note on the removal of phytate in soybean meal using Aspergillus usami. Asian-Australasian Journal of Animal Sciences, 8(2), 135-138.
Isanga, J., & Zhang, G. N. (2008). Soybean bioactive components and their implications to health—a review. Food Reviews International, 24(2), 252-276.
Izumi, T., Piskula, M. K., Osawa, S., Obata, A., Tobe, K., Saito, M., KataoKa, S., Kubota, Y., & Kikuchi, M. (2000). Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. The Journal of Nutrition, 130(7), 1695-1699.
Jain, S., Choudhary, D. K., Sharma, K. P., & Aggarwal, R. (2018). Bacterial Mediated Plant Protection: Induced Systemic Resistance in Soybean. In Microbial Biotechnology (pp. 193-206). Springer, Singapore.
Jian, X., Shouwen, C., & Ziniu, Y. (2005). Optimization of process parameters for poly γ-glutamate production under solid state fermentation from Bacillus subtilis CCTCC202048. Process Biochemistry, 40(9), 3075-3081.
Jiang, M., Yan, H., He, R., & Ma, Y. (2018). Purification and a molecular docking study of α-glucosidase-inhibitory peptides from a soybean protein hydrolysate with ultrasonic pretreatment. European Food Research and Technology, 244(11), 1995-2005.
Jianming, W., Qiuqian, L., Yiyun, W., & Xi, C. (2013). Research on soybean curd coagulated by lactic acid bacteria. SpringerPlus, 2(1), 250.
Jordan, K. N., & Cogan, T. M. (1999). Heat resistance of Lactobacillus spp. isolated from Cheddar cheese. Letters in Applied Microbiology, 29(2), 136-140.
Jung, H. W., Kim, J. E., Seo, J. H., & Lee, S. P. (2010). Physicochemical and antioxidant properties of red ginseng marc fermented by Bacillus subtilis HA with mugwort powder addition. Journal of the Korean Society of Food Science & Nutrition, 39(9), 1391-1398.
Ko, C. Y., Lin, H. T. V., & Tsai, G. J. (2013). Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochemistry, 48(4), 559-568.
Kole, M. M., Draper, I., & Gerson, D. F. (1988). Production of protease by Bacillus subtilis using simultaneous control of glucose and ammonium concentrations. Journal of Chemical Technology and Biotechnology, 41(3), 197-206.
Kwon, D. Y., Jang, J. S., Hong, S. M., Lee, J. E., Sung, S. R., Park, H. R., & Park, S. (2007). Long-term consumption of fermented soybean-derived Chungkookjang enhances insulinotropic action unlike soybeans in 90% pancreatectomized diabetic rats. European Journal of Nutrition, 46(1), 44-52.
Landete, J. M., Arqués, J., Medina, M., Gaya, P., de Las Rivas, B., & Muñoz, R. (2016). Bioactivation of phytoestrogens: intestinal bacteria and health. Critical Reviews in Food Science and Nutrition, 56(11), 1826-1843.
Lee, J. H., Hwang, C. E., Son, K. S., & Cho, K. M. (2019). Comparisons of nutritional constituents in soybeans during solid state fermentation times and screening for their glucosidase enzymes and antioxidant properties. Food Chemistry, 272, 362-371.
Lee, J. H., Kim, B., Hwang, C. E., Haque, M. A., Kim, S. C., Lee, C. S., Kang, S. S., Cho, K. M., & Lee, D. H. (2018). Changes in conjugated linoleic acid and isoflavone contents from fermented soymilks using Lactobacillus plantarum P1201 and screening for their digestive enzyme inhibition and antioxidant properties. Journal of Functional Foods, 43, 17-28.
Lee, M. K., Kim, J. K., & Lee, S. Y. (2018). Effects of fermentation on SDS-PAGE patterns, total peptide, isoflavone contents and antioxidant activity of freeze-thawed tofu fermented with Bacillus subtilis. Food Chemistry, 249, 60-65.
Lee, S. J., Kim, J. J., Moon, H. I., Ahn, J. K., Chun, S. C., Jung, W. S., Lee, O. K., & Chung, I. M. (2008). Analysis of isoflavones and phenolic compounds in Korean soybean [Glycine max (L.) Merrill] seeds of different seed weights. Journal of Agricultural and Food Chemistry, 56(8), 2751-2758.
