1	Effects of LED Lighting on Growth of Chlorella Pyrenoidosa
2	Pei-Jyun Lin 林培鈞 (5112)
3	12/15/2021
4	Outline
5	1. Introduction
6	2. Light wavelengths affected growth and lipid accumulation of microalgae
7	• Wavelength
8	Cultivation methods
9	3. Light intensity affected growth and lipid accumulation of microalgae
10	4. Conclusion
11	Abstract
12	Chlorella pyrenoidosa (C. pyrenoidosa), a type of lipid-rich green microalgae, features
13	broad prospects for applications in such fields as health foods, biodiesel and so on. The light-
14	utilizing efficiency of the algal cells is a critical factor that influences the biomass and lipid
15	contents of photoautotrophic microalgae.
16	Chu et al. (2021) explored the effects of light emitting diode (LED) wavelength or two-
17	phase culture of mixed light sources on the growth and lipid accumulation of C. pyrenoidosa.
18	Cultivation with different LED wavelengths (white, purple, blue, green, yellow and red) under
19	a light intensity of 200 μ mol / m ² s showed that the red light gave the maximum biomass, and
20	the green light gave the highest lipid content. The lipid contents of C. pyrenoidosa being treated
21	under two-phases (first phase : red for 12 d, second phase : green light for 8 d , $R \rightarrow G$) was
22	higher than mixed LED (R:G = $3:7$ or R:G = $7:3$). Fatty acid (FA) analyses showed that 13
23	types FAs were detected and unsaturated FAs were over 50% (w/w) Additionally, although no
24	difference in the FA composition of C. pyrenoidosa treated with different protocols was found,
25	the absolute content did differ significantly, coinciding with that of the total lipids.
26	He et al. (2021) chose the red LED and the blue LED as the light source in order to
27	increase the lipid content of microalgae as well as to reduce the energy consumption. The
28	results showed that the highest biomass and lipid weight of C. pyrenoidosa were achieved
29	under 5000lux light intensity, 8L:16D of photoperiod and red continuous LED light, which
30	were 0.73 g/L and 0.552 g/L respectively. And it consumed 29.4 times less energy consumption
31	for units of the total lipid content than that of tricolor energy-saving lamp. Furthermore,
32	compared with intermittent LED lights, continuous LED lights are a better light source for C.
33	pyrenoidosa .

Reference

2	Chu B., Zhao J., Zheng H., Gong J., Chen K., Zhang S., Xiao G., He Y. (2021).
3	Performance of LED with mixed wavelengths or two-phase culture on the growth
4	and lipid accumulation of Chlorella pyrenoidosa. International Journal of
5	Agricultural and Biological Engineering, 14(1), 90-96.
6	He Z., Han W., Jin W., Yang J., Gao S., Li S., Tu R., Han S., Chen Y., Zhou X. (2021).
7	Cultivation of Scenedesmus obliquus and Chlorella pyrenoidosa in municipal
8	wastewater using monochromatic and white LED as light sources. Waste and
9	Biomass Valorization, 12, 4873–4883.