

VIBRIOSIS

- ◆ Vibrio parahaemolyticus (副溶血性弧菌/ 腸炎弧菌) gastroenteritis is contracted almost solely from seafood.
- ◆ Natural habitat → the sea
- Three other *Vibrio* species (Table 28-1)
 - V. vulnificus (創傷性弧菌/海洋弧菌)
 - V. alginolyticus (溶藻弧菌)
 - V. cholerae (霍亂弧菌)

Vibrio parahaemolyticus

Growth Conditions

- 1 8 % NaCl
- Dies off in distilled water
- Not grow at 4°C, but grow between 5 9°C
- The upper growth temperature is 44 °C, with an optimum between 30 °C and 35 °C.
- ◆ pH range **4.8 11.0**, with 7.6 8.6 being optimum.
- Under optimal conditions → a generation time of 9 13 minutes (compared to about 20 minutes for E. coli).
- Heat sensitive, with D _{47°C} values ranging from 0.8 65.1 minutes.

Vibrio parahaemolyticus

Virulence Properties

- The in vitro test of potential virulence for Vibrio parahaemolyticus is the **Kanagawa** reaction
 - most virulent strains → K+ → produce a
 thermostable direct hemolysin (TDH)
 - most avirulent strains → K- → produce
 a heat-labile hemolysin
 - some strains produce both.

Kanagawa reaction

- Kanagawa reaction:
 - use of human red blood cells in agar medium
 - the culture is surface plated → incubated at 37 °C for 18 24 hours → read for the presence of **beta hemolysis**.

Beta hemolysis (β -hemolysis), sometimes called complete hemolysis, is a complete lysis of red cells in the media around and under the colonies: the area appears lightened (yellow) and transparent.

Vibrio parahaemolyticus Virulence Properties

- Heat stability of TDH
 - In Tris buffer at pH 7, D 120 °C and D130 °C values of 34 and 13 minutes, respectively, were found for semipurified toxin.
 - In shrimp D 120 °C and D130 °C values were 21.9 and 10.4 minutes, respectively.

Vibrio parahaemolyticus Vibrio parahaemolyticus

- Virulence Properties
 - Adherence to epithelial cells is an important virulence property of G(-) bacteria
 - V. parahaemolyticus produces cellassociated hemagglutinins (血球凝集素) → adherence to intestinal mucosa.
 - Pili (fimbriae) also play a role in intestinal tract colonization.

Vibrio parahaemolyticus

Gastroenteritis Syndrome and Vehicle Foods

- The mean incubation period was 16.7 hours (range, 3 −76 hours)
- Symptoms
 - − lasted from 1 − 8 days, with a mean of about 4.6 days.
 - diarrhea (95%), cramps (92%),
 weakness (90%), nausea (72%), chills (55%), headache (48%), and vomiting (12%)

Vibrio parahaemolyticus

Gastroenteritis Syndrome and Vehicle Foods

- Vehicle foods
 - Seafood: oysters, shrimps, crabs, lobsters, clams, and related shellfish
 - Cross-contamination may lead to other foods as vehicles

OTHER VIBRIOS

- Vibrio cholerae (霍亂弧菌) is best known as the cause of human cholera contracted from polluted water. The classic symptom is large amounts of watery diarrhea (水樣腹瀉) that lasts a few days. Vomiting and muscle cramps (肌肉痙攣) may also occur. Diarrhea can be so severe that it leads within hours to severe dehydration and electrolyte imbalance.
- ◆ Vibrio vulnificus (創傷弧菌)
 - soft-tissue infections and sepsis (敗血症)

YERSINOSIS (Yersinia

enterocolitica, 耶爾辛氏腸炎桿菌)

- G(-) rod, motile below 30 °C but not at 37 °C
- Growth temperature: -2 °C to 45 °C
 - Optimum:22 °C ~29 °C
- ◆ Addition of NaCl → raises the minimum growth temperature
- With no salt, growth was observed at 3 °C over the pH range 4.6 9.0
- Destroyed in 1 3 minutes at 60 °C
- Rather resistant to freezing → numbers decreasing only slightly in chicken after 90 days at -18 °C.
- none survived after pasteurization of milk.

Yersinia enterocolitica **Distribution**

- ◆ widely distributed in the terrestrial (陸地上的) environment and in lake, well, and stream waters. → sources to warmblooded animal
- *Y. enterocolitica* has been isolated from various animals such as cats, birds, dogs, rats, cattle, horses, swine, chickens, fish, and oysters.

Yersinia enterocolitica Virulence Factors

- heat-stable enterotoxin (ST): survives 100 °C for 20 minutes
- ST production: \leq 30 °C, favored in pH 7-8.
- Although pathogenic strains produce ST, ST is not critical to virulence.
- The most significant pathogenic mechanism: yersiniae outer protein (Yop) virulon (see Exihibit 22-3), which is also possessed in Y. pestis and Y. pseudotuberculosis. This virulon allows yersiniae to survive and multiply in host lymphoid tissue.

Incidence of Y. enterocolitica in Foods

- Isolated from cakes, vacuum-packaged meats, seafood, vegetables, milk, beef, lamb, pork and other food products.
- Swine appears to be the major source of strains pathogenic to humans.

