1	Studies on Species Identification, Level of Vitamin A and
2	Ciguatoxin Toxicity of Red Grouper
3	陳籽伍 (5103)
4	2022/05/25
5	Outline
6	- · Introduction
7	\Rightarrow Genetic identification of red grouper and other grouper species
8	\exists · Analysis of the content of vitamin A in the liver of red grouper and the toxicity of
9	ciguatoxin
10	四、Conclusion
11	Abstract
12	Serranidae is a common species of fish with high economic value in Taiwan. Most of
13	them inhabit in tropical and subtropical oceans, and a few of them inhabit in freshwater.
14	The huge size and ferocious habits make the grouper be the top predator in the food
15	chain. Due to the effect of bioaccumulation and amplification, the liver of the grouper
16	easily accumulates ciguatoxins and high amounts of vitamin A. If people consume them,
17	it may cause risks of vitamin A poisoning and ciguateric fish poisoning. In the 1980s,
18	there were severe cases of ciguateric fish poisoning caused by eating red grouper's liver
19	in Taiwan. Therefore, in this study, the gene sequences and toxins of the common red
20	grouper and several other groupers in Taiwan were analyzed by polymerase chain
21	reaction-restriction fragment length polymorphism (PCR-RFLP). With three different
22	specific cleavage restriction enzymes Msp I, Hinf I and Hae III, seven species of
23	grouper commonly found in Taiwan were successfully identified, and a map for rapid
24	identification of fish species was established to achieve the target. On the other hand,
25	the concentration and total content of vitamin A in the liver of fish were analyzed by
26	high performance liquid chromatography (HPLC). The results showed that there was
27	no correlation between the liver weight and the content of vitamin A in eleven specimen
28	of Plectropomus leopardus, but there may still be high levels of Vitamin A in the larger
29	fish 25,000-50,000 IU/d. Finally, the mouse bioassay (MBA) was used to determine
30	whether the Plectropomus leopardus had the risk of ciguatera fish poisoning. The
31	results present that some mice showed clinical symptoms such as diarrhea and dyspnea,
32	but there was no death. The ciguatoxin content of fish is less than the minimum
33	estimable ciguatoxin content of 0.025 MU/g. Therefore, it is no risk of ciguatera fish
34	poisoning from eating these tested <i>Plectropomus leopardus</i> .

参考文獻

- 行政院衛生福利部食品藥物管理署,2015。食品中海洋生物毒素之檢驗方法-雪 卡毒之檢驗。台北。
- **黄登福、陳南宏,2007**。熱帶性海魚毒。科學發展月刊,420:13-16。
- **Ballard, J. W. O. and Rand, D. M. 2005.** The population biology of mitochondrial DNA and its phylogenetic implications. *Annual Review of Ecology Evolution and Systematics*, 36: 621-642.
- Buhlman, L. M. 2016. Mitochondrial Mechanisms of Degeneration and Repair in Parkinson's Disease. Springer, Heidelberg, German.
- Friedman, M. A., Fleming, L. E., Fernandez, M., Bienfang, P., Schrank, K., Dickey, R. and Reich, A. 2008. Ciguatera fish poisoning: Treatment, prevention and management. *Marine Drugs*, 6: 456-479.
- Hoofnagle, J. H., Serrano, J., Knoben, J. E. and Navarro, V. J. 2013. Liver Tox: A website on drug-induced liver injury.US FDA, Sliver Spring, USA.
- Hosotani, K. and Kitagawa, M. 2003. Improved simultaneous determination method of β -carotene and retinol with saponification human serum and rat liver. *Journal of Chromatography*, B791: 305-313.
- Innis, M. A. and Gelfand, D. H. 1990. Optimization of PCR. PCR Protocols-A Guide to Methods and Applications (eds by Innis, M. A. et al.). Academic Press. Boston, USA. pp. 3-12.
- Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. *Molecular Biology and Evolution* 35: 1547-1549.
- Lavrov, D. V., Forget, L., Kelly, M. and Lang, B. F. 2005. Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. *Molecular Biology and Evolution*, 22: 1231-1239.
- Lewis, R. J. 2001. The changing face of ciguatera. Toxicon, 39: 97-106.
- Lewis, R. J., Sellin, M., Poli, M. A., Norton, R. S., MacLeod, J. K. and Sheil, M. M. 1991. Purification and characterization of ciguatoxins from moray eel (*Lycodontis javanicus*, Muraenidae). *Toxicon*, 29: 1115-1127.
- Nicholls, T. J. and Gustafsson, C. M. 2018. Separating and segregating the human mitochondrial genome. *Trends in Biochemical Sciences*, 43: 869-881.
- Rodríguez, F., Fraga, S., Ramilo, I., Rial, P., Figueroa, R. I., Riobó, P., and Bravo,
 I. 2017. Canary Islands (NE Atlantic) as a biodiversity 'hotspot' of *Gambierdiscus*: Implications for future trends of ciguatera in the area. *Harmful Algae* 67: 131-143.
- Satake, M., Ishibashi, Y., Legrand, A. M. and Yasumoto, T. 1996. Isolation and structure of ciguatoxin-4A, a new ciguatoxin precursor, from cultures of dinoflagellate *Gambierdiscus toxicus* and parrotfish *Scarus gibbus*. *Bioscience*,

Biotechnology, and Biochemistry, 60: 2103-2105.

Suzuki, T., Ha, D. V., Uesugi, A. and Uchida, H. 2017. Analytical challenges to ciguatoxins. *Current Opinion in Food Science*, 18: 37-42.

Wolf, C., Burgener, M., Hubner, P. and Luthy, J. 2000. PCR-RFLP analysis of mitochondrial DNA: Differentiation of fish species. *LWT-Food Science and Technology*, 33: 144-150.