1	Different enzymatic conditions and methods for producing maltoheptaose	
2		邱琬軒(5109)
3		04/17/2024
4		Outline
5	1.	Introduction
6	2.	One-pot production of maltoheptaose (DP7) from starch by sequential addition of
7		cyclodextrin glucotransferase and cyclomaltodextrinase
8	3.	Efficient biotransformation and synergetic mechanism of dual-enzyme cascade reaction
9		in nonreducing maltoheptaose synthesis
10	4.	Conclusion
11		Abstract
12		Maltoheptaose is a maltooligosaccharide containing seven glucose units, characterized by
13	lower osmotic pressure, higher viscosity, better moisturizing effect, and more robust film-	
14	forming properties, it has been widely used in fields such as food, medicine and cosmetics	
15	industries. Cyclomaltodextrinase (CDase) is an enzyme, which hydrolyzes cyclodextrins (CDs)	
16	efficiently. Using CDs as a substrate, maltodextrin is formed via CDase and subsequently	
17	hydrolyzed to prepare maltose heptasaccharide. Therefore, this study aims to explore the	
18	characteristics and synergetic mechanism between enzymes for the preparation of	
19	maltoheptaose. The cyclodextrin glucotransferase (GaCGT) from Gracilibacillus alcaliphilus	
20	and cyclomaltodextrinase (BsCD) from Bacillus sphaericus catalyzed the one-pot cascade	
21	reaction to produce maltoheptaose, the results showed that the optimal conditions were at pH	
22	7.0 and temperature 30°C, in the presence of Ca^{2+} . Furthermore, the optimum enzyme units for	
23	the reaction were 80 U/g of GaCGT and 1 U/g of BsCD, and sequential addition of the enzymes	
24	exhibited a 5-fold higher conversion rate over simultaneous addition. On the other hand,	
25	cyclodextrinase (CDase) from Bacillus sphaericus E-244 and maltooligosyltrehalose synthase	
26	(MTSase) from Arthrobacter sp. Q36 exhibits optimal conditions at pH 7.0 and 40°C for one-	
27	pot synthesis of nonreducing maltoheptaose (N-G7). Simultaneously adding CDase and	
28	MTSase at 40°C for 4 hours have maximum yield of N-G7 at 77.3%, the conversion efficiency	
29	of the sequential treatment is lower than that of the simultaneous method, which further proves	
30	that the simultaneous reaction of the two enzymes contributes to the improvement of	
31	conversion efficiency. In summary, the method of dual-enzyme cascade reaction treatment has	
32	great potential for synthesizing N-G7 and application in the food industry.	