Li, J., Zhou, R. L., Ren, Z. Q., Fan, Y. W., Hu, S. B., Zhuo, C. F., & Deng, Z. Y. (2019). Improvement of protein quality and degradation of allergen in soybean meal fermented by Neurospora crassa. Journal of Food Science and Technology, 101, 220-228.
Lin, H. T. V., Hwang, P. A., Lin, T. C., & Tsai, G. J. (2014). Production of Bacillus subtilis-fermented red alga Porphyra dentata suspension with fibrinolytic and immune-enhancing activities. Bioscience, Biotechnology, and Biochemistry, 78(6), 1074-1081.
Lin, H. T. V., Wu, G. J., Hsieh, M. C., Chang, S. H., & Tsai, G. J. (2015). Purification and characterization of Nattokinase from cultural filtrate of red alga porphyra dentata fermented by Bacillus subtilis N1. Journal of Marine Science and Technology, 23(2), 240-248.
Lule, V. K., Garg, S., Pophaly, S. D., & Tomar, S. K. (2015). Potential health benefits of lunasin: a multifaceted soy‐derived bioactive peptide. Journal of Food Science, 80(3), R485-R494.
Marazza, J. A., Garro, M. S., & de Giori, G. S. (2009). Aglycone production by Lactobacillus rhamnosus CRL981 during soymilk fermentation. Food microbiology, 26(3), 333-339.
Marazza, J. A., LeBlanc, J. G., de Giori, G. S., & Garro, M. S. (2013). Soymilk fermented with Lactobacillus rhamnosus CRL981 ameliorates hyperglycemia, lipid profiles and increases antioxidant enzyme activities in diabetic mice. Journal of Functional Foods, 5(4), 1848-1853.
Mitchell, D. A., Berovic, M., & Krieger, N. (2002). Overview of solid state bioprocessing. Biotechnology Annual Review, 8, 183-225.
Nemitz, M. C., Fachel, F. N. S., Beckenkamp, A., Buffon, A., Teixeira, H. F., & von Poser, G. L. (2017). Soybeans isoflavone aglycone-rich extracts: Optimization by different bioprocesses and production of a purified fraction with promising wound healing property. Industrial Crops and Products, 105, 193-202.
Nusrat, A., & Rahman, S. R. (2007). Comparative studies on the production of extracellular α-amylase by three mesophilic Bacillus isolates. Bangladesh Journal of Microbiology, 24(2), 129-132.
Obadina, A. O., Akinola, O. J., Shittu, T. A., & Bakare, H. A. (2013). Effect of natural fermentation on the chemical and nutritional composition of fermented soymilk nono. Nigerian Food Journal, 31(2), 91-97.
Omoni, A. O., & Aluko, R. E. (2005). Soybean foods and their benefits: potential mechanisms of action. Nutrition Reviews, 63(8), 272-283.
Patel, H. M., Wang, R., Chandrashekar, O., Pandiella, S. S., & Webb, C. (2004). Proliferation of Lactobacillus plantarum in solid‐state fermentation of oats. Biotechnology Progress, 20(1), 110-116.
Sanjukta, S., & Rai, A. K. (2016). Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends in Food Science and Technology, 50, 1-10.
Sarkar, P. K., Jones, L. J., Gore, W., Craven, G. S., & Somerset, S. M. (1996). Changes in soya bean lipid profiles during kinema production. Journal of the Science of Food and Agriculture, 71(3), 321-328.
Sato, K., Miyasaka, S., Tsuji, A., & Tachi, H. (2018). Isolation and characterization of peptides with dipeptidyl peptidase IV (DPPIV) inhibitory activity from natto using DPPIV from Aspergillus oryzae. Food Chemistry, 261, 51-56.
Sestelo, A. B. F., Poza, M., & Villa, T. G. (2004). β-glucosidase activity in a Lactobacillus plantarum wine strain. World Journal of Microbiology and Biotechnology, 20(6), 633.
Shrestha, A. K., Dahal, N. R., & Ndungutse, V. (2010). Bacillus fermentation of soybean: A review. Journal of Food Science and Technology Nepal, 6, 1-9.
Simu, S. Y., Castro‐Aceituno, V., Lee, S., Ahn, S., Lee, H. K., Hoang, V. A., & Yang, D. C. (2018). Fermentation of soybean hull by Monascus pilosus and elucidation of its related molecular mechanism involved in the inhibition of lipid accumulation. An in sílico and in vitro approach. Journal of Food Biochemistry, 42(1), e12442.
