1	Study of the protective effects and mechanism of Gracilariopsis
2	chiangiii extract in a mice model of influenza A virus infection
3	李昱誼(5136)
4	2024/05/01
5	Outline
6	1. Introduction
7	2. Preparation of <i>Gracilaria chiangiii</i> water extract and determination of its
8	antioxidant capacity
9	3. Antiviral effect of <i>Gracilaria chiangiii</i> water extract in vitro
10	4. Antiviral effect of <i>Gracilaria chiangiii</i> water extract in vivo
11	5. Conclusion
12	Abstract
13	Gracilariopsis chiangiii is endemic to Taiwan, which belongs to the red algae,
14	and the sulfate polysaccharides are mainly carrageenan. Influenza viruses are the most
15	important source of viral respiratory infections in humans worldwide and can cause
16	symptoms of respiratory illness and acute lung injury. In this study, mice will be
17	infected with influenza A virus (H1N1) by spraying and investigate whether oral
18	administration of Gracilaria chiangiii extract (GCe) can achieve better prevention and
19	treatment effects on influenza virus. The experimental results show that GCe have
20	antioxidant effects from the three antioxidant assays of DPPH, ferrous ion chelation,
21	and superoxide anion scavenging. In the inhibition rate of cytopathic assay, GCe can
22	improve the survival rate of MDCK cells under pre-treatment, co-treatment and post-
23	treatment. In animal experiments, GCe can prospectively promote the proliferation of
24	T cells and B cells, and inhibit the secretion of pro-inflammatory factors, such as IFN-
25	γ , in the lungs, thereby improving the survival rate of mice. Based on the above results,
26	GCe has a protective effect against influenza A virus infection in cell mode, and can
27	inhibit the expression of inflammatory factors and improve lung injury and the
28	survival rate of mice. indicating that GCe has antiviral potential. Overall, GCe has
29	been shown to have antiviral potential.
30	