1	Effects of sweet potato and separated dietary fiber on	gut
2	microbiota composition and metabolic activity.	
3	許祐禎	(5115)
4	02/2	1/2024
5	Outline	
6	1. Introduction	
7	2. Effects of digested flours from four different sweet potato (Ipomoea batata	ıs L.)
8	root varieties on the composition and metabolic activity of human colonic	
9	microbiota in vitro.	
10	3. Dietary fiber isolated from sweet potato residues promotes a healthy gut	
11	microbiome profile.	
12	4. Conclusion	
13	Abstract	
14	Sweet potato (Ipomoea batatas L.) is one of the most important plant foods in the	world,
15	producing more biomass and nutrients than any other food crop. Early studie	s have
16	found high contents of non-digestible fermentable carbohydrates in sweet potate	o roots.
17	Interactions between intestinal microbiota and non-digestible dietary compone	nts are
18	important in health associated with prebiotic effects. Therefore, this study a	ims to
19	investigate the prebiotic properties and metabolic activity of the gut microbiota o	
20	potatoes and their separated dietary fiber. Whether sweet potato root flour (SP	'RF) or
21	dietary fiber from sweet potato residues (SPDF) shows an increase in the concer	itration
22	of Bifidobacterium and Lactobacillus, whereas a decrease of Bacteroide	
23	Clostridium after in vitro colonic fermentation. As a result, both SPRF and SPD	
24	a positive prebiotic index, demonstrating that beneficial microorganisms sele	2
25	utilize them. To further explore this effect, Wistar rats were fed with 3% or 15%	
26	for 4 weeks. It was found that SPDF significantly increased the Bacteroid	
27	Firmicutes ratio at the phylum level, and the amount of Akkermansia was also inc	
28	at the genus level. Microorganisms turn SPRF or SPDF into short-chain fatty	
29	(SCFA), causing an increase in SCFA concentration while pH decreases. Addition	
30	SPDF supplementation resulted in a higher villus height to fossa depth ratio, imp	U
31	digestion and absorption in the gastrointestinal tract. In summary, both SPRF and	
32	indicate significant prebiotic effects and positive modulations of the mic	
33	composition and metabolic activity, showing their potential to be a functional for	ood.

1	References
2	de Albuquerque, T. M. R., Magnani, M., Lima, M. dos S., Castellano, L. R. C., & de
3	Souza, E. L. (2021). Effects of digested flours from four different sweet potato
4	(Ipomoea batatas L.) root varieties on the composition and metabolic activity of
5	human colonic microbiota in vitro. Journal of Food Science, 86(8), 3707-3719.
6	Liu, M., Li, X., Zhou, S., Wang, T. T. Y., Zhou, S., Yang, K., Li, Y., Tian, J., & Wang, J.
7	(2020). Dietary fiber isolated from sweet potato residues promotes a healthy gut
8	microbiome profile. Food and Function, 11(1), 689-699.
9	