1	Algae oil as a replacer of animal fats for the production of vegetable-
2	based artificial aquatic flavor
3	林純玉(5111)
4	2023/05/03
5	Outline
6	1. Introduction
7	2. Materials and methods
8	3. Results and disscusion
9	4. Conclusion
10	Abstract
11	With the popularity of artificial meat, imitation meat spices are being produced in
12	large quantities. The aroma of meat is closely related to its fat, which is heated to create
13	its fragrance. However, with the rise of health and environmental sustainability issues,
14	plant-based diets are in popular. The purpose of this study is to develop aquatic product
15	aroma from plant-based ingredients. We attempted to create plant-based aquatic product
16	flavors by using algae oil, a vegetarian fish oil, in combination with amino acids and
17	glucose in a Maillard reaction to produce models that are similar to aquatic product
18	flavors. The results showed that algae oil has the potential to be used as a lipid source
19	to replace animal fats in the synthesis of grilled fish flavor, generating a model with a
20	flavor similar to that of grilled mackerel. 3-Methylbutanal, 2-Acetyl-1-pyrroline,
21	Nonanal, and 2-Octenal as key volatile compounds. This proves that lipids are the main
22	key to the flavor. In the future, we can use this flavor to make plant-based fish steak,
23	but the flavor is not resistant to storage. It is recommended to produce this flavor before
24	used it to keep the desired good flavor.
25 26	

1 參考文獻

2	Cardenia, V., Olivero, G., & Rodriguez-Estrada, M. T. (2015). Thermal oxidation of
3	cholesterol: Preliminary evaluation of 2-methyl-6-heptanone and 3-
4	methylbutanal as volatile oxidation markers. Steroids, 99, 161-171.
5	Chu, F. L., & Yaylayan, V. A. (2008). Model studies on the oxygen-induced formation
6	of benzaldehyde from phenylacetaldehyde using pyrolysis GC-MS and
7	FTIR. Journal of Agricultural and Food Chemistry, 56(22), 10697-10704
8	Hu, S. P., & Pan, B. S. (2000). Modification of fish oil aroma using a macroalgal
9	lipoxygenase. Journal of the American Oil Chemists' Society, 77(4), 343-348.
10	Hofmann, T., & Schieberle, P. (2000). Formation of aroma-active Strecker-aldehydes
11	by a direct oxidative degradation of Amadori compounds. Journal of
12	Agricultural and Food Chemistry, 48(9), 4301-4305.
13	Horiuchi, M., Umano, K., & Shibamoto, T. (1998). Analysis of volatile compounds
14	formed from fish oil heated with cysteine and trimethylamine oxide. Journal of
15	Agricultural and Food Chemistry, 46(12), 5232-5237.
16	Hornstein, I., & Crowe, P. F. (1960). Meat flavor chemistry, flavor studies on beef and
17	pork. Journal of Agricultural and Food Chemistry, 8(6), 494-498.
18	Ishiwatari, M. (1980). Thermal reaction of β -carotene. Part 1. Journal of Analytical
19	and Applied Pyrolysis, 2(2), 153-167.
20	Jones, R. N., & Sharpe, R. W. (1948). The pyrolysis of carotene. Canadian Journal of
21	<i>Research</i> , <i>26</i> (10), 728-733.
22	Josephson, D. B., & Lindsay, R. C. (1986). Enzymic generation of volatile aroma
23	compounds from fresh fish.
24	Kajiwara, T., Hatanaka, A., Kawai, T., Ishihara, M., & Tsuneya, T. (1988). Study of
25	Flavor Compounds of Essential Oil Extracts from Edible Japanese Kelps: A
26	Research Note. Journal of Food Science, 53(3), 960-962.
27	Kerdouci, J., Picquet-Varrault, B., Durand-Jolibois, R., Gaimoz, C., & Doussin, J. F.
28	(2012). An experimental study of the gas-phase reactions of NO3 radicals with a
29	series of unsaturated aldenydes: trans-2-nexenal, trans-2-neptenal, and trans-2-
30	octenal. The Journal of Physical Chemistry A, 110(41), 10135-10142.
31	Kuo, J. M., Hwang, A., Hsu, H. H., & Pan, B. S. (1996). Preliminary identification of
32	lipoxygenase in algae (Enteromorpha intestinalis) for aroma formation. Journal
33	of Agricultural and Food Chemistry, 44(8), 2073-2077.
34	Liu, H. J., & Fang, M. (2022). Characterization of aroma active volatile components
35	in roasted mullet roe. Food Chemistry, 385, 132736.
36	Omonov, T. S., Kharraz, E., Foley, P., & Curtis, J. M. (2014). The production of

1	biobased nonanal by ozonolysis of fatty acids. RSC advances, 4(96), 53617-
2	53627.
3	Peinado, I., Miles, W., & Koutsidis, G. (2016). Odour characteristics of seafood
4	flavour formulations produced with fish by-products incorporating EPA, DHA
5	and fish oil. Food Chemistry, 212, 612-619.
6	Reineccius, G. (2005). Flavor chemistry and technology. CRC press
7	Shahidi, F., & Cadwallader, K. R. (1997). Flavor and lipid chemistry of seafoods: An
8	overview.
9	Shirey, R. E. (2012). SPME commercial devices and fibre coatings. In Handbook of
10	solid phase microextraction (pp. 99-133). Elsevier.
11	Siewe, F. B., Kudre, T. G., Bettadaiah, B. K., & Narayan, B. (2020). Effects of
12	ultrasound-assisted heating on aroma profile, peptide structure, peptide
13	molecular weight, antioxidant activities and sensory characteristics of natural
14	fish flavouring. Ultrasonics Sonochemistry, 65, 105055.
15	Sugisawa, H., Nakamura, K., & Tamura, H. (1990). The aroma profile of the volatiles
16	in marine green algae (Ulva pertusa). Food Reviews International, 6(4), 573-589.
17	Van Boekel, M. A. J. S. (2006). Formation of flavour compounds in the Maillard
18	reaction. Biotechnology advances, 24(2), 230-233.
19	