Yersinia enterocolitica Gastroenteritis Syndrome and Incidence

- ◆ The incidence (發生率) is highest in the very young and the old.
- In an outbreak, the symptoms (and percentage) were fever (87), diarrhea (69), severe abdominal pain (62), vomiting (56), pharyngitis (咽頭炎)(31), and headache (18). The outbreak led to two appendectomies (闌尾切除手術) and two deaths.

Yersinia enterocolitica Gastroenteritis Syndrome and Incidence

- Symptoms of the gastroenteritis syndrome develop several days following ingestion of contaminated foods and characterized by abdominal pain and diarrhea.
- Children appear to be more susceptible than adult, and the organisms may be present in stools for up to 40 days following illness.

CAMPYLOBACTERIOSIS (Campylobacter jejuni 空腸彎曲桿菌)

- *C. jejuni* is a slender, spirally curved rod that possesses a single polar flagellum at one or both ends of the cell.
- Not grow in the presence of 3.5% NaCl or at 25 °C
- Microaerophilic → need 3 6% oxygen for growth → growth is inhibited in 21% oxygen (normally 20.9% of the gas in the atmosphere is oxygen).
- 10% carbon dioxide is required for good growth.
- ◆ Heat sensitive → D 55 °C 1~3 mins
- Sensitive to freezing → number greatly reduced at -18 °C.

CAMPYLOBACTERIOSIS (Campylobacter jejuni 空腸彎曲桿菌)

Distribution

- Not an environmental organisms → associated with warm-blooded animals
- A large percentage of all **major meat** animals contain these organisms in their feces, with poultry being prominent.
- The modes of pathogenesis are still unclear.

CAMPYLOBACTERIOSIS (Campylobacter jejuni)

Enteritis Syndrome and prevalence

- Symptoms: abdominal pain or cramps, diarrhea, malaise (全身乏力), headache, and fever → lasted 1 4 days → In the more severe cases, bloody stool may occur, and the diarrhea may resemble ulcerative colitis (潰瘍性大腸炎), whereas abdominal pain may mimic acute appendicitis (急性盲腸炎).
- Campylobacter enteritis is considered the leading foodborne illness in the US (Figure 28-1).
- 90% are of food origin.

CAMPYLOBACTERIOSIS (Campylobacter jejuni) PREVENTION

- V. parahaemolyticus, Y. enterocolitica, and C. jejuni are all heat-sensitive bacteria that are destroyed by milk pasteurization temperatures.
- The avoidance of raw seafood products and care in preventing cross-contamination with contaminated raw materials will reduce the incidence of foodborne gastroenteritis caused by V. parahaemolyticus and Y. enterocolitica.

CAMPYLOBACTERIOSIS (Campylobacter jejuni) PREVENTION

- To prevent wound infections by vibrios, individuals with body nicks or abrasions should avoid entering seawaters.
- Yersinosis can be avoided or minimized by not drinking water that has not been purified and by avoiding raw or underprocessed milk.
- Campylobacteriosis can be avoided by not eating undercooked or unpasteurized foods of animal origin, especially milk.

Pathogens produce β -hemolysis

- Bacillus cereus
 - hemolysin BL
- Listeria monocytogenes
 - Listeriolysin O
- Vibrio parahaemolyticus
 - thermostable direct hemolysin (TDH)

Enterotoxins-producing pathogens

- Staphylococcus aureus
 - superantigen
 - overabundance of IL-2 is produced
- Clostridium perfringens
 - induce membrane permeability alterations
- Bacillus cereus
 - hemolysin BL
 - hemolysis (溶血), cytolysis (細胞溶解),
 dermonecrosis (皮膚壞死), vascular
 permeability (血管滲透性), and enterotoxic
 activity

Enterotoxins-producing pathogens

- Shigella spp.
 - Shiga toxin inhibit mammalian protein synthesis
- Enterohemorrhagic E. coli (EHEC)
 - Shiga-like toxins inhibit protein synthesis
- Enterotoxigenic *E. coli* (ETEC)
 - heat-labile enterotoxin (LT) and heat-stable enterotoxin (ST)
- Yersinia enterocolitica
 - heat-stable enterotoxin (ST) is not critical to virulence

Major types of foodborne diseases -infection, intoxication, and toxin-mediated infection

1. Infection

- An infection is when a person eats food containing harmful microorganisms, which then grow in the intestinal tract and cause illness.
- Some bacteria, all viruses, and all parasites cause foodborne illness via infection. The foodborne bacteria that cause infection are: Salmonella spp., Listeria monocytogenes, Campylobacter jejuni, Vibrio spp., Yersinia enterocolitica, and Escherichia coli.

Major types of foodborne diseases -infection, intoxication, and toxin-mediated infection

2. Toxin-mediated infection

◆ A toxin-mediated infection is when a person eats food containing harmful bacteria. While in the intestinal tract, the bacteria produce toxins that cause illness. Some bacteria cause toxinmediated infection. The foodborne bacteria that cause toxin-mediated infection are: Clostridium perfringens, Shigella spp., EHEC and ETEC.

Major types of foodborne diseases -infection, intoxication, and toxin-mediated infection

3. Intoxication

• An intoxication results when a person eats food containing toxins that cause illness. Toxins are produced by harmful microorganisms, the result of a chemical contamination, or are naturally part of a plant or seafood. Some bacteria cause intoxication. Viruses and parasites do not cause foodborne intoxication. The foodborne bacteria that cause intoxication are: *Clostridium botulinum*, *Staphylococcus aureus*, and *Bacillus cereus*.