1	Effect of high pressure processing on flavor of fish meat and frame
2	after enzymatic degradation
3	郭秉翰(5143)
4	15/03/2023
5	Outline
7	1. Introduction
8	2. Determination of nucleotide and enzyme degradation in haddock
9	(Melanogrammus aeglefinus) and herring (Clupea harengus) after high pressure
10 11	Processing. 3 Optimization of the enzymatic hydrolysis assisted by ultra-high pressure
12	processing of alaska pollock frame for improving flavour.
13	4. Conclusion
14 15	Abstract
15	The degradation of nucleotides and the enzyme associated with degradation have
16	been widely used to evaluate the freshness of fish. Immediately after fish death,
17	adenosine triphosphate (ATP) will degrade to inosine-5-monophosphate (IMP) and
18	hypoxanthine (Hx) which would affect the fish flavor. The first study used high pressure
19	processing (HPP) to regulate 5'-nucleotidase (5'-NT) and nucleoside-phosphorylase
20	(NP) activity and flavor indicators. According to the results, HPP under 200 MPa for 3
21	min showed the greatest effect to inhibit the activity of 5'-NT and NP and reduce Hx
22	production in Haddock (Melanogrammus aeglefinus) and herring (Clupea harengus)
23	fillets thus caused the lowest K value and suppressed the generation of unpleasant flavor.
24	Alaska Pollock Frame (APF) can produce the usable protein through enzymatic
25	hydrolysis but it caused the formation of odorous compounds during the treatment. The
26	second study found that HPP combined with Alcalase 3.0 T and flavourzyme enzymatic
27	hydrolysis can increase the production of IMP and free amino acid (FAA) at 150 MPa
28	60min pH=7.5. Gas Chromatography-Mass Spectrometry (GC-MS) analysis showed
29	that HPP treatment could obtain 20 main volatile compounds but no odorous
30	compounds were contained including trimethylamine, caproic acid, octanoic acid. The
31	results of e-tongue are consistent with the results of GC-MS analysis and the analysis
32	showed that HPP combined with enzymatic hydrolysis could optimize the flavor from
33	APF hydrolyzate. Overall, HPP could effectively inhibit the activity of 5'-NT and NP
34	by changing the enzyme structure, and increasing the production of free amino acids
35	and volatile compounds, thereby extending the shelf life.

- Karim, N. U., Kennedy, J. T., Linton, M., Patterson, M., Watson, S., & Gault, N. (2019).
 Determination of nucleotide and enzyme degradation in haddock (Melanogrammus aeglefinus) and herring (Clupea harengus) after high pressure processing. *PeerJ*, 7, e7527.
- Zhu, W., Zhu, L., Yang, W., Bu, Y., Li, J., & Li, X. (2020). Optimization of the enzymatic hydrolysis assisted by ultra-high pressure processing of Alaska pollock frame for improving flavour. *Journal of aquatic food product technology*, 29(6), 567-576.