1	Investigating the regulatory effect of omega-3 polyunsaturated fatty acid
2	supplementation on the immune imbalance induced by crystalline silica
3	(cSiO2) in mice
4	蔡翊菻(5116)
5	2025/10/15
6	Outline
7	I. Introduction
8	II. Omega-3 polyunsaturated fatty acid intervention against established autoimmunity in a
9	murine model of toxicant-triggered lupus
10	III. Dietary docosahexaenoic acid supplementation inhibits acute pulmonary transcriptional
11	and autoantibody responses to a single crystalline silica exposure in lupus-prone mice
12	IV. Conclusion
13	Abstract
14	Systemic lupus erythematosus (SLE) is an autoimmune disease mediated by
15	autoantibodies (AAb), characterized by disruption of immune tolerance and overactivation of
16	B cells, leading to damage to organs. Recent studies have pointed out that eicosapentaenoic
17	acid (EPA) and docosahexaenoic acid (DHA) in omega-3 polyunsaturated fatty acids (PUFAs),
18	may have a regulatory effect on immune imbalance. In the first study, the authors used cSiO ₂ -
19	induced NZBWF1 mice to simulate the onset of autoimmune diseases. The results showed that
20	DHA intervention can inhibit the production of inflammatory cytokines and regulate the
21	differentiation of B cells, and reduce the production of AAbs, indicating that omega-3 can delay
22	the course of lupus. The second study focused on the acute pulmonary immune response after
23	cSiO ₂ exposure. High-dose DHA can effectively intervention inhibit the elevation of antibodies
24	and downgrade the antigen presentation of inflammation-related pathways, thereby reducing
25	lung inflammation and immune imbalance.
26	Combining the two studies, the protective effect of omega-3 is mainly by inhibit B cell
27	differentiation and AAbs production, as well as control antigen-presenting cells (APCs)
28	activation and inflammatory gene expression. These results show that omega-3 has potential
29	nutritional adjuvant therapeutic value for autoimmune diseases.

1 Reference

- 2 Pestka, J. J., Akbari, P., Wierenga, K. A., Bates, M. A., Gilley, K. N., Wagner, J. G.,
- 3 Lewandowski, R.P., Rajasinghe, L.D., Chauhan, P.S., Lock, A.L., Li, Q.Z., & Harkema, J.
- 4 R. (2021). Omega-3 polyunsaturated fatty acid intervention against established
- 5 autoimmunity in a murine model of toxicant-triggered lupus. Frontiers in immunology, 12,
- 6 653464.
- 7 Chauhan, P. S., Benninghoff, A. D., Favor, O. K., Wagner, J. G., Lewandowski, R. P.,
- 8 Rajasinghe, L. D., Li, Q.Z., Harkema, J.R., & Pestka, J. J. (2024). Dietary
- 9 docosahexaenoic acid supplementation inhibits acute pulmonary transcriptional and
- autoantibody responses to a single crystalline silica exposure in lupus-prone
- mice. Frontiers in Immunology, 15, 1275265.