1	Explore the characteristics of L-fucose isomerase from different
2	sources
3	林于形 (5109)
4	2023/11/29
5	
6	Outline
7	1. Introduction
8	2. Biochemical characterization of recombinant L-fucose isomerase from
9	Caldanaerobius polysaccharolyticus for L-fuculose production
10	3. Thermophilic L-fucose isomerase from <i>Thermanaeromonas toyohensis</i> for L-
11	fucose synthesis from L-fuculose
12	4. Conclusion
13	
14	
15	
16	Abstract
17	L-fucose and L-fuculose are both rare sugars with excellent potential applications
18	in the fields of medicine and agriculture. Preparation methods include chemical,
19	physical, and enzymatic approaches, with enzymatic methods being safer, gentler, less
20	susceptible to contamination, and free from byproducts. Therefore, the purpose of this
21	study is to explore the preparation of L-fucose or L-fuculose using L-fucose isomerases
22	from different sources and analyze their characteristics. Results indicate that the
23	recombinant L-fucose isomerase, Capo-LfIase, from Caldanaerobius
24	polysaccharolyticus, exhibits optimal activity at 55°C and pH 6.5, showcasing high
25	thermal stability with a melting temperature (T_m) of 80.3 °C. The presence of Mn^{2+} and
26	Co ²⁺ enhances Capo-LfIase's catalytic activity. Ca ²⁺ , Fe ²⁺ , Ni ²⁺ , Mg ²⁺ , Cu ²⁺ , Ba ²⁺ , and
27	Zn ²⁺ decreased the activity of Capo-LfIase. Capo-LfIase demonstrates higher substrate
28	specificity for L-fucose, with $K_{\rm m}$, $k_{\rm cat}$ and catalytic efficiency ($k_{\rm cat}$ / $K_{\rm m}$) values of 94.2
29	mM, 23854 min ⁻¹ , and 253.3 min ⁻¹ mM ⁻¹ , respectively. The conversion rate of 80 g L^{-1}
30	L-fucose to L-fuculose is 28.2%, showing significant potential for industrial
31	applications. On the other hand, the recombinant L-fucose isomerase, TtFucl, from
32	Thermanaeromonas toyohensis, exhibits optimal activity at 70°C and alkaline pH. The
33	addition of Mn^{2+} and Mg^{2+} enhances its activity, with Mn^{2+} further improving <i>Tt</i> Fucl's
34	thermal stability and catalytic activity. <i>Tt</i> Fucl demonstrates a specific activity of 199.8
35	U/mg at 70°C, with K_m (Michaelis constant) and k_{cat} (turnover number of substrate)
36	values of 33.4 mM and 901.7 s ⁻¹ , respectively. It displays better substrate specificity
37	for L-fuculose, suggesting its potential application in the industrial production of L-
38	fucose.

1	Reference
2	Iqbal, M. W., Riaz, T., Hassanin, H. A. M., Zhang, W. L., Saeed, M., Mahmood,
3	S., Mu, W. M. (2020). Biochemical characterization of recombinant L-
4	fucose isomerase from Caldanaerobius polysaccharolyticus for L-fuculose
5	production. International Journal of Biological Macromolecules, 146, 965-
6	975.
7	Kim, I. J., & Kim, K. H. (2020). Thermophilic L-fucose isomerase from
8	Thermanaeromonas toyohensis for L-fucose synthesis from L-fuculose.
9	Process Biochemistry, 96, 131-137.