Soares, V. F., Castilho, L. R., Bon, E. P., & Freire, D. M. (2005). High-yield Bacillus subtilis protease production by solid-state fermentation. In Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals (pp. 311-319). Humana Press.
Suo, H., Qian, Y., Feng, X., Wang, H., Zhao, X., & Song, J. L. (2016). Free radical scavenging activity and cytoprotective effect of soybean milk fermented with Lactobacillus fermentum Zhao. Journal of Food Biochemistry, 40(3), 294-303.
Tang, J., Xu, N., Ji, H., Liu, H., Wang, Z., & Wu, L. (2011). Eudragit nanoparticles containing genistein: formulation, development, and bioavailability assessment. International Journal of Nanomedicine, 6, 2429.
Teng, D., Gao, M., Yang, Y., Liu, B., Tian, Z., & Wang, J. (2012). Bio-modification of soybean meal with Bacillus subtilis or Aspergillus oryzae. Biocatalysis and Agricultural Biotechnology, 1(1), 32-38.
Tikkanen, M. J., & Adlercreutz, H. (2000). Dietary soy-derived isoflavone phytoestrogens: could they have a role in coronary heart disease prevention? Biochemical Pharmacology, 60(1), 1-5.
Ulanowska, K., Tkaczyk, A., Konopa, G., & Węgrzyn, G. (2006). Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains. Archives of Microbiology, 184(5), 271-278.
Wang, H. J., & Murphy, P. A. (1994). Isoflavone content in commercial soybean foods. Journal of Agricultural and Food Chemistry, 42(8), 1666-1673.
Wang, H. K., Ng, Y. K., Koh, E., Yao, L., Chien, A. S., Lin, H. X., & Lee, Y. K. (2015). RNA-Seq reveals transcriptomic interactions of Bacillus subtilis natto and Bifidobacterium animalis subsp. lactis in whole soybean solid-state co-fermentation. Food Microbiology, 51, 25-32.
Wang, J., Wang, Q., Xu, Z., Zhang, W., & Xiang, J. (2015). Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate. Journal of Microbiology and Biotechnology, 25(1), 26-32.
Wang, K., Niu, M., Song, D., Liu, Y., Wu, Y., Zhao, J., Li, S., & Lu, B. (2020). Evaluation of biochemical and antioxidant dynamics during the co‐fermentation of dehusked barley with Rhizopus oryzae and Lactobacillus plantarum. Journal of Food Biochemistry, 44(2), e13106.
Wu, J., & Ding, X. (2001). Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry, 49(1), 501-506.
Xie, C. L., Hwang, C. E., Oh, C. K., Yoon, N. A., Ryu, J. H., Jeong, J. Y., Roh, G. S., Kim, H. J., Cho, G. J., Choi, W. S., Kang, S. S., Cho, K. M., & Lee D. H., (2017). Fermented soy‐powder milk with Lactobacillus plantarum P1201 protects against high‐fat diet‐induced obesity. International Journal of Food Science and Technology, 52(7), 1614-1622.
You, L., Gao, Q., Feng, M., Yang, B., Ren, J., Gu, L., Cui, C., & Zhao, M. (2013). Structural characterisation of polysaccharides from Tricholoma matsutake and their antioxidant and antitumour activities. Food Chemistry, 138(4), 2242-2249.
Zhang, H., & Yu, H. (2019). Enhanced biotransformation of soybean isoflavone from glycosides to aglycones using solid‐state fermentation of soybean with effective microorganisms (EM) strains. Journal of Food Biochemistry, 43(4), e12804.
Zhang, J. H., Tatsumi, E., Ding, C. H., & Li, L. T. (2006). Angiotensin I-converting enzyme inhibitory peptides in douchi, a Chinese traditional fermented soybean product. Food Chemistry, 98(3), 551-557.
Zhang, M., Ikeda, K., Xu, J. W., Yamori, Y., Gao, X. M., & Zhang, B. L. (2009). Genistein suppresses adipogenesis of 3T3‐L1 cells via multiple signal pathways. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 23(5), 713-718.
Zhang, S., Shi, Y., Zhang, S., Shang, W., Gao, X., & Wang, H. (2014). Whole soybean as probiotic lactic acid bacteria carrier food in solid-state fermentation. Food Control, 41, 1-6.