1	Effect of Ultrasound on the Emulsification Properties of Myofibrillar Proteins from Chicken
2	沈寶妮 (5143)
3	2024/03/13
4	Outline
5	1. Introduction
6	2. Effect of ultrasound-assisted immersion thawing on emulsifying and gelling properties of
7	chicken myofibrillar protein
8	3. Use of high-intensity ultrasound to improve emulsifying properties of chicken
9	myofibrillar protein and enhance the rheological properties and stability of the emulsion
10	4. Conclusion
11	Abstract
12	Myofibrillar protein (MP) is the major protein providing excellent water-binding ability,
13	gel-forming ability and emulsifying properties. Improving emulsifying properties of MP
14	contributes to the manufacture of high-quality products. This study aims to explore the effect
15	of ultrasonic application on thawing and fresh chicken on the emulsification properties of MP.
16	Ultrasound-assisted immersion thawing (UT) at 300 W significantly improved the solubility
17	and the absolute ζ -potential value of MP, reduced its turbidity and particle size. It also achieved
18	the highest gel strength and gel water holding capacity, forming a homogeneous and compact
19	gel network that minimized the loss of both immobilized and free water. High-intensity
20	ultrasound treatment for 6 min decreased both MP and MP-based emulsion particle size,
21	resulting in smaller and uniformly distributed droplets. This treatment increased protein
22	adsorption concentration and facilitated MP adsorption onto oil droplet surfaces. Moreover, it
23	induced changes on the secondary and tertiary structures. These changes contribute to
24	improving the emulsifying properties of MP and enhancing the rheological properties and
25	stability of the O/W emulsion. The ultrasonic treatments significantly improved the
26	emulsifying activity index and emulsifying stability index of MP. These results demonstrate
27	that ultrasound can reduce the loss of MP emulsification and gelling properties, enhance
28	emulsion stability, and improve the quality of thawed meat, thereby providing a reference for
29	meat processing.
30	

1	Li, K., Fu, L., Zhao, Y. Y., Xue, S. W., Wang, P., Xu, X. L., & Bai, Y. H. (2020). Use of high-
2	intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and
3	enhance the rheological properties and stability of the emulsion. Food Hydrocolloids, 98,
4	105275.

- Zhang, C., Liu, H., Xia, X., Sun, F., & Kong, B. (2021). Effect of ultrasound-assisted
 immersion thawing on emulsifying and gelling properties of chicken myofibrillar protein.
- 7 *LWT-Food Science and Technology*, 142, 111016.