1	Synthesis and analysis of plant-based roasted fish aroma
2	呂靖玟 (5111)
3	2024/05/08
4	Outline
5	1. Introduction
6	2. Formulation of models
7	3. Impact of fatty acid composition on reaction flavor model
8	4. Effects of amino acid types, contents and algae powder on roasted fish flavor
9	models, and compared to animal meat
10	5. Impact of pH value on the reaction of roasted fish flavor
11	6. Key aroma compounds of the optimized model
12	7. Conclusions
13	Abstract
14	Environmental sustainability and animal welfare make plant-based meats being
15	more popular. The current market is in demand with a diverse range of plant-based meat
16	products, while fewer options available for plant-based alternatives with seafood
17	flavors. Flavor is one of the most significant factor influences consumer's preferences
18	in food products. To mimic the original meat flavor, plant-based meats often require
19	the addition of many spices. However, most meat flavorings contain animal-derived
20	fats or hydrolyzed animal protein products, making them unacceptable to vegetarians
21	and raising consumer skepticism. This study aims to use the algae oil rich in EPA and
22	DHA, with a fatty acid composition similar to that of fish oil, to replace fish oil in plant-
23	based roasted fish flavorings. The results showed that mixing alanine, leucine,
24	glutamine, proline, cysteine, glucose, and algae oil, adjusting the pH value, and heating
25	at 121°C for 15 minutes can produce a roasted fish flavor through Maillard reactions
26	and Strecker degradation, particularly under acidic conditions , which promotes lipid
27	oxidation while partially inhibiting Maillard reactions. In models with different fatty
28	acids, EPA, DHA, and EPA + DHA models were similar to the algae oil model. Key
29	aromatic compounds such as isovaleric acid, octanoic acid, 1,5-octadien-3-one, 2,4-
30	octadienal, 2octenal, furaneol, 2,5-furandicarboxaldehyde, and 2-pentenylfuran were
31	found as important contributors in the reaction flavor model. In conclusion, algae oil
32	containing high amount of EPA and DHA along with amino acids and reducing sugar
33	were able to make plant-based roasted fish flavor through interactions of lipid oxidation,
34	lipid degradation, and Maillard reactions, demonstrating its potential as a substitute for
35	fish oil in plant-based grilled fish flavorings. This application addresses the scarcity of
36	vegetarian seafood flavor products, catering to diverse consumer demands and
37	contributing to innovative developments in the plant-based meat market.